
On P Systems with Promoters/Inhibitors

Mihai IONESCU
Research Group on Mathematical Linguistics

Rovira i Virgili University
Pl. Imperial Tárraco 1, 43005 Tarragona, Spain

E-mail: mi@fll.urv.es

Dragoş SBURLAN
Department of Computer Science
Ovidius University of Constanţa

Bd. Mamaia 124, Constanţa, România
E-mail: dsburlan@univ-ovidius.ro

Abstract. This article shows how the computational universality can be
reached by using P systems with object rewriting context-free rules, promot-
ers/inhibitors and one catalyst. Both generative and accepting cases are stud-
ied. Some examples that illustrate the theoretical issues are also presented.

1 Introduction

P systems represent a class of distributed/parallel computing devices whose functioning is
inspired from the behavior of molecules and living cells. There, chemical compounds are
processed in a massive parallel manner inside a compartmental structure of membranes
that control the substances exchanges between regions they delimit. The reactions that
take place inside such a biological structure can be formally described by cooperative
rules. One particular case is that of catalytic rules which model the biological reactions
that can take place only with the help of certain enzymatic proteins (which participate
in reactions and remain unmodified after they occur). Another important type is that of
promoted/inhibited reactions that happen in the presence/absence of certain chemicals
which are not directly implied in reactions.

In this abstract, symbolic, mathematical framework it is interesting to see which is
the computational power when “low” cooperation features are used. In this sense, as it
was shown in [4], P systems with context-free and catalytic rules with only two distinct
catalysts are computational universal. Also, in [1] a model with context-free rules, one
catalyst and promoters at the level of rules s shown to be universal.

In this paper we explore the computational power of the systems with context-free
rules, catalytic rules with one catalyst and promoters/inhibitors. Both generative and
accepting cases will be studied here.

Meanwhile, we introduce the regulated rewriting mechanism of regularly controlled
context-free grammars for as a tool in the study of P systems.

264

2 Preliminaries

2.1 Regulated Rewriting

In any Chomsky grammar, at some given step in a derivation one can use for rewriting
any applicable rule in any desired place of the sentential form. In order to restrict this
nondeterminism some regulating mechanisms, which can control the derivation process,
were considered. Using such regulations we can arrive to computational universality even
if we use context-free grammars as a core generative device. In literature there are many
types of regulations which restrict the use of rules in a Chomsky grammar (see [3], [8]).
Here we will present only regularly controlled grammars with appearance checking and
λ–rules.

A regularly controlled context-free grammar with appearance checking is a 6-tuple
GrC = (N, T, P, S, R, F) where N ,T ,P , and S are specified as in context-free grammar, R
is a regular language over P , and F is a subset of P .

For a rule p = A → w ∈ P and x, y ∈ V ∗
G we write x =⇒ac

p y if either

1. x = x1Ax2 and y = x1wx2, or

2. x = y, A does not appear in x, and p ∈ F .

The language L(G) generated by G with appearance checking consists of all words
w ∈ T ∗ such that there is a derivation

S =⇒ac
p1

w1 =⇒ac
p2

w2 · · · =⇒ac
pn

wn = w

with p1p2 · · · pn ∈ R.
We say that G is a regularly controlled grammar without appearance checking iff

F = ∅.
By L(λrC), L(λrCac), L(rC), and L(rCac) we denote the families of languages gener-

ated by regularly controlled grammars (without appearance checking), regularly controlled
grammars with appearance checking, regularly controlled grammars without erasing rules
(and without appearance checking), and regularly controlled grammars with appearance
checking and without erasing rules, respectively.

The following results stand:

L(CF) ⊂ L(rC) ⊆ L(λrC) ⊂ L(λrCac) = L(RE).

Interesting for the scope of the present paper is the last equality, L(λrCac) = L(RE),
since we will simulate a regularly controlled grammar with appearing checking and λ–rules
with P systems in order to show their universality.

2.2 Register Machines

We will use in our paper the power of Minsky’s register machine [6], that is why we recall
here this notion. Such a machine runs a program consisting of numbered instructions
of several simple types. Several variants of register machines with different number of
registers and different instructions sets were shown to be computationally universal (see
[6] for some original definitions and [5] for the definition we use in this paper).

A n-register machine is a construct M = (n, P, i, h), where:

265

• n is the number of registers,

• P is a set of labeled instructions of the form j : (op(r), k, l), where op(r) is an
operation on register r of M , and j, k, l are labels from the set Lab(M) (which
numbers the instructions in a one-to-one manner),

• i is the initial label, and

• h is the final label.

The machine is capable of the following instructions:

(add(r), k, l) : Add one to the contents of register r and proceed to instruction k or to
instruction l; in the deterministic variants usually considered in the literature we demand
k = l.

(sub(r), k, l) : If register r is not empty, then subtract one from its contents and go to
instruction k, otherwise proceed to instruction l.

halt : This instruction stops the machine. This additional instruction can only be
assigned to the final label h.

A deterministic m-register machine can analyze an input (n1, ..., nα) ∈ Nα
0 in registers

1 to α, which is recognized if the register machine finally stops by the halt instruction
with all its registers being empty (this last requirement is not necessary). If the machine
does not halt, the analysis was not successful.

2.3 P Systems Prerequisites

A P system (of degree m ≥ 1) with symbol–objects and rewriting evolution rules is a
construct

Π = (V,C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

• V is the alphabet of Π; its elements are called objects;

• C ⊆ V is the set of catalysts;

• µ is a membrane structure consisting of m membranes labeled 1, 2, · · · ,m;

• wi, 1 ≤ i ≤ m, specify the multisets of objects present in the corresponding regions
i at the beginning of a computation;

• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with the regions
1, 2, . . . , m of µ, and ρi is a partial order relation over Ri (a priority relation); these
evolution rules are of the form a → v or ca → cv, where a is an object from V − C
and v is a string over

(V − C)× ({here, out, in})
(In general, the target indications here, out, in are written as subscripts of objects
from V .);

• i0 is a number between 0 and m and specifies the output membrane of Π (in case of
0, the environment is used for the output).

266

Starting from the original model some variants were proposed (see [7]). One of them is
P systems with promoters/inhibitors and was introduced in [1]. In the case of promoters,
the rules (reactions) are possible only in the presence of certain symbols. An object a is a
promoter for a rule u → v, and we denote this by u → v|a, if the rule is active only in the
presence of object a. An object b is an inhibitor for a rule u → v, and we denote this by
u → v|¬b, if the rule is active only if inhibitor b is not present in the region. In particular,
promoters/inhibitors themselves can evolve according to some rules.

The difference between catalysts and promoters consists in the fact that the catalysts
directly participate in rules (but are not modified by them), and they are counted as any
other objects, so that the number of applications of a rule is as big as the number of copies
of the catalyst, while in the case of promoters, the presence of the promoter objects makes
it possible to use the associated rule as many times as possible, without any restriction;
moreover, the promoting objects do not necessarily directly participate in the rules. As a
consequence, one can notice that the catalysts inhibits the parallelism of the system while
the promoters/inhibitors only guide the computation process.

The P system with the mentioned features starts to evolve from an initial configuration,
by performing all operations in a parallel way, for all applicable rules, for all occurrences
of objects in the region associated with the rules, for all regions at the same time and
according to a universal clock. A computation is successful if and only if it halts, meaning
that no rule is applicable to the objects present in the final configuration. The result of
a halting computation is the number of objects present in the region i0 in the halting
configuration. The set of all numbers constructed in this way by a system Π is denoted
by N(Π). For such kind of P systems we will use the following notation:

NOPm(α, β), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}, β ∈ {proR, inhR}

to denote the family of sets of natural numbers generated by P systems with at most
m membranes, evolution rules that can be non-cooperative (ncoo), cooperative (coo), or
catalytic (catk), using at most k catalysts, and promoters (proR) or inhibitors (inhR) at
the level of rules.

Also, we may consider as the result of a halting computation the vector Ψ(w) (the
vector of multiplicities of objects) where w is the multiset present in the region i0 in the
halting configuration. In this case, the set of all vectors constructed in this way by a
system Π is denoted by Ps(Π).

We will use also the following notation:

PsIPm(α, β), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}, β ∈ {proR, inhR},

to denote the family of sets of vectors of natural numbers generated by P systems with
at most m membranes, evolution rules that can be non-cooperative (ncoo), cooperative
(coo), or catalytic (catk), using at most k catalysts, and promoters (proR) or inhibitors
(inhR) at the level of rules. Here, I stands for P systems with internal input.

In this paper we will show how the regularly regulated context-free grammars with
appearance checking can be used to prove the computational universality of such type of
P systems. Also we will also study the deterministic P systems accepting sets of vectors
of natural numbers.

We indicate [1] for more details concerning P systems with promoters/inhibitors.

267

0 → 0out

1 → 1out

c

0 → 0′Aout

c0′ → c0out

1 → 1′

1′ → 1′′Bout

c1′′ → c1out

A → A′
0 → 0out|A′
A′ → A′′
0 → λ|A′′
A′′ → λ

B → B′
1 → λ|B′
B′ → B′′
1 → 1out|B′′
B′′ → λ

'

&

$

%

1

2

3

'

&

$

%

'

&

$

%

Figure 1: Simulation of the AND gate using promoters and one catalyst

3 Some Relevant Examples

In this section we will present some examples of P systems computing some “sensitive”
tasks using above introduced types of P systems. First we will construct a P system with
promoters that, having as input two values, say 0 and/or 1, computes the and operation
(see Figure 1).

Formally, we define the following P system

ΠAND = (V,C, µ, w1, w2, w3, R1, R2, R3, 0),

where:

• V = {0, 1, 0′, 1′, 1′′, A, A′, A′′, B, B′, B′′, c};
• C = {c};
• µ = [3[2[1]1]2]3;

• w1 = w3 = ∅, w2 = {c};
• R1 = {1 → 1out, 0 → 0out};

R2 = {0 → 0′Aout, c0′ → c0out, 1′ → 1′′Bout, 1 → 1′,

c1′′ → c1out};
R3 = {A → A′, 0 → 0out|A′ , A′ → A′′, 0 → λ|A′′ ,

A′′ → λ, B → B′, 1 → λ|B′ , B′ → B′′,

1 → 1out|B′′ , B′′ → λ}.
The simulation of the AND gate uses the catalyst c to inhibit the parallelism and to

separate the entrance time of objects 0 and 1 into region 3. According to the entrance time,
objects will be either deleted, or sent out into the environment. More specifically, if we
consider that initially we had two objects 0 inside region 2, the rule 0 → 0′Aout is executed.
Its role is to introduce the object A into region 3 to set up the “right” configuration of the
region. Next, in region 2 the only applicable rule is c0′ → c0out, which will introduce one
object 0 into region 3. At the same time, in region 3 the rule A → A′ is executed. Now, we

268

c, an, bm

ca → ca′d|¬a′
cb → cb′d|¬b′
a′ → Aout|¬b
b′ → Bout|¬a

d → λ
a′ → λ|¬d
b′ → λ|¬d

1
2

'

&

$

%

'

&

$

%

Figure 2: Integer subtraction using inhibitors and one catalyst

will have in region 3 the objects A′ and 0, and the rules that will be applied are 0 → 0out|A′
and A′ → A′′. These rules guarantee that an object 0 is sent out into the environment. In
the meantime, in region 2, the remaining object 0′ reacts with the catalyst c and an object
0 will be introduced into region 3 (the rule used is again c0′ → c0out). Here, the object
0 will find a different context since now, in region 3 there is no object A′. Therefore, the
rules 0 → λ|A′′ and A′′ → λ are applied, hence the initial configuration of the system is
restored. Basically, a similar method stands for the other cases, with some minor changes:
objects 1 enter into region 3 with one computational delay (because of the rule 1 → 1′

present in region 2) in order not to influence the processes executing in region 3; the first
object 1 that enters into region 3 is deleted (as opposed to the above case when the first
object 0 that arrives in region 3 is sent out) by using the rule 1 → λ|B′ .

Recall that the membrane 1 can be entirely avoided, its role being only to specify the
entry point of the input. Also, the result of computation is sent out into environment even
if it is actually obtained in region 3. This features are useful when we want to connect
gates into circuits (see [2] for more details).

The second example (see Figure 2) uses context-free rules, inhibitors and one catalyst
to compute the arithmetic difference between the initial multiplicity of two distinct objects,
present at the beginning of computation into an “input” region.

Formally, we define the following P system

Πsubtraction = (V, C, µ,w1, w2, R1, R2, 2),

where:

• V = {a, b, a′, b′, d, A,B, c};
• C = {c};
• µ = [2[1]1]2;

• w1 = {c, an, bm}, w2 = ∅;
• R1 = {ca → ca′d|¬a′ , cb → cb′d|¬b′ , a′ → Aout|¬b,

b′ → Bout|¬a, d → λ, a′ → λ|¬d, b′ → λ|¬d};
R2 = ∅.

269

The system starts the computation having into the input membrane 1 a catalyst c and
the objects an, bn, whose multiplicity we want to subtract. The result of computation is
sent to region 2 and it is represented by:

• An−m if n > m;

• Bm−n if m > n;

• no object is sent to region 2 meaning that m = n.

The system works as follows: while there are still objects a and b, they are deleted in
pairs, iteratively, up to a moment when there are no more objects a, for instance (or objects
b). At that moment, the flow of computation changes and as a result, also iteratively, the
remaining objects b (or objects a, respectively) are send out. During the computation, the
promoters control the derivation process, while the catalyst inhibits the parallelism. For
a better understanding we present the configuration table for the case when both objects
a and b are present simultaneously into the input membrane.

region 1 region 2
t0 c, an, bm

ca → ca′d|¬a′

t1 c, an−1, bm, a′, d
cb → cb′d|¬a′

d → λ
t2 c, an−1, bm−1, a′, b′, d

d → λ
t3 c, an−1, bm−1, a′, b′

a′ → λ|¬d

b′ → λ|¬d

t′0 c, an−1, bm−1

ca → ca′d|¬a′

· ·

Here we have considered only the case when at the first step an object a reacts with the
catalyst c. The result of computation remains unchanged (due to symmetry reasons) even
if, at the first step, an object b reacts with the catalyst c.

When in the region remain only objects a, the configuration table for the forthcoming
computations is:

region 1 region 2
tp c, ak

ca → ca′d|¬a′

tp+1 c, ak−1, a′, d
a′ → Aout|¬b′

d → λ

t′p c, ak−1 A

ca → ca′d|¬a′

· ·
The case when inside the region 1 remain only objects b and the catalyst c is similar

with the previous one, and has as result the production into region 2 of m − n copies of
objects B.

270

Since in both examples we have used some context-sensing features we may conjecture
that both P systems with promoters and P systems with inhibitors, using only one catalyst,
are computational universal. Indeed, the following section will be dedicated to these issues
and, there, we will show how any recursively enumerable set of natural numbers can be
obtained using these types of P systems.

4 Universality Results

4.1 Computational Universality – The Generating Case

Here, we present two universality results concerning P systems with promoters or in-
hibitors at the level of rules. The proofs are based on the simulations of regularly con-
trolled context-free grammars with appearance checking for which the equivalence with
RE stands. We denote by NOPm(cat, proR), the family of sets N(Π) computed by sys-
tems with at most m membranes, 1 catalyst (say c) and objects as promoters. By NRE
we denote the family of Turing computable sets of numbers.

Theorem 1 NOP2(cat1, proR) = NRE.

Proof. We will consider for this proof the implication NRE ⊆ NOP2(cat, proR); the
other way around is a long, but straightforward construction.

Let Greg = (Nreg, Treg, Preg, Sreg) be a regular grammar generating the regular set
Lreg. We denote by r the number of rules in Preg. The rules of Preg are enumerated
as i : (Mi → piQi) or i : (Mi → pi) with 1 ≤ i ≤ r, where Mi ∈ Nreg and pi ∈ Treg

∀ 1 ≤ i ≤ r. For any such grammar Greg we can construct an equivalent right–linear
grammar G′ = (N ′, T ′, P ′, S′) in the following way:

T ′ = Treg,
S′ = Sreg,
N ′ = Nreg ∪ {M(i,1),M(i,2),M(i,3) | 1 ≤ i ≤ r}.

For any rule i : (Mi → piQi) ∈ Preg or i : (Mi → pi) ∈ Preg, 1 ≤ i ≤ r we will have in
P ′ the sequence of rules:

Mi → M(i,1), M(i,1) → M(i,2), M(i,2) → M(i,3), M(i,3) → piQi,
Mi → M(i,1), M(i,1) → M(i,2), M(i,2) → M(i,3), M(i,3) → pi

respectively. Moreover, P ′ does not contain other rules excepting the rules considered
above.

In other words, the only difference between the two grammars is that the production
of a new terminal in grammar G′ is done after each fourth step of a derivation.

Now let us construct a P system which simulates the derivation process of a regularly
controlled grammar with appearance checking. The system will use only two membranes,
one catalyst and promoters. The innermost membrane will contain the generative mecha-
nism and the results of computation will be send out to the skin membrane which will be
the output membrane of the system (the reason is that the catalyst is used during the com-
putation to inhibit the parallelism and it cannot be removed, therefore we cannot obtain
the number 0 as the result of computation if we use only one membrane). In what follows

271

we will discuss only the rules in the innermost membrane since the skin membrane does
not execute any task (its role is only to collect the objects obtained during computation).

The promoters will be generated by a mechanism like the one presented above (pro-
moters will be actually terminal symbols from T ′ and, therefore, they will be generated
at each forth step). They will permit the execution of “context-free” rules in the “right”
order – the order given by the regular mechanism.

In order to correctly simulate the appearance checking mechanism we have to modify
the rules in the grammar G′ such that we replace each rule of type M(i,3) → piQi by rules
of type: M(i,3) → piQif or M(i,3) → piQia depending on how the object pi indicates a
rule from F (in the regularly controlled grammar definition, the set F ⊂ P represents the
appearance checking set of rules; we will use the object a to identify that a rule with the
corresponding label pi is in the appearance checking set; if not, we will produce in the
rule the object f). We will consider also the same construction for the rules in G′ of type
M(i,3) → pi, i.e., M(i,3) → pif or M(i,3) → pia. This means that, in the definition of our P
system, for the inner membrane, we will have rules of the following types:
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQif if pi is not a label in
the appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQia if pi is a label in the
appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pif if pi is not a label in the
appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pia if pi is a label in the
appearance checking set.

Up to this moment, we only have considered the regular mechanism which gener-
ates labels indicating the context-free rules that should be applied. Let us denote by
GCF = (NCF , TCF , PCF , SCF) a context-free grammar with productions labeled with the
elements of Treg. Now we will discuss how we can simulate (by using P systems means)
the application of a context-free rule p : (A → α) indicated by the regular mechanism.

For a context-free rule (p : (A → α)) ∈ GCF we will have in our P system the following
sequence of rules:
cA → cDα|p,
p → p′,
p′ → λ|D,
D → λ.

Here, we have considered, without loosing the generality, that α ∈ (N ∪Tout)∗ meaning
that if we apply the rule p : (A → α) we will send to the output region the terminal symbols
(recall that we are interested only in the number of objects).

If promoter p, object A, and catalyst c are present at a certain moment together, then
they will react only once in two consecutive computational steps. This is due to the fact
that the promoter p is changed (p → p′) in the same moment with the execution of the rule
cA → cDα|p. Moreover, the presence of the catalyst c in the rule inhibits the parallelism
(we want that in one “round” the rule A → α to be applied only once and not for all
occurrences of object A that may exist in the region). Now, in order to be sure that the
rule cA → cDα|p was executed an object D is created; it will help to delete the object
p′ present in membrane (which if not deleted can cause problems in further steps). The
object D will be also deleted by the rule D → λ.

272

This sequence of rules stands for the case when the context-free rule A → α can be
applied and so, it must be applied. In the case when the rule mentioned cannot be applied
we have to decide if the promoter present indicates a rule with the label in the appearance
checking set or not.

First, let us consider the case when the promoter is not a label in the appearance
checking set. In this case, recall that we deal with the following sequences of productions
(from the regular mechanism):
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQif , or
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pif .

As the result of applying these rules we will have in the inner region, among others,
the objects p and f . Let us consider that, for this case, we have the rules:
f → f1,
f1 → f2,
p′ → #|f2 ,
f2 → λ,
→ #′,
#′ → #.

The first two rules from this group are meant to delay the execution of the third
rule because we are not “sure” if the rule cA → cDα|p is or it is not applied. So, if the
mentioned rule is applied, then the object f2 will be deleted by the rule f2 → λ and will not
promote the rule p′ → #|f2 since the object p′ → λ|D was “consumed” in a previous step.
As a consequence, there will be no effect (in terms of objects produced) if the previous
set of rules is executed. In the opposite case (when the rule cA → cDα|p is not applied
because there is no object A present in the region), then the object # will be generated.
The rules # → #′, #′ → # will cycle forever and the computation will never halt and
this will mean that the computation have failed (recall that we show the universality for
the nondeterministic case).

With a similar construction like above we can solve the case when we deal with rules
that have labels in the appearance checking set. This means that the rules to be applied
are of the types:
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQia , or
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pia.

Here the difference from the previous case consists in not generating the trap symbol
if the rule cA → cDα|p cannot be applied. We only have to delete the promoter p′.
Its presence may interfere in the next steps of computation if it is not deleted. The rules
below state the fact that if a rule is in the appearance checking set and it can not be
applied even if it is indicated by the regular mechanism, then it can be skipped.
a → a1,
a1 → a2,
p′ → λ|a2 ,
a2 → λ.

Finally, the initial configuration of the P system is composed by the starting symbol
SReg of the regulating mechanism, the starting symbol SCF of the context-free mechanism
and the catalyst c. The system will evolve in a maximally parallel manner its behavior
being controlled by the catalyst and promoters.

One can notice that we arrive at the same descriptional complexity in terms of number
of membranes, number of catalysts and promoters as in the original proof in [1], but

273

simulating a different computational universal mechanism. 2

As it can be seen, the promoters combined with one catalyst are sufficient to prove the
computational universal capabilities of the P systems when using only context-free object
rewriting rules. Also, a similar result, but concerning inhibitors instead of promoters,
stands.

Theorem 2 NOP2(cat1, inhR) = NRE.

Proof. Let us consider a similar construction like the one in the previous proof, but con-
sidering a sequence of rules as the one given below. Here we also will have two membranes
and will discuss only the rules presented in the inner membrane, the skin membrane being
used only to collect the result of computations. First let us recall that the rules from the
context-free grammar are labeled with the symbols p1, · · · , pk. Consider also that if in the
regular grammar which controls the derivation of the context-free grammar we have a rule
Mi → pjQi, then in our simulation we will have:
Mi → p1 · · · pkM(i,1),
M(i,1) → p1 · · · pkM(i,2),
M(i,2) → p1 · · · pkM(i,3),
M(i,3) → p1 · · · pj−1pj+1 · · · pkQifr.

Moreover, in the above construction we have considered that the label pj indicates a
context-free rule which is not in the appearance checking set. As it can be seen, instead
of indicating the rule with the symbol pj (meaning that the context-free rule with label
pj should be applied), we have used the complementary set, i.e., p1 · · · pj−1pj+1 · · · pk.

Now, let us consider the following set of rules which simulates the behavior of the
context-free mechanism:
cA → CDα|¬pj ,
pj → λ,
f → f1,
r → r1,
D → D1,
r1 → r2|¬D,
f1 → f2,
f2 → #|¬D1 ,
f2 → λ|¬r2 ,
r2 → λ,
D1 → λ,
→ #′,
#′ → #.

The first three rules of the “regular controller” produce the symbols p1, · · · , pk and
so the rule cA → CDα|¬pj cannot be applied because always object pj will be among
the mentioned objects. This means that during the first three steps in a cycle the rule
cA → CDα|¬pj cannot be applied. Also, at each step we delete the objects p1, · · · , pk by
rules of type pj → λ. In the last step in a cycle, we avoid to introduce the object pj and so
the rule cA → CDα|¬pj can be applied. With this occasion, we also introduce the objects
f and r which are used to indicate a rule which is not in the appearance checking set.

The rule cA → CDα|¬pj will modify only one (if any) occurrence of object A present
in the region because of the catalyst c. Moreover in the next step of computation the

274

objects p1, · · · , pk will be again introduced, so they will forbid the execution of any rule of
type cA → CDα|¬pj .

Now, coming back, we can notice that the rule cA → CDα|¬pj can be applied only if
there is an occurrence of object A. Recall that this rule is not in the appearance checking
set and so, if it cannot be applied, then the computations must cycle forever in order not
to accept. If the rule can be applied, it has to be applied and moreover all the symbols
that were produced during the computation must be deleted in order not to interfere in
the next cycle.

Now let us see which is the result of a computation in both cases. Consider the first
case, when the rule cA → CDα|¬pj is applied. Then, in the same moment, the rules
f → f1 and r → r1 are executed. In the next step the rules D → D1 and f1 → f2 can
be applied. The rule r1 → r2|¬D cannot be applied since the object D is present in the
region. As an effect, the region will contain the objects D1, f2, and r1. So, the only
applicable rules are: D1 → λ, f2 → λ|¬r2 , and r1 → r2|¬D. Finally, the rule r2 → λ
deletes the last symbol that was created in this cycle. This means that we reestablish the
initial configuration and the computation can continue.

Now, consider the opposite case, when the rule cA → CDα|¬pj has to be applied
(because is indicated by the regular control), but it cannot be applied (because, there is
no symbol A present in the region). So, the symbol D is not released. As an effect we will
have in the region the objects f1 and r1 and the rules to be applied are r1 → r2|¬D and
f1 → f2. Next, the rules f2 → #|¬D1 and r2 → λ will be applied and so the # symbol
will be created and the computation will never halt.

For the rules that are in the appearance checking set we can consider for the regular
mechanism rules of the following types:
Mi → p1 · · · pkM(i,1),
M(i,1) → p1 · · · pkM(i,2),
M(i,2) → p1 · · · pkM(i,3),
M(i,3) → p1 · · · pj−1pj+1 · · · pkQi,
while for the “context-free” mechanism a rule:
cA → Cα|¬pj is considered.

In this way, if the rule can be applied, then it will be applied and if cannot be applied,
then nothing will happen and the process will continue correctly simulating the appearance
checking mechanism.

Another aspect one can notice is that we can generate the family of recursively enu-
merable sets of natural non-null numbers if we use only one membrane since we use the
catalyst c which remains inside the region and it cannot be removed. 2

4.2 Computational Universality – The Deterministic Accepting Case

The following theorems show the computational universality (in their accepting variant)
of P systems with object rewriting non-cooperative rules and promoters/inhibitors at the
level of rules. The system we propose simulates the moves of a deterministic register
machine. Moreover, the obtained P system is also deterministic.

Theorem 3 PsIP2(cat1, proR) = PsRE.

275

Proof. In order to prove this assertion we will simulate a n–register machine M =
(n, P, i, h). The contents of register j will be represented in our simulation by the multi-
plicity of the object aj .

Formally, we define the P system

Π = (V, C, [1 [2]2]1, w1 = ∅, w2, R1 = ∅, R2, 1),

where:
V = {aj , Aj , Sj | 1 ≤ j ≤ n} ∪ {F, T} ∪ {e, e′ | (e : add(j), f) ∈ P}∪

{e, e′, e′′ | (e : sub(j), f, z) ∈ P},
C = {c},
w2 = {c, e, akj

j , 1 ≤ j ≤ n, kj ∈ N},
and R2 is defined as follows:

• for each instruction (e : add(j), f) ∈ P , we add to R2 the rules:
e → e′Aj

c → caj |Aj

Aj → λ
e′ → f

• for each instruction (e : sub(j), f, z) ∈ P , we add to R2 the rules:
e → e′TSj

caj → cF |Sj

Sj → λ
e′ → e′′

T → T ′

e′′ → f |F
F → λ
T ′ → T ′′

e′′ → z|T ′′
T ′′ → λ

• for the instruction (h : halt) ∈ P , we add to R2 the rules:
aj → #|h, 1 ≤ j ≤ n
h → λ

• the rule # → # is added to R2,

• no other rules are added to R2.

Here is how the system works. Initially the P system starts the computation having
in its input region (region 2) the objects ak1

1 , · · · , akn
n , the catalyst c and the label e of

the first instruction of the register machine we want to simulate. The vector (k1, · · · , kn)
represents the vector that has to be accepted by our P system.

The P system starts the computation by simulating the first instruction of the register
machine program. Let us suppose that the first instruction to be executed is of type
(e : add(j), f) ∈ P . Then, in region 2 the rule e → e′Aj is executed. The object Aj

indicates that the number of objects aj has to be incremented. This will be realized,
in the second computational step, by the promoted evolution rule c → caj |Aj ; the rules
Aj → λ and e′ → f are executed in the same time with the previous one. The first

276

rule, assures that c → caj |Aj is not executed again in one iteration (therefore, j is just
incremented), while the second rule allows the P system to further simulate the instruction
of the register machine indicated by label f .

In the case in which a subtraction instruction (e : sub(j), f, z) ∈ P is simulated,
then in region 2 the rule e → e′TSj is executed. Note that the object Sj stands for the
subtraction command; as an effect, the rule caj → cF |Sj is executed and the number of
objects aj is decreased by 1 (if it is possible, i.e. the number of objects aj is greater
than 0). Meanwhile, the execution of rule Sj → λ guarantees that only one object aj

was deleted from the current multiset (again, if it is possible). If everything worked fine,
then the sequence of rules e′ → e′′, e′′ → f |F , F → λ was executed, and the label of the
next register machine instruction was generated. Otherwise (i.e. there is no objects aj in
region 2) the rule caj → cF |Sj is not executed therefore the object F is not produced and
the rule e′′ → f |F cannot be applied. Meanwhile, the object T evolves to T ′ and then to
T ′′. The last step of an iteration is when the rules e′′ → z|T ′′ and T ′′ → λ are applied
simultaneously. In conclusion, the label of the next register machine instruction has been
created.

The above presented simulations of the instructions, (e : add(j), f) ∈ P and (e :
sub(j), f, z) ∈ P , are iterated according to the register machine program. The simulation
stops when the h label (which stands for halt instruction) is generated and no other objects
aj , 1 ≤ j ≤ n are into region 2. In all other cases, the trap symbol # is generated and the
computation will cycle forever.

2

Theorem 4 PsIP2(cat1, inhR) = PsRE.

Proof. This assertion will be proved by simulating a n–register machine M = (n, P, i, h).
The contents of register j will be denoted in our simulation, as in the previous theorem,
by the multiplicity of the object aj .

Formally, we define the P system

Π = (V, C, [1 [2]2]1, w1 = ∅, w2, R1 = ∅, R2, 1),

where:
V = {aj , Aj , Sj | 1 ≤ j ≤ n} ∪ {P, P1, Q, Q1, Q2, F, F1, F2}∪

{e, e′ | (e : add(j), f) ∈ P} ∪ {e | (e : sub(j), f, z) ∈ P},
C = {c},
w2 = {c, e, akj

j , 1 ≤ j ≤ n, kj ∈ N},
and R2 is defined as follows:

• for each instruction (e : add(j), f) ∈ P , we add to R2 the rules:
e → e′A1 · · ·Aj−1Aj+1 · · ·AnS1 · · ·Sn

c → caj |¬Aj

Ai → λ, 1 ≤ i ≤ n
Si → λ, 1 ≤ i ≤ n
e′ → fA1 · · ·AnS1 · · ·Sn

277

• for each instruction (e : sub(j), f, z) ∈ P , we add to R2 the rules:
e → F(j,0)QA1 · · ·AnS1 · · ·Sj−1Sj+1 · · ·Sn

caj → cPA1 · · ·AnS1 · · ·Sn|¬Sj

Ai → λ, 1 ≤ i ≤ n
Si → λ, 1 ≤ i ≤ n
F(j,0) → F(j,1)A1 · · ·AnS1 · · ·Sn

Q → Q1A1 · · ·AnS1 · · ·Sn

P → P1A1 · · ·AnS1 · · ·Sn

Q1 → Q2A1 · · ·AnS1 · · ·Sn|¬P

F(j,1) → F(j,2)A1 · · ·AnS1 · · ·Sn

F(j,2) → zA1 · · ·AnS1 · · ·Sn|¬P1

P1 → λ
F(j,2) → fA1 · · ·AnS1 · · ·Sn|¬Q2

Q2 → λ

• no other rules are added to R2.

As in the previous theorem we start the computation having in region 2 the objects
ak1

1 , · · · , akn
n , the catalyst c and the label e of the first instruction of the register machine

we want to simulate.
Let us consider that an increment instruction (e : add(j), f) ∈ P has to be simulated.

Then, in our P system, the existing object e (which represents the previous instruction
label) is rewritten by the rule e → e′A1 · · ·Aj−1Aj+1 · · ·AnS1 · · ·Sn. As it can be seen
only the object Aj is missing from the right hand side of the rule. The absence of this
object indicates that the number of objects aj has to be incremented. Because of this,
the rule c → caj |¬Aj can be applied. Meanwhile, the rules Ai → λ, 1 ≤ i ≤ n, Si → λ,
1 ≤ i ≤ n, and e′ → fA1 · · ·AnS1 · · ·Sn are executed. Their role is to reconfigure the
system for the new instruction that has to be simulated.

Now, let us consider that the system receive the command to subtract one object
aj from the current multiset (e → F(j,0)QA1 · · ·AnS1 · · ·Sj−1Sj+1 · · ·Sn). We have to
consider two cases: there exists or not objects aj .

If |w|aj ≥ 1 where w is the current multiset present in region 2, we can apply the
rule caj → cPA1 · · ·AnS1 · · ·Sn|¬Sj since the object Sj is missing. The rules Ai → λ,
1 ≤ i ≤ n and Si → λ, 1 ≤ i ≤ n are executed at each step of computation. The objects
A1, · · · , An, S1, · · · , Sn are created always with only one exception – when we want to
execute the instruction corresponding to the missing object. The computation continues
until the rule F(j,2) → fA1 · · ·AnS1 · · ·Sn|¬Q2 is executed and the object f indicating the
next instruction is generated.

In a similar way like as shown in the previous theorem proof, if |w|aj = 0 then the
rule caj → cPA1 · · ·AnS1 · · ·Sn|¬Sj is not executed. Notice that objects F(j,0) and Q are
“witness” that the command to simulate the subtraction scheme was made. Similarly, the
presence of object P indicates that, in region 2, was at least one object aj . In order to
correctly simulate the decrement instruction we want to have the “right” missing object at
the “right” time. This involves some delaying rules like F(j,0) → F(j,1)A1 · · ·AnS1 · · ·Sn,
Q → Q1A1 · · ·AnS1 · · ·Sn, P → P1A1 · · ·AnS1 · · ·Sn, F(j,1) → F(j,2)A1 · · ·AnS1 · · ·Sn.
If everything worked well the rule F(j,2) → zA1 · · ·AnS1 · · ·Sn|¬P1 is executed and the
symbol z indicating the next instruction is generated.

Finally, if the h symbol is generated then computation stops and accepts the input.
2

278

5 Conclusion

As it can be seen from the proofs of first two theorems concerning promoters/inhibitors
at the level of rules, the use of regularly controlled context-free grammar with appear-
ance checking is useful to show computational universality when we are not interested
in minimizing the number of promoters/inhibitors. Practically, in both proofs we have
used a number of promoters/inhibitors equal with the number of terminals in the regular
grammar which controls the derivation process.

For the last two theorems we succeeded with a P system to simulate in a deterministic
manner a deterministic register machine. There we discovered that, in case of promoted
P systems, 4 ∗n promoters are enough to recognize PsRE ∩Nn; in case of P systems with
inhibitors, the number of inhibitors used to recognize PsRE ∩ Nn was 4 ∗ n + 3.

For all theorems presented, an important aspect is that the promoters/inhibitors may
react at the same time as the rules they promote/inhibit. This fact, joined with the use of
one catalyst which inhibits the parallelism, makes this types of P systems computational
universal.

Several problems regarding this topic still remain open. In the deterministic variant
of recognizing PsRE ∩ Nn there is not known which is the lower bound of symbols that,
acting as promoters/inhibitors, make the P system model universal (when one catalyst
is used). Also, there is not known which is the computational power of P systems with
promoters/inhibitors at the level of rules when no catalyst is used.

Acknowledgments. The work of the first author was supported by the FPU fellow-
ship from the Ministerio de Educacion, Cultura y Deporte. The work of the second author
was possible due to a doctoral grant from Agencia Espanola de Cooperacion Internacional,
Spanish Ministry of Foreign Affairs.

References

[1] P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, Membrane Systems with Pro-
moters/ Inhibitors, Acta Informatica, 38,10 (2002), 695–720.

[2] R. Ceterchi, D. Sburlan, Simulating Boolean Circuits with P Systems, Workshop on
Membrane Computing WMC-Tarragona 2003 (A. Alhazov, C. Mart́ın-Vide, G. Păun,
eds), TR 28/03, URV Tarragona, 2003.

[3] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

[4] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally Universal P sSystems with-
out Priorities: Two Catalysts Are Sufficient, submitted 2003.

[5] S. Khrisna, A. Păun, Three Universality Results on P Systems, Workshop on Mem-
brane Computing WMC-Tarragona 2003 (A. Alhazov, C. Mart́ın-Vide, G. Păun,
eds),TR 28/03, URV Tarragona, 2003, 198–206.

[6] M.L. Minsky, Finite and Infinite Machines, Prentice Hall, EngleWood Cliffs, 1967.

[7] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

279

[8] Gh. Păun, G. Rozenberg, A Guide to Membrane Computing, Theoretical Computer
Science, 287, 1 (2002), 73–100.

[9] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

280

