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Summary. The aim of this research is to produce an algorithm for the software that
would let a researcher to observe the evolution of maximally parallel multiset-rewriting
systems with permitting and forbidding contexts, browsing the configuration space by
following transitions like following hyperlinks in the World-Wide Web.

The relationships of maximally parallel multiset-rewriting systems with other rewrit-
ing systems are investigated, such as Petri nets, different kinds of P systems, Lindenmayer
systems, grammar systems, regulated grammars.

1 Introduction

The study of many formal rewriting systems can be simplified by a simulator – a
software tool computing the evolution of the system. There are numerous examples
of simulators for deterministic and non-deterministic rewriting systems, that are
sequential or parallel. In this paper we will focus on the non-deterministic parallel
ones. Recall that in the process of the evolution, the system non-deterministically
branches (chooses the next configuration among the possible ones).

The need for writing yet another simulator appeared because most of the sim-
ulators of P systems with symbol-objects (i.e., of maximally parallel distributive
multiset-rewriting systems) either simulate just the deterministic/confluent sys-
tems or resolve the non-determinism in the random way, see [4, 6, 7, 11, 12, 13, 19].
Clearly, for checking the theorems proved by construction of a system (by testing
the examples), it is desired that either all branches of the needed number of steps
of the evolution are explored, or one branch is selected by the user from the list
of all possible branches at each step. Since the size of the solutions for the first
approach may be too big to be studied without further tools, we focus on the latter
one.
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Thus, the main problem is to compute the set of all possible transitions given
the rewriting system with the current configuration. The meaning of the word
“browsing” in the title is analogous to its meaning in the World-Wide Web: fol-
lowing the transitions (hyperlinks) between the configurations (pages, documents),
optionally remembering the path (history) to be able to come back.

2 Maximally Parallel Multiset Rewriting

For a finite set V (called the alphabet), we will denote the set of all words over
V by V ∗, the empty word by λ and V − {λ} by V +. We refer the reader to [18]
for the formal language preliminaries. Without restricting the generality, we can
assume that the alphabet is ordered: V = {a1, · · · , ak}.

A (finite) multiset over V is a mapping M : V → N. For a ∈ V , the number
M(a) is called the multiplicity of a in M . In this paper we will usually represent
multisets by strings, e.g., M can be represented by w =

∏k
i=1(ai

M(ai)) (or by any
permutation of w since the order of the symbols is not important): the multiplicity
M(a) of each symbol a is represented by the number |w|a of occurrences of the
symbol a in w.

A multiset-rewriting system is defined as a tuple G = (V, R, w), where V is the
alphabet, R is a finite set of rules of the form r : u → v, where u ∈ V +, v ∈ V ∗,
r is called the label of the rule and w ∈ V ∗ is the initial configuration. The label
uniquely defines the rule and the set of all labels is denoted by Lab(R). A multiset
of rules from R can be represented by a word over Lab(R). Without restricting the
generality, we can assume that the rule set is ordered: R = {r1 : u1 → v1, · · · , rm :
um → vm}.

We now proceed to defining the parallel evolution step. It is said that ρ =∏m
j=1 rj

m(j) ∈ Lab(R)∗ is applicable for the configuration w =
∏k

i=1(ai
M(ai)) if∑m

j=1 |uj |ai ∗m(j) ≤ M(ai) for any ai ∈ V , i.e., there is enough symbols in the
configuration to perform all the rules in ρ with a corresponding multiplicity. The
result of applying ρ on w is

w′ = δ(w, ρ) =
k∏

i=1

(ai
M(ai)+

∑m
j=1(|vj |ai

−|uj |ai
)∗m(j)).

In words, w′ was obtained from w by removing uj for m(j) times for all rules rj ,
and then inserting vj for m(j) times for all rules rj . In other words, symbols from
uj were independently replaced by those from vj , multiple times.

Notice that w′ consists of the symbols that did not react and of the symbols
from the right-hand sides of the rules from R. The multiset of rules represented by
ρ is maximal if it is applicable, and no rule rk ∈ R can be applied to the remaining
symbols in the same step, i.e., for any rk ∈ R there is

ai ∈ V with M(ai)−
m∑

j=1

|uj |ai ∗m(j) < |uk|ai .
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The evolution of the system is non-deterministic: it evolves (in one step) from w
by any maximal applicable multiset of rules to the corresponding configuration w′,
denoted by w ⇒ρ w′. The superscript ρ may be omitted, and ⇒∗ is the reflexive
and transitive closure of ⇒. For the rewriting system G = (V, R,w), we define the
set of sentential forms SF (G) as {x ∈ V ∗ | w ⇒∗ x}, and we denote by SFn(G)
the set of configurations that can be obtained from w in exactly n steps.

Example 1. Let us consider the grammar G = ({S, A,B, C}, {p : SA → SAB, q :
AB → ABC}, SAA), as well as the following derivations with respect to it:

SAA ⇒p SAAB ⇒pq SAABBC

SAABBC ⇒pq SAABBBCC ⇒pq SAABBBBCCC ⇒···

SAABBC ⇒pq SAABBBCC ⇒qq SAABBBCCCC ⇒···

SAABBC ⇒qq SAABBCCC ⇒pq SAABBBCCCC ⇒···

SAABBC ⇒qq SAABBCCC ⇒qq SAABBCCCCC ⇒··· .

Hence, SF0(G) = {SAA}, SF1(G) = {SAAB}, SFn+2(G) =
{SA2B2+n−kC1+n+k | 0 ≤ k ≤ n}, and at any step except the first two
either both p and q are applied once, or q is applied twice.

Finally, to increase the power of these systems, let us add promoters and in-
hibitors to the system, see [10] (called in the regulated rewriting theory permitting
and forbidding contexts, respectively, see [14]). The general form of the rules is
extended to r : u → v|p,¬q. The behavior of the system is defined as in the usual
case, except for a given configuration w, instead of the whole set R of rules only
the set of “active” (promoted and not inhibited) rules is considered. The rule r
is promoted if |w|a ≥ |p|a for all a ∈ V . The rule r is inhibited if |w|a ≥ |q|a for
all a ∈ alph(q). A rule p without the inhibitor (q = λ) is never inhibited. A rule
without the promoter (p = λ) is promoted by the definition.

3 The Simulator: Goals and Applications

As it was mentioned in the introduction, we need a method to compute the set of all
possible transitions (configurations after 1 step), as a kernel for the configuration
browser.

The systems we are considering are the maximally parallel multiset-rewriting
systems with promoters/inhibitors. They can be viewed as the Petri nets with
inhibitor arcs, with 2 differences: promoter arcs are added and the parallelism is
maximal, in the sense defined in the previous section. (Notice that the maximality
of parallelism can be easily avoided by adding rules a → a for all a ∈ V ).

The maximally parallel multiset-rewriting can also be viewed as non-
distributive variant of cooperative P systems with promoters/inhibitors. Encoding
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“being in a region i” in object a as, e.g., ai, one obtains the (distributive) transi-
tional P systems. Using the same idea, the communicative P systems are reduced
to the cooperative multiset-rewriting systems1. The behavior of P systems with
active membranes can be simulated by encoding the polarization of each mem-
brane in one object, which is a 3-stable catalyst for the communication rules and
a promoter for the evolution rules.

If we restrict the rules to be non-cooperative (context-free, |u| = 1), then we
obtain a generalization of 0L systems; one can easily use promoters to simulate
the behavior of ET0L systems, modulo the order of the symbols. A similar rea-
soning would establish a link between our systems and grammar systems, except
in this case the control symbol is a (multi-stable) catalyst, not a promoter. The
same is true for simulating the behavior of sequential systems, for example of
some grammars with regulated derivation. One can find links with other rewriting
systems.

The software can be used as a simulator for the systems, a debugger for the
theorems proved in a constructive way, a browser of the configurations, a tool for
the researcher, or a toy for a student. It was used as an engine of the communicative
P systems simulator by Vladimir Rogozhin, to check the theorems in [15] and [1].

4 Problem Reformulation

4.1 Vector representation

In the simulator of the maximally parallel multiset-rewriting systems, the mul-
tisets were represented by vectors. A multiset M over V = {a1, · · · , ak} can be
represented by a vector (M(a1), · · · ,M(ak)) ∈ Nk.

Example 2. The rewriting system

G = ({S, A, B, C}, {p : SA → SAB, q : AB → ABC}, SAABBC)

with SAABBC ⇒pq SAABBBCC, SAABBC ⇒qq SAABBCCC can be written
in space N4 as

V = (4, R, (1, 2, 2, 1)),
R = {p : (1, 1, 0, 0) → (1, 1, 1, 0), q : (0, 1, 1, 0) → (0, 1, 1, 1)},

with (1, 2, 2, 1) ⇒pq (1, 2, 3, 2), (1, 2, 2, 1) ⇒qq (1, 2, 2, 3).
1 It deserves some attention that the objects E present in the environment in infi-

nite multiplicities (let us denote the set of all objects by O) are not represented in
configurations (that are finite), except their copies that are inside the system. In-
stead, a rule (ux, out; vy, in) assigned to the skin membrane (with label 1), where
u, v ∈ E∗ and x, y ∈ (O − E)∗, is converted to a cooperative rewriting rule
h1(ux)h0(y) → h0(x)h1(vy), where hi are region-encoding morphisms: hi(a) = ai,
a ∈ O for 0 ≤ i ≤ 1.
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4.2 Simplex

A simplex is a part of a finitely dimensional space, which is a set of solutions of a
system of linear equations and inequalities, i.e., any intersection of a finite number
of hyperplanes and semi-spaces.
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x1 ≤ 1
x1 + x2 ≤ 2

x2 ≤ 2
0 ≤ 1
x1 → max

x2 → max

Fig. 1. Multi-criteria problem.

All multisets of applicable rules form a simplex.

Example 3. For applying px1qx2 to a in p : (1, 1, 0, 0) → b, q : (0, 1, 1, 0) → c,
a = (1, 2, 2, 1), where b, c ∈ N4, we obtain the following conditions (x1 ≥ 0, x2 ≥ 0
are assumed): 




x1 ≤ 1
x1 + x2 ≤ 2

x2 ≤ 2
0 ≤ 1

4.3 Solutions. Maximality

The resulting strategies are the integer efficient (Pareto–optimal) solutions of the
multi-criteria problem in Figure 1.

5 Program. Examples

5.1 Recursive Approach

We start with the first rule (r = 1)

• Calculate maximal possible applicable multiplicity xr

(1 in the example)
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• For all numbers from xr down to 0
– Calculate remaining objects

(in the example for x1 = 1, (0, 1, 2, 1) remains)
– Proceed with the next rule (if r < m)
– Otherwise, check the maximality

(no more rules applicable to the remaining objects).
If so, then display.

5.2 Drawback. Optimization attempts

Because all space of applicable solutions is searched, the search should be done in
a way as efficient as possible. Here are a few ideas in this respect.

Improvement 1: For the last symbol, the number xm is maximal, no loop
“for all numbers from xm down to 0” is needed. The speed-up obtained in this
way is minor.

Improvement 2: First calculate the necessary minimum of application for
all rules, then proceed with the other objects. The idea is to consider all possible
total week priorities (in our example p Â q and q Â p), calculate the number of
applications, consider the minimum.
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Fig. 2. Reducing the problem to a smaller one.

In this case, the minimal application vector is (0, 1)) and the problem (a =
(1, 2, 2, 1)) is reduced to a smaller problem (a = (1, 1, 1, 1), see Figure 2, right.

A problem with this idea is the fact that the minimum may be not reached by
any total week priority.

Example 4. Let us consider the grammar
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G = ({a, b, c, d}, R, a2b2c2d3)),
R = {p : abd → λ, q : acd → λ, r : bcd → λ, s : d → d}.

Any priority with r1 Â {r2, r3, s} ({r1, r2, r3} = {p, q, r}) will result in applying
r1 twice and s once. Any priority with s Â {p, q, r} will result in applying s 3
times, Thus, the minimum number of applications of s over all total priorities is 1.
However, one can apply p1q1r1 and then no s is applicable.

Improvement 3: Divide and Conquer – Independent Symbols. The steps to
follow are the next ones:

• Select applicable rules
(having enough objects, promoted and not inhibited).

• Consider the dependency graph, whose nodes are the symbols, with two nodes
connected if the corresponding symbols are in the lhs of the same applicable
rule.

• Consider the components of connectedness
(maximal connected subgraphs). They correspond to the independent parts of
the problem.

• Solve each subproblem separately: the solution vector set is the direct sum of
the vector sets of the subproblems.

5.3 Sample Look

x = b∧4.
w = a∧2 b∧2.

s : b → b|/.
r : b → a|/,
q : a → b|/,
p : a → a|/,

Open Input

a∧4.
b∧2.
a∧2.
b.
a.

Back a b

unspecified
p∧2
p q
q∧2

Next

q∧2 r∧2
q∧2 r s
q∧2 s∧2

Evolve

Fig. 3. The main interface.

Figure 3 shows how the program interface looks like. It displays the current
configuration w and the next configuration x in the bottom-right corner. Above it,
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the system rules are displayed. The button Open allows to load another system
from a file. The button Input allows to manually enter the current configuration.
Above these buttons, the history (list of previous configurations) is displayed, and
the last item is now selected. The button Back allows to return to the selected
configuration.

In the middle-top part one can see the tabs corresponding to the independent
sub-systems, and the first one is now selected. In the center, the list of choices of
evolution is shown, for the symbols corresponding to the selected tab. The button
Next allows to go to the next tab. At the right, the list of the maximal multisets
of rules applicable to w is shown. Notice that making a choice for some sub-system
acts as a filter for that list. Once some multiset is selected in the list on the right,
the simulator re-computes x. The button Evolve allows to add w to the history,
make x the current configuration and re-compute the independent sub-problems
and the maximal multisets of applicable rules.

6 Concluding Remarks

This paper describes the ideas behind the construction of a simulator for non-
deterministic parallel rewriting systems, namely, for maximally parallel multiset-
rewriting systems with context.

Section 3 describes the applications of such a simulator and relates the systems
it simulates to other parallel rewriting systems, such as Petri nets, transitional P
systems, communicative P systems, P systems with active membranes, Linden-
mayer systems, grammar systems, regulated grammars.

Various optimizations of the algorithm of computing the set of possible tran-
sitions has been done before, for certain parallel rewriting systems with restricted
forms of cooperation. It remains an open question how to compute the set of max-
imal multisets of rules applicable for a given configuration in a more efficient way
in the general case. An interesting question would be to study the problem in case
of general cooperation of a small degree. A future work would be to implement
simulators of different parallel rewriting systems as interfaces for this engine, and
to use them in research.
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