
(Ultimately Confluent) Parallel

Multiset–Rewriting Systems with Context

Artiom ALHAZOV1,2, Dragoş SBURLAN3

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
E-mail: artiome.alhazov@estudiants.urv.es

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

3 Faculty of Mathematics and Computer Science
Ovidius University of Constanţa

Bd. Mamaia 120, Constanţa, România
E-mail: dsburlan@univ-ovidius.ro

Abstract. The aim of this paper is to study the power of parallel multiset-
rewriting systems with permitting context (or P systems with non-cooperative
rules with promoters). The main result obtained is that if we use promoters
of weight two, then the system is universal.

Moreover, the construction satisfies a special property we define: it is ulti-
mately confluent. This means that if the system allows at least one halting
computation, then its final configuration is reachable from any reachable con-
figuration.

1 Introduction

The computational model of membrane computing inspired from the functioning of living
cells and formalized through P systems proved to be of a special interest for the scientific
community, especially when the weakest forms of cooperation are studied. Activating
and prohibiting reactions of various substances (molecules) present in cells is modeled in
the P system framework by means of promoters/inhibitors (acting at the level of rules)
which enforce/forbid the execution of certain rules. When no mechanism for inhibiting the
massive parallel characteristic of a P system exists, a deterministic computation is harder
to obtain, especially when non semi-linear languages not belonging to ET0L are studied.

Usually in computer science theory we are interested in solving problems in a pre-
dictable time. This is in general a reasonable request if it actually can be done (usually by
having a deterministic or a restricted form of nondeterministic computation). However,
sometimes it may happen that we are not able to compute the time complexity of the

45

problem to solve. In this case we would like, at least for a particular problem, to have
the result in the limit (you may think of this as a semi-algorithm: the time complexity
does not count, and the system gives the correct answer when it halts, or never halts if
the correct answer does not exist). This bring us to the scope of the current work.

We assume the reader to be familiar with the fundamentals of membrane computing,
see http://psystems.disco.unimib.it for the bibliography of the domain. The basic
model we study is the transitional P systems with promoted/inhibited non-cooperative
rules.

2 Deterministic and Confluent Rewriting

We write C ⇒ C ′ if the system allows a direct transition from an instantaneous description
C to an instantaneous description C ′ (C ′ is then called a next instantaneous description of
C). The relation ⇒∗ is a reflexive and transitive closure of ⇒. For any rewriting system,
we use the word configuration to mean any instantaneous description C, reachable from
the starting one.

Definition 2.1 A configuration of a rewriting system is called halting if no rules of the
system can be applied to it.

In this paper we will only talk about the rewriting systems, producing the result at
halting.

Definition 2.2 A rewriting system is called deterministic if for every accessible non-
halting configuration C the next configuration is unique.

Definition 2.3 A rewriting system is called confluent if either all the computations are
non-halting, or there exists a configuration Ch, such that all the computations halt in Ch.

Notice that if, starting at some configuration C, all the computations halt, then there
exists m ≥ 0, such that all the computations starting from C halt in at most m steps.

We will now introduce a weaker definition of a property of systems, with the com-
putations “unavoidably leading” to the same result, but not necessarily bounded by the
number of steps.

Definition 2.4 A rewriting system is ultimately confluent if there exists such a halting
configuration Ch, that for any configuration C we have C ⇒∗ Ch.

This property implies two facts:

1. the halting configuration is unique (Ch),

2. Ch is reachable from any configuration.

From now on we will only consider rewriting systems producing result at halting. Think
of the graph of all reachable configurations (the arc from configuration C to configuration
C ′ means that C can derive C ′ in one step). The graph may be infinite. The node is called
final if it has out-degree 0.

The system is deterministic if all nodes have out-degree at most one (hence, there is
at most one final node). The system is confluent if either there are no final nodes, or the

46

final node is unique, and in that case the graph is finite and does not contain cycles. The
ultimately confluent system may contain cycles, but either all nodes are non-final, or there
is a final node reachable from any configuration. See Figure 1 in Section 5 for an example
of such graph.

Example: Consider a system with the initial configuration S and rewriting rules S → SA,
A → λ, S → a.

Note that the system is not deterministic, and one can choose to apply the first rule
an unbounded number of times, but from any configuration it is possible to arrive to the
halting one Ch = a by erasing all symbols A and applying the second rule (this is equally
true no matter if the system is sequential, concurrent or maximally parallel).

3 Preliminaries

The family of recursively enumerable sets of integer vectors is denoted by PsRE.

3.1 Notations: P Systems

A non-coperative rule with promoters of weight at most k is a rule of the form a → y|p,
where a ∈ V , y ∈ V ∗, p ∈ V ∗, |p| ≤ k. If p = λ, we write the rule as a → y.

Let us recall some notations related to the power of P systems. By rαctPm(f) we
denote the family of languages (α = L), vector sets (α = Ps) or number sets (α = N),
which are generated (c = O) or accepted (with internal input, c = I) by P systems
with symbol-objects, restricted to satisfy property r (omitted if none), with at most m
membranes with the list of features f .

The features considered in the paper are ncoo (with non-cooperative object rewriting
rules), and pro2 (with rule promoters of weight at most 2). The P systems can be restricted
to be deterministic (r = D). We also introduce the classes of confluent (r = C) and
ultimately confluent (r = U) P systems.

For instance, in this paper we study classes

PsOP1(ncoo, pro2) and UPsIP1(ncoo, pro2).

3.2 Register Machines

An n-register machine is a construct M = (n, P, i, h) where:

• n is the number of registers;

• P is a set of labeled instructions of the form (j : op(r), k, l) where op(r) is an
operation on register r of M ; symbols j, k, l belong to the set of labels associated in
a one-to-one manner with instructions of P ;

• i is the initial label;

• h is the final label.

The instructions allowed by an n-register machine are:

• (e : inc(r), f, z) – add one to the contents of register r and proceed to instruction f
or to instruction z (f = z for the deterministic variant);

47

• (e : dec(r), f, z) – jump to register z if the register r is null; otherwise subtract one
from register r and jump to instruction labeled f .

• (h : halt) – finish the computation. This is a unique instruction with label h.

If a register machine M = (n, P, i, h), starting from the instruction labeled i with all
registers being empty, stops by halting with value nj in every register j, 1 ≤ j ≤ k and the
contents of registers k+1, · · · , n being empty, then it generates a vector (n1, · · · , nk) ∈ Nk.
Any recursively enumerable numeric vector set can be generated by a register machine.

A register machine M = (n, P, i, h) accepts a vector (n1, · · · , nk) ∈ Nk iff, starting
from the instruction labeled i, with register j having value nj for 1 ≤ j ≤ k, and the
contents of registers k + 1, · · · , n being empty, the machine stops by the halt instruction
with all registers being empty. Deterministic register machines can accept the family of
all recursively enumerable sets of numeric vectors.

Proposition 1 For any partial recursive function f : Nα → Nβ there exists a determin-
istic (max{α, β}+ 2)–register machine M computing f in such a way that, when starting
with (n1, · · · , nα ∈ Nα in registers 1 to α, M has computed f(n1, · · ·nalpha) = (r1, · · · rβ)
if it halts in the final label h with registers 1 to β containing r1 to rβ (and with all other
registers being empty); if the final label cannot be reached, f(n1, · · · , nα) remains undefined.

4 Ultimately Confluent Universality

The following theorem shows the computational universality of P systems with object
rewriting context-free rules and promoters. The system we propose simulates the moves
of a register machine.

Even if the simulated machine is deterministic, because in our system we do not pre-
vent a way to control the nondeterminism, the method used is to reestablish a previous
configuration if the computation went in the “wrong way”.

The system may not stop even if we have a computation that it should stop. This
is due to the nondeterminism and is the price paid to avoid the use of cooperative (or
catalytic) rules which may inhibits the parallelism of the system. However, considering
a fair computation, an endless simulation of a finite computation has probability zero.
In this way the notion of algorithm (in the framework of total functions) makes sense
because, when considering the ultimately confluent variant, the P system will stop with
probability 1 if the simulated register machine stops.

Theorem 1 UPsIP1(ncoo, pro2) = PsRE.

Proof. In order to prove this assertion we will simulate a n–register machine M =
(n, P, i, h). The contents of register j will be denoted in our simulation by the multiplicity
of the object aj .

Formally we define the P system Π = (O, [1]1, i, R1), where

O = {aj | 1 ≤ j ≤ n} ∪ {h, x, y, k0, k1, k2, k3, k4}
∪ {e | (e : inc(j), f) ∈ P} ∪ {e, e0, e1, e2, e3, e4 | (e : dec(j), f, z) ∈ P},

and R1 is defined as follows:
For each (e : inc(j), f) ∈ P , R1 contains the rule e → ajf .
For each (e : dec(j), f, z) ∈ P , (for clarity, the rules are structured according to the

order of application and different cases that may occur)

48

Step & Case Rules
1ABCD e → e0k0

2ABCD k0 → k1

2BCD e0 → e1|aj

3ABCD k1 → λ
3A e0 → z|k1

3BCD e1 → e2k2 aj → x|e1 aj → y|e1

4BCD k2 → k3

4B e2 → e4|yy

5B x → aj |e4 y → aj |e4 k3 → λ|e4 e4 → e1

5CD k3 → k4|e2

5D e2 → e3|k3y

6CD k4 → λ
6C x → aj |e2k4 e2 → e1k1|k4

6D x → aj |e3 e3 → f y → λ|e3

For a better understanding, below is the table of configurations structured with respect
to the computational steps and cases.

Case A Case B Case C Case D
t1 e e, am

j e, am
j e, am

j

e → e0k0 e → e0k0 e → e0k0 e → e0k0

t2 e0, k0 e0, k0, a
m
j ,m ≥ 1 e0, k0, a

m
j ,m ≥ 1 e0, k0, a

m
j , m ≥ 1

k0 → k1 k0 → k1 k0 → k1 k0 → k1

e0 → e1|aj e0 → e1|aj e0 → e1|aj

t3 e0, k1 e1, k1, a
m
j ,m ≥ 1 e1, k1, a

m
j ,m ≥ 1 e1, k1, a

m
j , m ≥ 1

e0 → z|k1 k1 → λ k1 → λ k1 → λ
k1 → λ e1 → e2k2 e1 → e2k2 e1 → e2k2

aj → x|e1 aj → x|e1 aj → x|e1

aj → y|e1 aj → y|e1 aj → y|e1

t4 z e2, k2, x
r, yp, r ≥ 0, p ≥ 2 e2, k2, x

m e2, k2, x
m−1, y

ready for next k2 → k3 k2 → k3 k2 → k3

instruction e2 → e4|yy

t5 e4, k3, x
r, yp, r ≥ 0, p ≥ 2 e2, k3, x

m e2, k3, x
m−1, y

x → aj |e4 k3 → k4|e2 k3 → k4|e2

y → aj |e4 e2 → e3|k3y

k3 → λ|e4

e4 → e1k1

t6 e1, k1, a
m
j ,m ≥ 1 e2, k4, x

m e3, k4, x
m−1, y

like t3 x → aj |e2k4 k4 → λ
e2 → e1k1|k4 x → aj |e3

k4 → λ e3 → f
y → λ|e3

t7 e1, k1, a
m
j ,m ≥ 1 am−1

j , f

like t3 ready for next
instruction

Before we start explaining the simulation of the subtraction instruction, let us give a
glance to the main idea of the algorithm. We start the computation by checking if the

49

register A is empty or not (i.e., we check if there exists a symbol a). In case is empty we
can generate the label of the new instruction to be applied, namely z, therefore we can
execute a new instruction of the program. Otherwise (there exists at least one symbol a),
in a nondeterministic way, we produce from am the multisets xm−n and yn. Now, in case
that n 6= 1 then we reestablish the branching configuration by changing back the objects
x and y to objects a; therefore the process can start again. This process will last up to
the moment when, after splitting the objects a into objects x and y, we will have only one
object y. Then, we can continue the computation by deleting the object y and changing
back the remaining m − 1 objects x into objects a. Also, we produce a new object (say
f) which represent the label of the new instruction to be executed. In this way, we have
correctly simulated the decrement scheme.

We start the computation having inside the region the object i representing the initial
label which indicate the first instruction to be executed and the multiset {(aj , nj) | 1 ≤
j ≤ n} representing the initial contents of registers.

More rigorously, let us see what happens during the computation step by step. Initially
it is checked if the register A is empty. This is done by first generating the objects e0, k0

when the rule e → e0k0 is applied. In the second step, the object e0 will be transformed
into e1 iff in the region there exists at least one object a.

In case there is no object a, only the rule k0 → k1 is applied. Next, the object k1 will
act as a promoter for the rule e0 → z|k1 and, in the same time, will be deleted by the rule
k1 → λ.

If in the region there exists at least one object a, the rules k0 → k1 and e0 → e1|a
are executed simultaneously in the second step of computation. Now, the rule e0 → z|k1

cannot be executed anymore because the object e0 was already transformed into e1 in the
previous computational step. Therefore, if in the region exists an object e1, we know for
sure that in the region is also at least one object a. As a consequence, in the same step,
the rules a → x or/and a → y are applied. Due to nondeterminism and because of the
maximally parallel mode of functioning of the P systems, all the objects a present in the
region will be transformed into objects x and/or y.

In the same time, the object e1, which descends from the object e, will be transformed
into e2 and k2 (the object k2 represents a counter which is useful to reestablish the branch-
ing configuration if the computation did not work “well”). Right now the computation
can split in three possible directions (the number of rules aj → y|e1 is zero, one or more).
Let us consider the first case when we will have inside the region the objects xm−n and yn

such that m− n ≥ 0, n ≥ 2 and also the objects e2 and k2.
Since n ≥ 2, the rules to be applied in the second step are k2 → k3 and e2 → e4|yy.

Next, the branching configuration is restored by the rules: x → a|e4 , y → a|e4 , k3 → λ|e4 ,
e4 → e1. Recall that promoters can react in the same time with the rules that they
promote and also, because of the maximally parallel manner of applying the rules, we
successfully restore the branching configuration.

Let us consider the second case, when, in a similar fashion as before, we will have
after two computational steps the multiset e0, k0, a

m,m ≥ 1. Then, instead of executing
both rules a → x|e1 and a → y|e1 , only one of them is executed, say a → x|e1 . Therefore,
the new configuration is e2, k2, x

m and the rule to be applied is k2 → k3. Now, since
there exists the object e2 (which in the previous case is transformed in forth step because
there exists two objects y) the rule k3 → k4 is applied. Once we have the object k4 we
can restore as before the branching configuration because we know for sure that the rules

50

a → x|e1 and a → y|e1 where not applied in a “proper” order.
The third case that may occur represents a successful computation. Recall that the

difference between this case and the previous ones occurs after applying the rules a → x
and a → y when we will have the objects xn−1 and y. The computation is the same as
in the third case up to the fifth step, when, in addition, the rule e2 → e4|k3y is applied.
After this, inside the region we will have the objects: xm−1, y, k4 and e3. The presence
of the object e3 will drive the computation in the “right” way. The rules that will be
applied are as follows: k4 → λ, x → a|e3 , e3 → f , y → λ|e3, e3 → f . In this way, starting
from the objects e, am we have successfully computed f, am−1. The object f is useful to
indicate that the subtraction instruction was successfully applied and to point out the new
instruction to be executed.

The simulation of the register machine will continue until the halting instruction is
reached (if the simulated machine halts). So, the P system halts on some input if and
only if the simulated register machine accepts the corresponding vector. 2

Based on the proof above, the following corollary holds.

Corollary 4.1 PsOP1(ncoo, pro2) = PsRE.

Moreover, the membrane contents in the halting configurations correspond to the value of
the partial recursive function computed by the simulated register machine, together with
its final label (a “witness” that the computation is finished).

5 Appendix: An Example

Consider a register machine G = (3, z, h, P), with registers a, b, c and instruction set P

(z : dec(a), p, h),
(p : dec(b), p′, r),
(p′ : inc(c), q),
(q : dec(a), q′, f),
(q′ : dec(a), p, f),
(r : dec(c), r′, s),
(r′ : inc(b), r),
(s : inc(b), z),
(f : dec(a), f, f),
(h : halt).

accepting the number set M = {n2 | n ≥ 0}.
The idea of the machine is to repeat subtracting 2 ·value(b)+1 (i.e., 1, 3, 5, etc.) from

register a, while incrementing b. Register c is used as an intermediary for subtraction, and
then b is restored from c. Below is a derivation, accepting 4:

(4, 0, 0, z) ⇒ (3, 0, 0, p) ⇒ (3, 0, 0, r) ⇒ (3, 0, 0, s) ⇒ (3, 1, 0, z) ⇒ (2, 1, 0, p) ⇒
(2, 0, 0, p′) ⇒ (2, 0, 1, q) ⇒ (1, 0, 1, q′) ⇒ (0, 0, 1, p) ⇒ (0, 0, 1, r) ⇒ (0, 0, 0, r′) ⇒

(0, 1, 0, r) ⇒ (0, 2, 0, s) ⇒ (0, 2, 0, z) ⇒ (0, 2, 0, h).

Thus, the machine stops if and only if the input number is a perfect square, and in that
case the register b will contain the square root of the number, other registers containing
zero.

51

To illustrate both the concept of ultimate confluence and the universality proof, we
present Figure 1 representing the graph of configurations of the P system simulating G,
reachable from [1aaaaz]1. This graph happens to be finite, it contains cycles and a single
final node. The final node is reachable from any node.

aaaa
z
?

aaaa
z0k0

?
aaaa
z1k1

-

xxxx
z2k2

- xxxx
z2k3

- xxxx
z2k4

-
?

xxxy
z2k2

- xxxy
z2k3

- xxxy
z3k4

-

xxyy
z2k2

- xxyy
z2k3

-6

xyyy
z2k2

- xyyy
z2k3

- -

yyyy
z2k2

- yyyy
z2k3

- -

aaa
p
?

aaa
p0k0

?

aaa
p0k1

?
aaa
r

-

aaa
r0k0

6

aaa
r0k1

6

aaa
s
6

aaab
z
6

aaab
z0k0

-

aaab
z1k1

?

xxxb
z2k2

- xxxb
z2k3

- xxxb
z2k4

-¤
¤
¤²

xxyb
z2k2

- xxyb
z2k3

- xxyb
z3k4

-

xyyb
z2k2

- xyyb
z2k3

-6

yyyb
z2k2

- yyyb
z2k3

- -

aab
p
?

aab
p0k0

?

aab
p1k1

?

aax
p2k2

¾aax
p2k3

¾aax
p2k4

¾
-

aay
p2k2

¾aay
p2k3

¾aay
p3k4

¾
aap′¾¾aac

q

aac
q0k0

?

aac
q1k1

?

xxc
q2k2

- xxc
q2k3

- xxc
q2k4

-¤
¤
¤²

xyc
q2k2

- xyc
q2k3

- xyc
q3k4

-

yyc
q2k2

- yyc
q2k3

-6
acq′

?
ac

k0q
′
0

- ac
k1q

′
1

-

xc
k2q

′
2

- xc
k3q

′
2

- xc
k4q

′
2

-
?

yc
k2q

′
2

- yc
k3q

′
2

- yc
k4q

′
3

- c
p

-

c
p0k0

?

c
p0k1

?

c
r
?

c
r0k0

¾c
r1k1

¾

x
r2k2

¾x
r2k3

¾x
r2k4

¾
?

y
r2k2

¾y
r2k3

¾y
r3k4

¾
r′ ¾

br
6

bbs
6?

bb
s0k0

bb
s0k1

?
bbz

¾

bb
z0k0

6

bb
z0k1

¾

bbh
?

Figure 1: The graph of reachable configurations of a P system simulating register machine
G in the ultimately confluent way, recognizing aaaa.

Acknowledgements. The first author acknowledges IST-2001-32008 project “Mol-
CoNet” and also the Moldovan Research and Development Association (MRDA) and the
U.S. Civilian Research and Development Foundation (CRDF), Award No. MM2-3034.

References

[1] P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, Membrane Systems with Pro-
moters/Inhibitors, Acta Informatica 38, 10 (2002), 695–720.

[2] Gh. Păun, Computing with Membranes: An Introduction. Springer, Berlin, 2002.

[3] G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

52

