
Event–Related Outputs of Computations in P
Systems

Matteo Cavaliere1, Rudolf Freund2, Alexander Leitsch2, Gheorghe Păun1,3

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: martew@inwind.it, gpaun@us.es

2 Department of Computer Science, Technische Universität Wien
Favoritenstraße 9, A-1040 Wien, Austria
E-mail: rudi@emcc.at, leitsch@logic.at

3 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
E-mail: george.paun@imar.ro

Summary. We briefly investigate the idea to consider as the result of a computation in
a P system the number of steps elapsed between two events produced during the compu-
tation. Specifically, we first consider the case when the result of a computation is defined
in terms of events related to using rules, introducing objects, or meeting objects. Univer-
sality is easily obtained in each case for symport/antiport P systems. Then, we address
the case when the number computed by a system is the length of a computation itself.
We obtain a few results both for catalytic multiset-rewriting and for symport/antiport
systems (in each case, also with using membrane dissolution) showing that non-semilinear
sets of vectors can be computed in this way. A general non-universality result is proved for
this case – no system, of any type, can have as the length of its halting computations all
sets of numbers computable by Turing machines. The general problem, of characterizing
the sets of numbers computed in this way, remains open.

1 Introduction

Input and output of computations in a P system usually are defined in terms
of multiplicities of sequences of objects, entering or leaving the system during a
computation. Recently, in [5], “signals” were considered for defining the input in
a P system used in the recognizing mode: the number of steps in between the
moments when two specified objects are introduced in the system is taken as the
number to be computed (accepted) by the system.

We here address a “dual” question of defining the results of a computation in
a similar way. Actually, we deal with a more general problem, stated in [13] as

108 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

Problem W. The main idea is not to use a support for information, such as the
multiplicity of objects, but to take certain events and to relate the information we
compute (e.g., numbers) with the occurrence of these events. “For instance, let us
distinguish some special objects and count the number of times when they meet
each other in any membrane of the system. Precise pairs of objects can be given
in advance. Then, we can consider as events the use of certain rules – which leads
to a sort of control word, or Szilard word, associated with a computation. Another
idea is not to count the events themselves, but to look for some parameters related
to events. One possibility is to count the number of steps elapsed in between two
specified events. For instance, the very length of a computation (the number of
steps from an initial configuration to a halting one) can be taken as the number
computed by the system.”

Several of these questions (the problem from [13] also contains other questions)
will be investigated in this paper, and some further – sometimes, more technical
– related questions will be investigated, too. The considerations given below are
preliminary ones, but we already get two general conclusions:

(i) If the events can be “freely chosen” (such as the use of certain rules, the
entering/exiting of certain objects into/from the system, the number of times two
objects meet), then it is easy to obtain universality results, by adapting known
universality proofs.

(ii) If we take the length of a computation as the result of the computation,
then the question seems to be much more difficult. Anyway, all semilinear sets of
numbers can easily be computed by simple P systems, and both with multiset-
rewriting rules (and with catalysts) and with symport/antiport rules we can also
compute non-semilinear sets of numbers. However, no class of systems can be
universal in this second case, because of the simple observation that the space
created during a computation of length n is at most of the order of kn, for a
constant k depending on the type of P system under consideration. A more precise
characterization of the sets of numbers computable in this way remains to be found.

2 Prerequisites

The reader is assumed to be familiar with membrane computing, for instance, from
[12], as well as with basic elements of formal language theory, e.g., from [16]. We
only mention here that by REG, CF, CS,RE we denote the families of regular,
context-free, context-sensitive, and recursively enumerable languages, respectively.
The length set of a language L ⊆ V ∗ is denoted by length(L).

A register machine will be denoted by M = (n,H, l0, jh, R), where n is the
number of registers, H is the set of labels, l0 is the start label, lh is the halt label,
and R is the set of labelled instructions. We here consider deterministic register
machines working in the accepting mode: the computation starts with a number
m being introduced in the first register, with all other registers being empty, using

Event–Related Outputs of Computations in P Systems 109

the instruction labelled with l0; if the instruction lh : halt is reached, then the
number m is accepted.

In turn, a P system with symport/antiport rules is given in the form Π =
(n,O, µ,w1, . . . , wn, E,R1, . . . , Rn, io), where n ≥ 1 is the degree of the system,
O is the set of objects, µ is the membrane structure (of degree n, represented
by a sequence of matching labelled parentheses), w1, . . . , wn are the multisets of
objects initially present in the regions of µ, E is the set of objects present in the
environment, R1, . . . , Rn are the sets of rules associated with the n membranes,
and io is the output region. The rules are written in the form (x, in), (x, out)
(symport rules) and (x, out; y, out) (antiport rules), where x, y are strings over
O representing multisets of objects. When the rules have promoters or inhibitors
(always as objects), we write, e.g., (x, out; y, in)|a to denote that a is a promoter of
the antiport rule (x, out; y, in), and (x, out; y, in)|¬a to denote that a is an inhibitor
of the antiport rule (x, out; y, in); a similar notation is used for symport rules.

In the case of multiset-rewriting P systems, the component E is no longer
necessary, but, if the system is catalytic, then a component C ⊆ O, of cat-
alysts, is added. Thus, such a system is given in the form Π = (n,O, C, µ,
w1, . . . , wn, R1, . . . , Rn, io), with the rules of the forms a → v or ca → cv, where
c ∈ C, a ∈ O, and v ∈ (O×{here, in, out})∗. If the membrane dissolving action is
used, then we write a → vδ, ca → cvδ, respectively.

In this paper we also consider the membrane dissolution for symport and an-
tiport rules, and we present such rules in the form (x, in)δ, (x, out)δ, (x, out; y, in)δ;
after using the respective rules, the membrane with which they are associated is
dissolved – with the standard effect in membrane computing (and with the restric-
tion of never dissolving the skin membrane).

Below, because we do not need an output region, the respective component of
systems is not mentioned.

3 Symport/Antiport Systems and “Freely Chosen” Events

Let us start in a sort of “reverse” manner: instead of giving first definitions and
then examples/results, we first consider a specific symport/antiport P system, and
then we examine it in order to see which events can be considered in order to obtain
the desired results.

Let M = (n,H, l0, lh, R) be a register machine accepting the set of numbers
N(M), and construct the P system

Π = (1, O, [
1

]
1
, c0, E,R1)

with the following rules:

r1 : (c0, out; ca1, in),
r2 : (c, out; ca1, in),
r3 : (c, out, l0, in),

110 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

as well as rules for simulating the register machine M , e.g., as in [4] or [5] (one-
membrane systems were proved to be universal in these papers). Thus, it is under-
stood that the alphabet O of objects contains all objects used for simulating the
register machine (always, the contents of a register r is represented by the number
of copies of a specific object ar, and the labels are also objects). Similarly, in the
environment (set E) we have all objects necessary for the computation.

The system Π works as follows. Starting from the initial configuration, con-
taining only the object c0, one first introduces a number n ≥ 1 of copies of a1

in the unique membrane of the system, then one also introduces l0. Each compu-
tation starts by using the rule r1 : (c0, out; ca1, in), and continues as above until
using the rule r3 : (c, out; l0, in). Now, from the configuration [

1
an
1 l0]1 we start the

simulation of the register machine, hence we stop if and only if n ∈ N(M) (and we
stop by introducing the object lh in the system, and, in addition, we will assume
that in that moment no other object is present any more, i.e., the register machine
only stops with all registers being empty).

Let us now consider any pair (ev1, ev2) of events, for

1. ev1 ∈ {start the computation,
use the rule r1,
send the object c0 out,
bring the first a1 in the system,
bring c in the system for the first time},

2. ev2 ∈ {use the rule r3,
introduce the object l0 in the system,
send c out for the last time}.

Clearly, the number of steps elapsed between any ev1 and any ev2 as above is
equal to the number of copies of a1 introduced in the system, and the computation
stops if and only if this number is recognized by M . Consequently, any recursively
enumerable set of numbers (which does not contain the number 0) can be computed
in this way.

In order to compute also the number 0 we can introduce the rule r0 :
(c0, out; l0, in), taking as events, e.g., sending c0 out and introducing l0 in.

In a similarly easy way, universality can be obtained if we count the number
of times two distinguished objects meet in a given region of the system.

We again start by taking a register machine M = (n,H, l0, lh, R) and construct
the system

Π = (1, O, [
1

]
1
, cd, E, R1)

with the following rules:

(c, out; c′a1, in),
(c′, out; cb, in),
(c′, out, bl0, in),
(b, out),

Event–Related Outputs of Computations in P Systems 111

as well as rules for simulating the register machine M . The objects whose meetings
are counted are b and d. We start again by introducing n ≥ 1 copies of a1 in the
system, but this time we also introduce a copy of b for each copy of a1. The copy
of b exits immediately – but already we have the pair (b, d) present in the unique
membrane of the system. After introducing l0, the computation simulates the work
of M for recognizing the number n. Thus, Π computes m if and only if m ∈ N(M).

As shown in [3], P systems with multiset rewriting rules are able to simulate
register machines when using at least two catalysts in one membrane. For such
systems, similar events as above for P systems with symport/antiport rules can
be defined, e.g., we start with c1c2d1d2 (c1, c2 are the two catalysts) and use the
following rules:

r1 : c1d1 → c1d2a1,

r2 : c2d2 → c2d1,

r3 : c1d1 → c1,

r4 : c2d2 → c2w1w2.

The simulation of the register machine then starts with c1 using w1 and c2

using w2. Suitable trap rules like d2 → # and x → # for symbols contained in
w1w2 then guarantee the correct synchronization between the two catalysts c1, c2

when ending this initial phase. Like above, a suitable pair of events is the first use
of rule r1 (r2) and the use of rule r3 (r4).

Thus, these cases do not look very interesting. To make the problem more
difficult, we have to restrict either the complexity of the system (for instance,
using only minimal symport/antiport rules, like in [1], or bounding the number
of used objects, like in [14]), or the freedom in choosing the events. Both these
ideas look very restrictive, in the latter case at least when we take the length of
a computation as the number computed by the derivation. In the next section we
deal with this possibility, both for symport/antiport systems and for catalytic P
systems.

4 The Length of a Computation

In some sense, the most natural (and restrictive) events to consider are the start
and the end of a computation, thus considering the length of a computation as the
computed number.

For a system Π, let us denote by lg(Π) the set of numbers of steps (lengths)
of halting computations in Π. Then, let us denote by NlgOPm(features) the fam-
ily of sets of numbers lg(Π) computed by systems with at most m ≥ 1 mem-
branes, using the features specified by features. These features can be, as usual,
symk, antir, ncoo, cats, δ, where k, r are the maximal weights of symport and an-
tiport rules, and s is the maximal number of catalysts which are allowed. When

112 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

promoters or inhibitors are used for symport or antiport rules, we write psym, isym
and panti, ianti, respectively.

We start the study of these families with the easy observation that the length
set of any regular language can be computed in this way, both by symport/antiport
systems and by non-cooperative multiset-rewriting P systems. Indeed, for any reg-
ular grammar G = (N, T, S, P) we can consider the one-membrane system with
rules

(A, out; B, in), for A → aB ∈ R,
(A, out), for A → a ∈ R,

in the symport/antiport case, and

A → B, for A → aB ∈ R,
A → a, for A → a ∈ R,

in the multiset-rewriting case (the obvious details are omitted).
Therefore, the families NlgOP1(sym1, anti1), NlgOP1(ncoo) contain all semi-

linear sets of numbers. We conjecture that also the converse is true, that is, no
further sets of numbers can be computed by non-cooperative multiset-rewriting P
systems, or by a symport/antiport P system – in both cases, without additional
features, such as membrane dissolution, promoters/inhibitors, etc.

Actually, we do not know whether membrane dissolution helps also in the case
of non-cooperative multiset-rewriting systems, but for symport/antiport systems
both the use of promoters (or inhibitors), and the use of the dissolution operation
seems to help. We start with the easy case, of using promoters or inhibitors.

Theorem 1. The families NlgOP1(sym0, panti2), NlgOP1(sym0, ianti2) contain
non-semilinear sets of numbers.

Proof. We consider the following symport/antiport P system:

Π = (1, {a, b, c, d}, [1]1, acd, {a, b, d}, R1),
R1 = {(a, out; aa, in)|c,

(ca, out; ab, in),
(da, out; d, in)|b}.

In the presence of promoter c, in n steps we can bring into the system 2n − 1
copies of a, for n ≥ 1; in the last step, c exits the system and b enters, thus
promoting the rule (da, out; d, in); this rule will be used for 2n− 1 steps, and then
the computation halts. Therefore, the length of the computation is n + 2n − 1,
that is, lg(Π) = {n + 2n − 1 | n ≥ 1}. The objects c, b can be used as inhibitors,
cross-wise (b inhibiting the first rule and c inhibiting the third one) and the result
is the same. 2

In the case of using the dissolution operation, the construction is more compli-
cated.

Event–Related Outputs of Computations in P Systems 113

Theorem 2. The family NlgOP3(sym1, anti2, δ) contains non-semilinear sets of
numbers.

Proof. We consider the symport/antiport P system

Π = (3, O, µ, w1, w2, w3, E, R1, R2, R3),

with the following components:

O = {a, b, c, d, d′, e, f, g},
µ = [1[2[3]3]2]1,

w1 = fbe,

w2 = db,

w3 = b3d,

E = {a, b, c, d′, f, g},
R1 = {(e, out; eb, in), (de, out; d′a, in), (d′, out; cg, in),

(d, out; f, in), (ff, out; ff, in),
(cg, out; cg, in), (g, out), (a, out; aa, in)},

R2 = {(b, in), (d, out), (c, in)δ},
R3 = {(d, out; db, in), (b, out; a, in), (b, out; f, in)δ}.

The computation starts by using the rule (e, out; eb, in) ∈ R1 and the rule
(d, out; db, in) ∈ R3. Assume that this latter rule is used for n ≥ 0 steps; this
means that in membrane 3 we accumulate n + 3 copies of b.

At some moment, d will exit membrane 2 by means of (d, out) ∈ R2; simul-
taneously, one further copy of b will enter the system by means of (e, out; eb, in),
but it will not enter membrane 3. When d is in the skin region, it has to be used
by the rule (de, out; d′a, in) ∈ R1, otherwise the rule (d, out; f, in) ∈ R1 is used,
we get two copies of f in the system and the rule (ff, out; ff, in) ∈ R1 can be
used forever. In this way, we stop bringing further copies of b inside, and we start
bringing copies of a.

In the next step, d′ is exchanged with cg. From now on, in each step we can
use the rules (a, out; aa, in) ∈ R1 and (cg, out; cg, in) ∈ R1. The first one doubles
successively the number of copies of a present in the system, the second one just
keeps busy the object c. After some m ≥ 1 steps of doubling the number of copies
of a (hence, at the end we get 2m copies of a in the skin membrane), the rule
(c, in)δ ∈ R2 is used. Because g exits the system at the same time (it has to use
the rule (g, out) ∈ R1), from now on c will still remain in the system.

The use of the rule (c, in)δ ∈ R2 dissolves membrane 2, hence, the ob-
jects from the skin region become accessible to rules from R3. In particular, the
rule (b, out; f, in)δ ∈ R3 can be used – but this should be avoided: if we dis-
solve membrane 3, the computation will continue forever by means of the rule
(a, out; aa, in) ∈ R1, making use of the copies of a (and there is at least one)

114 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

from the unique membrane of the system. In order to avoid the use of the rule
(b, out; f, in)δ ∈ R3 we have to involve all occurrences of b from membrane 3 (there
are n + 3 such copies) in using the rule (b, out; a, in) ∈ R3. This means that we
have enough copies of a in the skin region, that is, sm ≥ n + 3. Actually, we must
have equality: if any copy of a remains outside membrane 3, then it will evolve
forever by means of (a, out; aa, in) ∈ R1.

Consequently, the computation stops in the moment when introducing all
copies of a in membrane 3. This means that we have performed n+3+m = 2m+m
steps, for m ≥ 2: we perform n steps using the rule (d, out; db, in) ∈ R3, one step
for each of (d, out) ∈ R2 and (de, out; d′a, in) ∈ R1, m steps of doubling the num-
ber of copies of a – in the first one we also use (d′, out; cg, in) ∈ R1, and in the
last one (c, in)δ ∈ R2, hence we have m ≥ 2 –, and a final step of introducing all
copies of a in membrane 3. Consequently, lg(Π) = {n + 2n | n ≥ 2}, which is not
a semilinear set. 2

A similar result can be obtained for catalytic systems – using membrane dis-
solution. We below give two proofs of this assertion (the first one is a slight gen-
eralization of the set of numbers from the previous theorems).

Theorem 3. The family NlgOP2(cat1, δ) contains non-semilinear sets of numbers.

Proof. First example.
For some k ≥ 2, we consider the system

Π = (2, {a, a′, a′′, b, c}, {c}, [
1

[
2

]
2
]
1
, c, a′′, R1, R2),

R1 = {ca → cb},
R2 = {a′′ → a′′a′ak−2,

a′ → a′ak−1,

a → ak,

a′′ → a′ak−1δ}.

We start with only one copy of a′′ in membrane 2; in each step, the number of
copies of a – primed or not – increases k times, always having only one copy of a′′

present; in each step, one further copy of a′ is introduced. Thus, after n ≥ 0 steps
we have one copy of a′′, n copies of a′, and kn − (n + 1) copies of a. Eventually
we use the rule a′ → a′ak−1δ, thus reaching a multiset with n + 1 copies of a′ and
kn+1 − (n + 1) copies of a. At that time, membrane 2 is dissolved. From now on,
we continue by using the rule ca → cb of R1, and this is done for each copy of a.
Consequently, the computation in total takes kn+1 steps, for n ≥ 0, that is, we
have lg(Π) = {kn | n ≥ 1}.
Second example.

Let us now consider the system

Event–Related Outputs of Computations in P Systems 115

Π = (2, {a, b, c, d, e}, {c}, [
1

[
2

]
2
]
1
, c, abd, R1, R2),

R1 = {cα → ce | α ∈ {a, b, d}},
R2 = {a → abb,

d → abd,

d → abddδ}.

Assume that after n ≥ 0 steps we have a multiset of the form an+1b(n+1)2d
in membrane 2 (initially, this is the case, for n = 0). If the membrane is not dis-
solved, then by using the rules of R2 we get the multiset an+1b2(n+1)b(n+1)2abd =
an+2b(n+1)2+2(n+1)+1d = an+2b(n+2)2d. The process can be iterated. If the mem-
brane is dissolved (this happens in step n+1 for n ≥ 0), then the obtained multiset
is an+2b(n+2)2dd, which passes to membrane 1. In membrane 1 we perform a step
for each copy of a, b, d being present. Thus, the computation lasts in total

n + 1 (steps performed in membrane 2)
+(n + 2) + (n + 2)2 + 2 (steps performed in membrane 1)

= (n + 2)2 + 2(n + 2) + 1
= (n + 3)2 steps.

Consequently, lg(Π) = {n2 | n ≥ 3}. 2

The use of the dissolving operation can be avoided, at the expense of using
cooperative rules.

Theorem 4. The family NlgOP2(coo) contains non-semilinear sets of numbers.

Proof. Let us consider the system

Π = (2, {a, b, c, d, e, f, g,#}, [
1

[
2

]
2
]
1
, c, a, R1, R2),

R1 = {ca → c},
R2 = {a → bbcc,

c → d,

d → e,

b → af,

b → aoutg,

ef → λ,

fg → #,

→ #}.

Assume that in membrane 2 we have 2n copies of a and nothing else; initially,
this is the case, for n = 0. By using the rule a → bbcc, we introduce the same
number of copies of b and c. In the next step, c evolves to d; assume that all copies

116 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

of b evolve by means of the rule b → af . In the next step, d becomes e and a
introduces again b and f . Now, all copies of f and e (they are 2n+1 each) are
removed by means of ef → λ, hence the process can be iterated.

Assume now that at some step we have a number 2m of copies of b and c in
membrane 2, and in the next step we use at least once the rule b → aoutg. If at
the same time the rule b → af is used at least once, then the objects f, g have to
use the rule fg → # and the computation never stops (f cannot be removed by
rule ef → λ, because e is not available).

Therefore, either all copies of b return to a by the rule b → af or all of them
send a copy of a to membrane 1 by the rule b → aoutg. This means that we send
2n copies of a to membrane 1, for some n ≥ 1. In membrane 1 we just “count”
these objects, removing them one by one by means of the rule ca → c.

Thus, the computation lasts 2n steps in membrane 2 and 2n steps in membrane
1, hence, we obtain lg(Π) = {2n + 2n | n ≥ 1}, which is not a semilinear set. 2

These results show that the families NlgOPm(symk, αantir, δ), with α ∈ {p, i},
and NlgOPm(catk, δ), NlgOP2(coo), are non-trivial: they include the semilinear
sets of numbers and also contain non-semilinear sets as those from the previous
proofs.

On the other hand, these families are not containing all Turing computable
sets of numbers, and this is basically due to the fact that during a computation of
length n we can only construct a working space which is of the order of kn, for a
constant k depending on the system at hand.

Let us first recall two results from [10].
Given a proper function f , let SPACE(f) denote the deterministic space and

NSPACE(f) the non-deterministic space with respect to f .

Theorem 5. If f(n) is a proper function, then SPACE(f(n)) is a proper subset
of SPACE(f(n)logf(n)).

Theorem 6. If f(n) is a proper function with f(n) ≥ log n, then NSPACE(f(n)
⊆ SPACE(f2(n)).

Theorem 7. None of the families NlgOP∗(αsym∗, βanti∗, δ), for any α, β ∈
{p, i}, nor NlgOP∗(coo, δ) equals NRE.

Proof. Consider a P system Π with any type of rules (symport/antiport – with
or without promoters or inhibitors, cooperative multiset-rewriting, membrane dis-
solving included) generating as the length of its halting computations the set
lg(Π).

For each halting computation C of length n of Π, C = C1 =⇒ C2 =⇒ . . . =⇒
Cn, define

WΠ(n, C) = max{number of objects present in Ci | 1 ≤ i ≤ n}.

Now define

Event–Related Outputs of Computations in P Systems 117

WΠ(n) = max{W (n,C) | C is a halting computation of length n of Π}.

It is clear that WΠ(n) is bounded by a function of order O(kn), where k is a
constant depending on Π.

We can construct the following non-deterministic Turing machine M accepting
lg(Π). The machine M uses two tapes. On one tape it writes the input (in binary),
and a counter (in binary), separated by a marker, and on the other one the machine
simulates the computation of the system Π (in a non-deterministic way, if Π is
non-deterministic). Each parallel step in Π is simulated by several successive steps
in M – not the duration of the computation in M is relevant here, but the space it
uses. For each simulated parallel step of Π, the machine M increases the counter,
storing, in this way, the number of parallel steps simulated. When the simulation
of Π reaches a halting configuration, the machine M checks whether the counter
has reached exactly the number given as input. If this is the case, then it answers
yes, otherwise it answers no.

The machine M uses a space in O(2kn

) where n is the size of the input (written
in binary; notice that the system Π generates strings in unary numbers, here we
have to input them in binary but work with them in unary).

Therefore, lg(Π) ∈ NSPACE(f(n)), for f(n) ∈ O(2kn

), hence, by Theorem
6 we get lg(Π) ∈ SPACE(g(n)), for g(n) ∈ O((2kn

)2). In this way, we get the
following upper bound,

NlgOP∗(coo) ⊆
⋃

j∈N

SPACE(O((2jn

)2)).

According to Theorem 5, given any proper function h(n) such that h(n) ≥
(2jn

)2log((2jn

)2), for any j ∈ N, there exists a set in SPACE(h(n)) that is not
in the family NlgOP∗(coo), hence, the theorem follows (note that although the
construction of M depends on Π, the space used by M is always bounded in the
same way). 2

In a more general way, we now give a general view on the length of computa-
tions, applicable to any universal computation model (e.g., to register machines).

Let ϕ(x, y) be the result of program number x on input y (ϕ is usually called
a universal function), and Φ(x, y) be the number of computation steps of program
x on input y (typically the computation time). Moreover, for any function f we
denote the domain of f by D(f) and the range of f by R(f).

We now can formulate the problem discussed above in a more general way:

Problem 1. Does there exist an x such that R(Φx) is not recursive?

We first observe some simple facts about ϕ,Φ:

1. D(ϕx) = D(Φx) = {y | (∃z)Φ(x, y) = z} for all x.
Thus, there exists an x such that D(Φx) is undecidable (as the D(ϕx) range
over all recursively enumerable sets).

118 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

2. {(x, y, z) | Φ(x, y) = z} is decidable.
Clearly, even if Φ(x, y) is undefined (by nontermination) we can check whether
termination occurs after z steps.

3. In general, there is no recursive function g such that Φ(x, y) ≤ g(x, y) on
D(ϕx).

Let ‖ (y1, . . . , ym) ‖= max{yi | i = 1, . . . , m} (the usual maximum norm
on tuples of natural numbers). Then a strictly monotone function f : N → R is
called regular if the sets Ak : = {f(l) | l ∈ N, l ≥ k} are infinite for all k ∈ N.
For instance, the identity, log, and log log, or c ∗ log, etc. are regular monotone
functions.

Then, for any Gödel numbering φ, the complexity measure (φ, Φ) is called input
sensitive if there exists a regular monotone function f : N → R such that

Φ(x, y) > f(‖ y ‖) for all x, y ∈ Nm.

Theorem 8. Let (φ, Φ) be an input sensitive complexity measure. Then, for all
x ∈ N, R(Φx) is decidable.

Proof. Let f be the regular strictly monotone function corresponding to (φ, Φ)
with Φ(x, y) > f(‖ y ‖) for all y ∈ Nm. We define a decision procedure for the set
R(Φx) as follows.

Let z be an arbitrary element of N. We define

Nz = min{n | f(n) > z}.
Nz exists by the regularity of f . In particular (by input-sensitivity),

Φ(x, y) > z for all y ∈ Nm such that ‖ y ‖≥ Nz.

Therefore z ∈ R(Φx) if and only if there exists an y with ‖ y ‖≤ Nz such that
Φx(y) = z. Thus, if we define

Yz = {y | y ∈ Nm, ‖ y ‖≤ Nz},
then

z ∈ R(Φx) if and only if z ∈ Φx(Yz).

But the set Yz is finite and the predicate

Φ(x, y) = z

is decidable due to fact 2 observed above. Therefore it is decidable whether z ∈
Φx(Yz), and R(Φx) is decidable as well. 2

A register machine M has to read its input in order to have an in infinite
set lg(M) and therefore is input sensitive, hence, in this case, the set lg(M) is
decidable.

Some further light on the characteristic features of the families considered above
can be obtained by observing the following connection between the duration of
computations in register machines and in P systems:

Event–Related Outputs of Computations in P Systems 119

Theorem 9. P systems with symport/antiport rules as well as catalytic P systems
(with at least two catalysts) can simulate the instructions of a register machine in
exactly k steps, where k is a constant only depending on the type of the P system,
but not on the particular system itself.

Proof. For a given register machine M = (n,H, l0, lh, R) we consider the alphabet
U = {a1, . . . , an} (the symbol ai is associated with register i and the contents of
this register is represented by the multiplicity of object ai in the P system we are
going to construct); we now construct the P system with antiport rules

Π = (1, O, [
1

]
1
, l0, O,R1),

O = U ∪ {l, l′, l′′, l′′′, liv | l ∈ B},
R1 = {(l1, out; l′1, in),

(l′1, out; l′′1 , in),
(l′′1 , out; l2ar, in) | l1 : (ADD(r), l2) ∈ R}

∪ {(l1, out; l′1l
′′
1 , in),

(l′1ar, out; l′′′1 , in),
(l′′1 , out; liv1 , in),
(liv1 l′′′1 , out; l2, in),
(liv1 l′1, out; l3, in) | l1 : (SUB(r), l2, l3) ∈ R}.

We start with l0 present in the system, and we also introduce a multiset am
1 , for m

being the number to be recognized. The system behaves like M , simulating each
of its instructions in exactly three steps (i.e., in this case we have k = 3). The
construction given above follows the construction elaborated in [5], except that
ADD instructions are simulated in three steps here and not in only one step as
done in [5].

As is shown in [3], P systems with at least two catalysts can simulate register
machines in only one membrane; in the construction given there, an ADD instruc-
tion is simulated in one step, whereas the simulation of a SUB instruction of a
given register machine takes exactly four steps in the catalytic P system. It is an
obvious task to expand the simulation of an ADD instruction to exactly four steps,
too, hence, in the case of catalytic P systems the constant k equals four. 2

As a corollary, this theorem can again provide examples of non-semilinear sets
of numbers as length sets of computations in P systems with symport/antiport
systems and catalytic P systems (and without membrane dissolution!) – it just
remains to specify register machines working, for instance, for a number of steps
which grow exponentially; we leave this easy task as an exercise to the reader.
Moreover, from Theorem 8 we know that the length sets of all these P systems are
recursive.

From the results elaborated in this section we know that all families of length
sets obtained from a specific model of P systems, although not being Turing com-
plete, contain complex enough sets of numbers (which can be generated even by

120 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

systems of the respective types with reduced parameters – number of membranes,
weight of symport/antiport rules, number of catalysts). Still, a series of open prob-
lems remains to be investigated; for instance, what about hierarchies on the number
of membranes or of catalysts or on the weight of symport/antiport rules?

5 Remarks About Chomsky Grammars

In Section 4 we have used the obvious fact that the length of derivations in a
regular grammar is the same as the length of the generated strings, hence, it is a
semilinear set. What about other classes of grammars from Chomsky hierarchy?

Given a grammar G of any type, let us denote by lg(G) the set of lengths of
terminal derivations in G.

First, let us note that a statement as above for regular grammars also holds
for matrix grammars without appearance checking:

Theorem 10. The length sets of derivations in regular, linear, context-free, and
matrix grammars without appearance checking are semilinear.

Proof. For a matrix grammar G = (N, T, S,M) construct the matrix grammar

G′ = (N ∪ {S′, C}, T ∪ {c}, S′, M ′),
M ′ = {(S′ → CS)}

∪ {(C → cC, r1, . . . , rn) | (r1, . . . , rn) ∈ M}
∪ {(C → c, r1, . . . , rn) | (r1, . . . , rn) ∈ M terminal matrix}.

Now consider the morphism which erases all symbols from T and leaves c un-
changed. Then we have

lg(G) = length(h(L(G′))).

Because the languages over a one-letter alphabet generated by matrix grammars
are regular, [6], it follows that lg(G) is a semilinear set. 2

Thus, there is no difference between the length sets of derivations in regular,
linear, context-free, and matrix grammars without appearance checking. This is
no longer the case if we pass to monotone grammars. Here is a simple example:

Consider the monotone grammar

G = ({S, B}, {a, b, c}, S, P),
P = {r1 : S → aSBc,

r2 : S → abc,

r3 : cB → Bc,

r4 : bB → bb}.

Event–Related Outputs of Computations in P Systems 121

We have L(G) = {anbncn | n ≥ 1}. In the derivation of a string anbncn we use
n − 1 times the rule r1, once the rule r2, 0 + 1 + 2 + · · · + (n − 2) times the rule
r3 (each B has to travel to left until reaching the first occurrence of b, that is,
passing over the intermediate occurrences of c), and n − 1 times the rule r4. In
total, this means

∑n
i=1 i = n(n + 1)/2, for some n ≥ 1, which means that lg(G)

is not semilinear. Note that the language L(G) itself is semilinear, in contrast to
lg(G).

Actually, in general, lg(G) does not say too much about the language L(G).
More precisely, for each monotone grammar G there is a monotone grammar
G′ such that L(G) = L(G′) and lg(G′) = {n | n ≥ 1}. Indeed, assume G =
(N, T, S, P) and take a string w ∈ L(G). We construct G′ = (N∪{S′}, T, S′, {S′ →
S′, S′ → w, S′ → S} ∪ P). Besides derivations S′ =⇒∗ S′ =⇒ w, of any desired
length, all other derivations in G′ correspond to derivations in G. Thus, the asser-
tions stated above hold.

Some indications about the “derivation length complexity” of (monotone) lan-
guages L probably can be provided by considering all grammars which generate
L, thus examining the family of all sets of length of derivations of these grammars,
yet we do not persist in this direction here.

6 Final Remarks

Freely chosen events look too easy to handle (too much freedom), on the other
hand, taking the length of a computation as the computed number sometimes
looks too restrictive. Something in between might be not to count all steps of a
computation, but to discard some of them, chosen in a natural manner. This is
much in the spirit of using an external observer, as in [2]. If, like in [2], we take
as the observer a finite state automaton analyzing multisets, then again we get
universality in an easy way, by ignoring all steps before and after given events, like
those considered in Section 3. Finding non-trivial observers remains as a further
research topic.

References

1. A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Communicative
P systems with minimal cooperation. In [8], 162–178.

2. M. Cavaliere, P. Leupold: Evolution and observation – A new way to look at mem-
brane systems. In [7], 70–87.

3. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Sci., 330, 2 (2005),
251–266.

4. R. Freund, A. Păun: Membrane systems with symport/antiport rules: Universality
results. In [15], 270–287.

122 M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun

5. R. Freund, Gh. Păun, On deterministic P systems. Submitted, 2003.
6. D. Hauschild, M. Jantzen: Petri nets algorithms in the theory of matrix grammars.

Acta Informatica, 31 (1994), 719–728.
7. C. Mart́ın–Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Membrane

Computing. International Workshop, WMC2003, Tarragona, Spain, Revised Papers,
LNCS 2933, Springer-Verlag, Berlin, 2004.

8. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Mem-
brane Computing. International Workshop WMC5, Milan, Italy, 2004. Revised Pa-
pers,LNCS 3365, Springer-Verlag, Berlin, 2005.

9. M.L. Minsky: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

10. C.H. Papadimitriou: Computational Complexity. Addison-Wesley, 1984.
11. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.

New Generation Computing, 20, 3 (2002), 295–306.
12. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
13. Gh. Păun: Further twenty-six open problems in membrane computing. In this volume,

249–262.
14. Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodriguez-Patón: Symport/antiport P

systems with three objects are universal. Fundamenta Informaticae, 64, 1-4 (2005).
15. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing. Inter-

national Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, Revised Papers.
LNCS 2597, Springer-Verlag, Berlin, 2003.

16. A. Salomaa: Formal Languages. Academic Press, New York, 1973.

