
P Systems with Tables of Rules

Gheorghe PĂUN1,2, Mario PÉREZ-JIMÉNEZ2,
Agust́ın RISCOS-NÚÑEZ2

1Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
2 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
Technical Higher School of Computer Science Engineering

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {gpaun, marper, ariscosn}@us.es

Abstract. In the last time, several efforts were made in order to remove
the polarization of membranes from P systems with active membranes; the
present paper is a contribution in this respect. In order to compensate the
loss of power represented by avoiding polarizations, we introduce tables of
rules: each membrane has associated several sets of rules, one of which is non-
deterministically chosen in each computation step. Three universality results
for tabled P systems are given, trying to use rules of as few as possible types.
Then, we consider tables with obligatory rules – rules which must be applied
at least once when the table is applied. Systems which use tables with at most
one obligatory rule are proven to be able to solve SAT problem in linear time.
Several open problems are also formulated.

1 Introduction

In membrane computing, the P systems with active membranes have a special place, be-
cause of the fact that they provide biologically inspired means to solve computationally
hard problems: by using the possibility to divide membranes, one can create an expo-
nential working space in a linear time, which can then be used in a parallel computa-
tion for solving, e.g., NP-complete problems in polynomial or even linear time. Details
can be found in [7], [8], as well as in the comprehensive page from the web address
http://psystems.disco.unimib.it).

One of the important ingredients of P systems with active membranes is the polar-
ization of membranes: besides a label, each membrane also has an “electrical charge”,
one of + (positive), − (negative), 0 (neutral). These electrical charges correspond only
remotely to biological facts; by sending ions outside, cells and cell compartments can get
polarizations, but this is not a very common phenomenon. Starting from this observation
and also as a mathematical challenge, in the last time several efforts were made to avoid
using polarizations.

366

However, the question seems not to be a simple one, and the best result obtained so
far was to reduce to two the number of “electrical charges”; this is achieved in [1], where
both the universality and the possibility of solving SAT in linear time are proven for P
systems with active membranes and only two polarizations. When completely removing
the polarizations, similar results are obtained (see [2], [3]) only by compensating the loss
of power (of “programming” possibilities) by using additional ingredients, such as the
possibility of changing the labels of membranes, division of non-elementary membranes,
etc.

The present paper goes into the same direction of research: we get rid of polariza-
tions and we “pay” this by structuring the sets of rules associated with each membrane
by considering tables of rules, like in Lindenmayer systems. Specifically, several sets of
rules are associated with each membrane, and in each step of a computation we non-
deterministically choose one of these sets, its rules are used in the maximally parallel
manner. The use of tables can have a biological motivation, in the same way as the tables
from L systems theory have a biological origin: the change of environmental conditions
(for instance, of seasons) can select specific evolution rules for different times (different
seasons).

The use of tables proves to be helpful in what concerns the computing power: we get
universality for systems of a rather reduced forms, with only a few types of rules used,
and without polarizations.

An important problem remains unsolved: can tables compensate polarizations also
in what concerns the possibility to solve hard problems in polynomial time? A possible
negative answer to this problem would be a very nice finding: in view of the result from
[1], it would follow that passing from one polarization (all membranes neutral) to two
polarizations makes possible the step from the complexity class P to NP.

If, however, we add a further ingredient – at the first sight not very powerful – to
tabled P systems, namely designating in each table rules which should be used at least
once when applying the table, then we can solve SAT in linear time. The construction uses
at most one obligatory rule in each table.

2 P Systems with Active Membranes

We assume the reader to be familiar with basic elements of membrane computing, but, for
the sake of completeness, we recall here the definition of the class of P systems we work
with, those with active membranes (and electrical charges).

Such a system is a construct

Π = (O, µ,w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);

2. O is the alphabet of objects;

3. µ is a membrane structure, consisting of m membranes, labeled in a one-to-one
manner with elements of H = {1, 2, . . . , m};

4. w1, . . . , wm are strings over O, describing the multisets of objects placed in the m
regions of µ;

5. R is a finite set of developmental rules, of the following forms:

367

(a) [a → v]eh,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[]e1

h → [b]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is introduced in the membrane, possibly modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(c) [a]e1

h → []e2

h b,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly modified
during this process; also the polarization of the membrane can be modified, but
not its label);

(d) [a]eh → b,
for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [a]e1

h → [b]e2

h [c]e3

h ,
for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label, possibly of different
polarizations; the object specified in the rule is replaced in the two new mem-
branes by possibly new objects).

We have omitted the rules for dividing non-elementary membranes, usually identified as
being “of type (f)”.

In the customary definition of P systems with active membranes, the initial membranes
of µ are not necessarily labeled in a one-to-one manner, but there is no loss of generality in
the assumption that the labels are unique: we can relabel the membranes with the same
label and then duplicate the necessary rules. Moreover, because in what follows we only
consider that by membrane division we obtain membranes with the same label, the labels
present in the system are always from the set {1, 2, . . . , m} present at the beginning (maybe
some of them used several times, because of the division of membranes). Therefore, the
set H of labels is specified by µ, it can be omitted when specifying the system.

The rules of type (a) are applied in the parallel way (all objects which can evolve by
such a rule should do it), while the rules of types (b), (c), (d), (e) are used sequentially, in
the sense that one membrane can be used by at most one rule of these types at a time. In
total, the rules are used in the non-deterministic maximally parallel manner: all objects
and all membranes which can evolve, should evolve. Only halting computations give a
result, and the result is the number of objects expelled into the environment during the
computation; the set of numbers computed in this way by the various halting computations
in Π is denoted by N(Π).

By NOPm,n,p(pol3, a, b, c, d, e) we denote the family of sets N(Π) computed as sketched
above by systems starting with at most m membranes, using membranes of at most n types,

368

at most p membranes being simultaneously present, and using all types of rules; when rules
of a certain type are not used the corresponding letter a, b, c, d, e will be missing. Also,
when membrane division rules are not used, we will specify only the number of membranes
in the initial configuration (hence, only m) as a subscript of NOP . The parameter pol3
indicates the fact that one uses three polarizations.

Further details can be found in [7] – including the proof of the following result. (We
denote by REG,CF,CS, RE the families of regular, context-free, context-sensitive, and of
recursively enumerable languages. In general, for a family FL of languages, NFL denotes
the family of length sets of languages in FL. Therefore, NRE is the family of Turing
computable sets of natural numbers.)

Theorem 2.1 NOP3(pol3, a, b, c) = NRE.

The number of polarizations were decreased to two in [1]; with the previous notations,
the result can be written as:

Theorem 2.2 NOP2(pol2, a, c) = NRE.

Note that the result from Theorem 2.1 was improved both in the number of polariza-
tions and the number of membranes, while the used rules are of the same types.

In [3] and [2] rules of types (a) − (e) without polarizations were considered. Because
“no polarization” means “neutral polarization”, we add the subscript 0 to the previous
letters identifying the five types (a0)− (e0) of rules.

The power of polarizationless P systems with active membranes is not precisely known,
but it was shown in [2] that they are able to compute at least the Parikh images of
languages generated by matrix grammars without appearance checking.

Because the notion of a matrix grammar will be also used below, we introduce it here
in its general form.

A matrix grammar (with appearance checking) is a construct G = (N,T, S, M, F),
where N and T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the form
(A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N, xi ∈
(N ∪ T)∗, in all cases), and F is a set of occurrences of rules in M (N is the nonterminal
alphabet, T is the terminal alphabet, S is the axiom, while the elements of M are called
matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T)∗, or wi = wi+1,

Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a matrix are
applied in order, possibly skipping the rules in F if they cannot be applied – therefore we
say that these rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family
of languages of this form is denoted by MATac. If the set F is empty, then the grammar
is said to be without appearance checking.

It is known that CF ⊂ MAT ⊂ MATac = RE, NREG = NCF = NMAT ⊂ NCS,
(for instance, the one-letter languages in MAT are known to be regular, [6]).

A matrix grammar G = (N,T, S, M,F) is said to be in the binary normal form if
N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:

369

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,

4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in the form
(S → X0A0), in order to fix the symbols X,A present in it), and F consists exactly of all
rules A → # appearing in matrices of type 3; # is a trap-symbol, because once introduced,
it is never removed. A matrix of type 4 is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary normal
form. Details can be found in [4].

3 Tables of Rules

In the “standard” P systems with active membranes there is specified only one set of rules;
because the membranes are present in the rules, we precisely know where each rule is to
be applied with respect to each membrane. A possible generalization is to consider several
sets of rules – for uniformity with L systems, we call them tables – such that in each step
of a computation a table is used, non-deterministically chosen (the rules of the selected
table are applied in the maximally parallel manner, as mentioned in the previous section).

This case corresponds to having global tables; a more relaxed variant is to consider
local tables, sets of rules associated with each membrane.

Specifically, for each membrane i we can consider sets Ri,1, . . . , Ri,ki of rules, for some
ki ≥ 1, all of the rules involving membrane i. In a step of a computation, we apply the
rules from one of the tables associated with each membrane, as usual, in the maximally
parallel non-deterministic manner with respect to the chosen table.

If we are allowed to “evolve” a region by means of a table for which no rule is actually
applied, then the local tables can be combined in global tables, hence in this case the
local version is weaker than the global one. However, there is no difference from the
computational point of view (at least in the cases investigated in the next section): systems
with local tables (and restricted types of rules) are equivalent with Turing machines;
moreover, the proofs are based on systems with one or two membranes, with the “main
work” of two-membranes systems done in the inner membrane, hence choosing tables
which change nothing in one of the regions do not change the generated set of numbers.

In what follows we will consider only local tables, that is why we choose a more
restricted – also, more natural – definition of a transition step: if there are tables by
which a region can effectively evolve (at least a rule of these tables can be effectively
applied), then one of these tables must be chosen. Otherwise stated, we cannot choose
a table with no applicable rule if there are tables with applicable rules. This restriction
both corresponds to the notions of parallelism and synchronization, basic in membrane
computing, and it is also useful in the proofs below.

In systems with tables (either local or global) we have two levels of non-determinism:
in each step we first non-deterministically choose one table (in the local case, associated
with each membrane), and then we use the rules of the chosen table in a non-deterministic
manner (observing the restriction of maximal parallelism for the chosen table). The stan-
dard definition of P systems corresponds to the case where we have only one table (at the
level of the system).

370

The fact that we use (local) tables is indicated by adding tab to the notations from
the previous section.

We do not know whether the number of tables associated with membranes matters
(that is, whether it induces an infinite hierarchy of the computed sets of numbers) or
normal form theorems like that known for ET0L systems (two tables are enough, see [9])
are true also in our case. In view of this open problem it could be better to indicate also
the maximal number of tables used, writing tabs for using at most s tables, but we do not
deal with this aspect here.

The usefulness of using tables is intuitively obvious, because by clustering the rules in
“teams of rules” we can control in a more careful way the work of the system. This is
illustrated also by the following simple example: consider the system

Π = ({a, b}, []1, a, R1,1, R1,2, R1,3),
R1,1 = {[a → aa]1},
R1,2 = {[a → b]1},
R1,3 = {[b]1 → a}.

After using n ≥ 0 times the first table (thus producing 2n copies of a), we can end the com-
putation by using once the second table, and then 2n times the third one. Consequently,
N(Π) = {2n | n ≥ 1} ∈ NOP1(tab, a0, c0), a set of numbers which is not in NMAT .

4 Universality Results

The usefulness of tables is illustrated also by the results below: the computational uni-
versality is obtained without polarizations for various reduced combinations of types of
rules.

The first result uses rules of the first three types (hence not membrane dissolution or
membrane division operations).

Theorem 4.1 NOP2(tab, a0, b0, c0) = NRE.

Proof. Let us consider a matrix grammar with appearance checking G = (N, {a},
S, M, F) in the binary normal form, hence with N = N1 ∪N2 ∪ {S, #} and with matrices
of the four types mentioned in Section 2. All matrices of M are supposed to be labeled
in an injective manner with mi, 1 ≤ i ≤ n (hence i uniquely identifies the matrix). Each
terminal matrix (X → λ,A → x) is replaced with (X → f, A → x), where f is a new
symbol (the label of the matrix remains unchanged).

We construct the tabled P system with active membranes, Π, with the components:

O = N1 ∪N2 ∪ {Zi, Z
′
i, 〈i〉 | 1 ≤ i ≤ n} ∪ {a, a′, e, f,#},

µ = [[]2]1,
w1 = λ,

w2 = X0A0e, where (S → X0A0) is the initial matrix of G,

and the following tables (by U we denote the set N1 ∪ {Zi, Z
′
i, 〈i〉 | 1 ≤ i ≤ n}).

371

1. For each matrix mi : (X → Y,A → x) in M of types 2 or 4, we consider the tables

R2,i = {[X → Zi]2, [A]2 → []2〈i〉, [e]2 → #}
∪ {[α → #]2 | α ∈ U},

R′
2,i = {[Zi → Z ′i]2, 〈i〉[]2 → [〈i〉]2}

∪ {[α → #]2 | α ∈ U},
R′′

2,i = {[Z ′i → λ]2, [〈i〉 → xY]2}
∪ {[α → #]2 | α ∈ U}.

2. For each matrix mi : (X → Y,A → #) in M of type 3, we consider the table

R2,i = {[X → Y]2, [A → #]2}
∪ {[α → #]2 | α ∈ U}.

3. We also consider the following tables:

R2,f = {[f → λ]2}
∪ {[α → #]2 | α ∈ U ∪N2},

R2,a = {[a]2 → []2a
′, [# → #]2},

R1 = {[a′]1 → []1a, [# → #]1}.

We have the equality N(Π) = {n | an ∈ L(G)}. Indeed, we start with the multiset
X0A0e in the central membrane; assume that we have here a multiset Xwe for some
X ∈ N1 and w ∈ (N2∪{a})∗. There is only one table for membrane 1, sending out a copy
of a (provided that there are copies of a′ in the skin region), and using the trap-rule # → #
provided that the object # is present; in this latter case, the computation will never stop.
If applied in membrane 2 when Xwe is here, the table R2,f will introduce the trap-object
#, and this happens also if we use any table of the forms R′

2,i, R
′′
2,i. Thus, we can apply

only a table of type R2,i for mi a matrix of M . That matrix should be either of the form
mi : (X → Y,A → x) (of type 2 or of type 4), or of the form mi : (X → Y,A → #)
(of type 3): if the first rule of the matrix is α → β with α 6= X, then the trap-object is
introduced.

The case of a matrix of type 3 is simpler: if A is present, then the trap-object is
introduced, and the computation will never stop (because of the table R2,a, which can be
used forever). If A is not present, then we just change X into Y . Thus, the simulation of
the matrix mi of type 3 is correct.

If we choose to simulate a matrix of types 2 or 4, then it must have the second rule of
the form A → x, for A as specified by the table R2,i: if the rule [A]2 → []2〈i〉 is not
used, thus “keeping busy” the membrane, then the rule [e]2 → # must be used, and the
computation will never stop (table R1 can be applied forever).

In the next step we have to continue the simulation of the matrix mi by using the
corresponding table R′

2,i. This is the only table which will not introduce # which can be
applied without introducing the trap-object. In this way, 〈i〉 comes back to membrane
2, and Zi is replaced by Z ′i. In the next step, again only one table can be used without
introducing the trap-object, namely R′′

2,i. It erases the object Z ′i and replaces 〈i〉 with xY ,
thus completing the simulation of the matrix.

372

At any moment, if any object a is present in membrane 2, then table R2,a can be used
and a is sent out (first transformed into a′ in the skin region).

The system is returned to a configuration with the contents of membrane 2 as in the
beginning, hence the process can be iterated. When the object f is introduced, no table
R2,i, R

′
2,i, R

′′
2,i can be used. By means of R2,f we check whether any symbol from N2 is

present, hence whether the derivation in G is terminal. The computation in Π ends by
sending out all copies of a, hence N(Π) equals the length set of the language L(G). 2

In the previous proof, the role of rules of type (b0), (c0) (besides sending the result
outside the system) was to ensure that only one object A is replaced by x, thus correctly
simulating the second rule of a matrix (X → Y, A → x) of types 2 or 4. This can be done
also by using rules of type (e0).

Theorem 4.2 NOP2,2,3(tab, a0, c0, e0) = NRE.

Proof. As above, we consider a matrix grammar with appearance checking G =
(N, {a}, S, M, F) in the binary normal form, with the matrices of M labeled in an injective
manner with mi, 1 ≤ i ≤ n, and each terminal matrix (X → λ,A → x) replaced with
(X → f,A → x), where f is a new symbol.

We now construct the tabled P system with active membranes Π, with the components:

O = N1 ∪N2 ∪ {Zi, 〈i〉 | 1 ≤ i ≤ n} ∪ {a, a′, d, e, f,#},
µ = [[]2]1,

w1 = λ,

w2 = X0A0e, where (S → X0A0) is the initial matrix of G,

and the following tables (by U we denote the set N1 ∪ {Zi, 〈i〉 | 1 ≤ i ≤ n}).
1. For each matrix mi : (X → Y,A → x) in M of types 2 or 4, we consider the tables

R2,i = {[X → Zi]2, [A]2 → [〈i〉]2[d]2,
[d → #]2, [e]2 → [#]2[#]2}

∪ {[α → #]2 | α ∈ U ∪ {a}},
R′

2,i = {[Zi → λ]2, [〈i〉 → xY]2, [d → #]2}
∪ {[α → #]2 | α ∈ U ∪ {a}}.

2. For each matrix mi : (X → Y,A → #) in M of type 3, we consider the table

R2,i = {[X → Y]2, [A → #]2, [d → #]2}
∪ {[α → #]2 | α ∈ U ∪ {a}}.

3. We also consider the following tables:

R2,f = {[f → λ]2, [d → #]2}
∪ {[α → #]2 | α ∈ U ∪N2},

R2,d = {[d]2 → d, [a]2 → []2a
′, [# → #]2},

R1 = {[a′]1 → []1a, [# → #]1}.

373

The equality N(Π) = {n | an ∈ L(G)} follows in a similar way as in the previous proof,
this time with the interplay of rules [A]2 → [〈i〉]2[d]2 and [e]2 → [#]2[#]2 ensuring
that the second rule of each matrix of type 2 or 4 is correctly simulated (used exactly once):
if the second rule is used, then the computation never stops, hence [A]2 → [〈i〉]2[d]2
must be used. In this way, membrane 2 is divided. In the first copy of the membrane we
have the object 〈i〉, which will complete the simulation of the matrix. In the second copy
of the membrane, the one containing the object d, we cannot use any table which contains
the rule d → #, hence the only continuation is by using the table R2,d. This dissolves
the membrane, and its objects, remained free in the skin region, will no longer evolve.
The matrices of type 3 are again simulated in only one step of a computation in Π. All
copies of object a are immediately sent out of membrane 2 (to prevent their duplication
when dividing the membrane), and from the skin region are sent out of the system. We
leave the details to the reader and conclude that the system correctly simulates the matrix
grammar G. 2

One of the difficulties in the previous proofs was to inhibit the parallelism of using the
rules of type (a0). In membrane computing, the usual way to do this is by using catalysts,
distinguished objects which never evolve, but can enter rules of the form ca → cv, where
a is a single object, which evolves under the control of the catalyst c. This idea can be
considered also for P systems with active membranes, allowing rules of type (a0) of the
form [ca → cv] i, where c is a catalyst, a is an object and v a multiset of objects. (When
specifying a system with catalysts, the set C of catalysts is explicitly given after the set
of objects.) We indicate the use of catalysts by writing catr in the notation for families of
numbers computed by systems of a given type as above; r indicates the fact that at most
r catalysts are used.

The previous results have the following counterpart for the catalytic case – with only
two types of rules being used, and with only one membrane (note that one catalyst suffices).

Theorem 4.3 NOP1(tab, cat1, a0, c0) = NRE.

Proof. We consider again a matrix grammar with appearance checking G =
(N, {a}, S, M, F) in the binary normal form, with each terminal matrix (X → λ,A → x)
replaced with (X → f, A → x), where f is a new symbol, and we construct the tabled P
system with catalysts Π, with the components:

O = N1 ∪N2 ∪ {a, c, d, f,#},
C = {c},
µ = []1,

w1 = X0A0d, where (S → X0A0) is the initial matrix of G,

and the following tables.

1. For each matrix mi : (X → Y,A → x) in M of types 2 or 4, we consider the table

R1,i = {[X → Y]1, [cA → cx]1, [cd → c#]1}
∪ {[Z → #]1 | Z ∈ N1 ∪ {f}}.

2. For each matrix mi : (X → Y,A → #) in M of type 3, we consider the table

R1,i = {[X → Y]1, [A → #]1}
∪ {[Z → #]1 | Z ∈ N1 ∪ {f}}.

374

3. We also consider the following tables:

R1,f = {[f → λ]1, [d → λ]1}
∪ {[α → #]1 | α ∈ N1 ∪N2},

R1,a = {[a]1 → []1a, [# → #]1}.

This time, the matrices mi of types 2 and 4 are simulated by a single table, of type
R1,i: the first rule must be used (that is, the symbol X must be present), otherwise the
trap-object is introduced; similarly, the rule cA → cx must be used, otherwise the catalyst
will evolve together with the available object d and again the trap-object is introduced.
Each matrix mi of type 3 is simulated by the corresponding table R1,i. After introducing
the object f , no table as above can be used (without introducing the trap-object), hence
we have to use R1,f , which checks whether the derivation in G is terminal. At any time,
the copies of object a are sent out by means of the table R1,a. Consequently, N(Π) = {n |
an ∈ L(G)}, and this completes the proof. 2

The previous result is relevant in view of the fact that catalytic transition P systems
with only one catalyst – not with active membranes – are not known to be universal, while
the universality was proved for the case of using two catalysts [5].

5 Tables with Obligatory Rules

The idea of distinguishing some rules of each table and imposing that these rules are
applied at least once when the tables are applied has at least two motivations. First, this
is a way to also ensure the fact that a selected table does not leave unchanged the objects
from the region where it is applied. Then, it reminds the matrices from matrix grammars,
whose rules are all applied when applying a matrix. However, having several obligatory
rules in the same table is a way to make the system cooperative: if both a → u and b → v
must be simultaneously used at least once, then ab → uv must be used at least once (but
the two cases are not equivalent, because besides evolving one a and one b, by rules a → u
or b → v we can separately evolve further copies of a or of b, respectively).

That is why in what follows we allow at most one obligatory rule in each table. Such
a rule is marked with a dot; when the table is used, its obligatory rule must be used at
least once, otherwise the table is not allowed to be chosen.

This apparently small change in the definition of tabled P systems is powerful enough
in order to lead to fast solutions (making use of membrane division) to computationally
hard problems.

Theorem 5.1 Tabled P systems with active membranes using obligatory rules (at most
one in each table) can solve SAT in linear time; the construction is uniform, and the system
is deterministic.

Proof. Let us consider a propositional formula γ = C1 ∧ . . . ∧ Cm, consisting of m
clauses Cj = yj,1 ∨ . . . ∨ yj,kj , 1 ≤ j ≤ m, where yj,i ∈ {xl,¬xl | 1 ≤ l ≤ n}, 1 ≤ i ≤ kj ,
(there are used n variables). Without loss of generality, we may assume that no clause
contains two occurrences of some xl or two occurrences of some ¬xl (the formula is not
redundant at the level of clauses), or both xl and ¬xl (otherwise such a clause is trivially
satisfiable, hence can be removed).

375

We codify γ, which is an instance of SAT with size parameters n and m, by the multiset

w(γ) = {sj,i | yj,r = xi, for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}
∪ {s′j,i | yj,r = ¬xi, for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}.

(We replace each variable xi from each clause Cj with sj,i and each negated variable ¬xi

from each clause Cj with s′j,i, then we remove all parentheses and connectives. In this way
we pass from γ to w(γ) in a number of steps which is linear with respect to n ·m.)

We construct the P system Π with the following components:

O = {ai | 1 ≤ i ≤ n + 1} ∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ri, r
′
i | 1 ≤ i ≤ m}

∪ {di | 1 ≤ i ≤ m + 1} ∪ {ci | 0 ≤ i ≤ 2n + m + 3}
∪ {sj,i, s

′
j,i | 1 ≤ j ≤ m, 1 ≤ i ≤ n} ∪ {yes, no},

µ = [[[]3]2]1,
w1 = λ,

w2 = c0,

w3 = a1,

R1,1 = {[yes]1 → []1yes,
[no]1 → []1no},

R2,1 = {[dm+1]2 → yes,

[c2n+m+3]2 → []2no}
∪ {[ci → ci+1]2 | 0 ≤ i ≤ 2n + m + 2},

R3,d = {[ai]3 → [ti]3[fi]3 | 1 ≤ i ≤ n},
R3,i,t = {[ti

•→ ai+1}
∪ {[sj,i → rj]3 | 1 ≤ j ≤ m}, for each i = 1, 2, . . . , n,

R3,i,f = {[fi
•→ ai+1}

∪ {[s′j,i → rj]3 | 1 ≤ j ≤ m}, for each i = 1, 2, . . . , n,

R3,0 = {[an+1
•→ d1]3}

∪ {[rj → r′j]3 | 1 ≤ i ≤ m},
R3,j = {[r′j

•→ λ]3}
∪ {[di → di+1]3 | 1 ≤ i ≤ m}, for each j = 1, 2, . . . ,m,

R3,m+1 = {[dm+1]3 → []3dm+1}.

There is no object in the skin membrane, while region 2 contains only the counter c0,
which will continuously increase its subscript, by means of table R2,1. The “main work”
is done in membrane 3. In the beginning, we have here the object a1, hence the only
applicable table is R3,d, which divides the membrane, at the same time expanding the
object a1 to the truth values t1 = true and f1 = false of variable x1. In the next step,
the only tables which can be applied in the two membranes with label 3 are R3,1,t and
R3,1,f : the obligatory rules select the tables in a precise way. At the same time with the
passage from t1, f1 to copies of a2, we also introduce all clauses which are satisfied by t1
and f1, respectively. The process continues now with a2, then with a3, and so on, until
expanding all variables and introducing all clauses satisfied by these truth assignments.

376

Therefore, after 2n steps we get 2n membranes 3, containing the clauses satisfied by
the 2n possible truth assigments for the n variables.

In step 2n + 1 the only table which can be applied for membranes 3 is R3,0: an+1 is
replaced with d1 (which will check whether there is any membrane where all clauses are
satisfied), and all rj are primed.

From now on, for at most m steps, we use the tables R3,j , 1 ≤ j ≤ m. (Because these
tables use primed versions of objects rj , they were not applicable before using table R3,0

– and this was the reason of priming.) Each of these tables removes the occurrences of
one r′j ; because this operation is done by an obligatory rule, this is a way to check that
the respective r′j is present. At the same time, the subscript of the object d from each
membrane 3 increases by one. If in a given membrane 3 there are copies of r′j for all
j = 1, 2, . . . , m, then the respective object d reaches the subscript m + 1, which indicates
the fact that the corresponding truth-assignment has satisfied all clauses of γ. If a given
membrane 3 does not contain copies of all r′j , 1 ≤ j ≤ m, then that membrane cannot
evolve m steps, hence the local object d remains of the form dj with j ≤ m.

Simultaneously, the object from region 2 arrives at the form c2n+m+1.
If at least one membrane 3 contains the object dm+1 (hence the formula is satisfiable),

then in step 2n+m+2 we use the table R3,m+1 and the object dm+1 is sent to membrane
2 (at the same time, in region 2 we get c2n+m+2). If no membrane 3 sends out the object
dm+1, hence the formula is not satisfiable, then the objects dj with j ≤ m remain inside
these membranes – but c2n+m+1 evolves to c2n+m+2 in region 2.

Now, in step 2n + m + 3, if any object dm+1 is present in region 2, then one of them
will dissolve membrane 2, and will produce the object yes, which is left free in the skin
region; in the next step, this object will leave the system, thus signaling that the formula
is satisfiable. Because membrane 2 is dissolved, the object c2n+m+3 (obtained in step
2n + m + 3) also remains free in the skin region, where it cannot evolve any more. If no
object dm+1 is present in region 2, then this membrane is not dissolved, c will get the
subscript 2n+m+3 and then in step 2n+m+4 will exit membrane 2 transformed in no;
in the next step, this object exits the systems, signaling that the formula is not satisfiable.

Thus, either we get yes outside the system in step 2n+m+4, or no in step 2n+m+5,
and these objects correctly indicate whether or not γ is satisfiable.

The system Π can be constructed in polynomial time by a Turing machine, starting
from n and m, and it works in a deterministic manner (after each reachable configuration
there is at most one next configuration which can be correctly reached). 2

If we are more interested in the time our system works than in the time of constructing
it or in its deterministic behavior, then the answer to a given instance of SAT can be
obtained in n + m + 4 steps, by considering a system constructed in semi-uniform manner
(starting directly from an instance of the problem) in the following way.

For a given formula γ as above, for l = 1, 2, . . . , n, we denote

sat(tl) = {rj | there is 1 ≤ i ≤ kj such that yj,i = xl},
sat(fl) = {rj | there is 1 ≤ i ≤ kj such that yj,i = ¬xl}.

Then, we construct the system Π with (we omit specifying the set of objects, as well
as several details about the way the system works, tasks which are left to the reader):

µ = [[[]3]2]1,
w1 = λ,

377

w2 = c0,

w3 = b0a1a2 . . . an,

R1,1 = {[yes]1 → []1yes,
[no]1 → []1no},

R2,1 = {[bn+m+2]2 → yes,

[cn+m+3]2 → []2no}
∪ {[ci → ci+1]2 | 0 ≤ i ≤ n + m + 2},

R3,i = {[ai]3
•→ [ti]3[fi]3}

∪ {[bj → bj+1]3 | 0 ≤ j ≤ n− 1}, for each i = 1, 2, . . . , n,

R3,n+1 = {[bn
•→ bn+1]3}

∪ {[ti → sat(ti)]3,
[fi → sat(fi)]3 | 1 ≤ i ≤ n},

R3,n+1+i = {[ri
•→ λ]3}

∪ {[bn+j → bn+j+1]3 | 1 ≤ j ≤ m}, for each i = 1, 2, . . . , m,

R3,n+m+2 = {[bn+m+1]3 → []3bn+m+2}.
This time, in the first n steps we divide membrane 3 again and again, by means of

the obligatory rules of tables R3,i, 1 ≤ i ≤ n, which expand the objects ai to the truth
values ti = true and fi = false of variable xi. The order of using tables R3,i is arbitrary,
but after n steps we get the same configuration irrespective of this order: 2n membranes
3, containing the 2n truth-assignments of the n variables, as well as the object bn (at the
same time, in membrane 2 we have obtained cn).

In step n + 1, in region 3 we can only apply R3,n+1, which replaces bn with bn+1 and
each ti, fi by the clauses satisfied by these truth values (specifically, ti is replaced by sat(ti)
and fi by sat(fi)).

From now on, for at most m steps, we use the objects bn+j+1, 1 ≤ j ≤ m, in the same
way as objects dj were used in the previous proof, in order to check whether or not at
least one truth assignment has satisfied all clauses. If this is the case, then at least one
membrane 3 will contain the object bn+m+1, which will exit to membrane 2, will dissolve
it in step n+m+3, and will produce the object yes, which then leave the system. If not,
cn+m+3 will exit membrane 2 (in step n + m + 4) transformed in no, which will exit the
system in one further step.

The system Π can be constructed in polynomial time by a Turing machine, starting
from γ (only the tables R3,i directly depend on the formula), and the system is clearly
confluent.

6 Final Remarks

Contributing to the “campaign” of removing polarizations from P systems with active
membranes, we have obtained several universality results for systems without polariza-
tions, but having the rules structured in tables. When tables with (at most one) obligatory
rules are used, NP-complete problems can be solved in linear time – this is illustrated
with SAT problem.

Two important problems have remained open: (i) are systems without polarizations
and without tables (maybe with catalysts) universal? (ii) can NP-complete problems be

378

solved in polynomial time by means of tabled P systems with active membranes without
polarizations (and without using obligatory rules)?

Acknowledgements. The support of this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds, is gratefully acknowledged.

References

[1] A. Alhazov, R. Freund, Gh. Păun, P systems with active membranes and two polar-
izations, in the present volume.

[2] A. Alhazov, L. Pan, Polarizationless P systems with active membranes, Grammars,
7, 1 (2004).

[3] A. Alhazov, L. Pan, Gh. Păun, Trading polarizations for labels in P systems with
active membranes, submitted 2003.

[4] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

[5] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems with-
out priorities: two catalysts are sufficient, submitted 2003.

[6] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars,
Acta Informatica, 31 (1994), 719–728.

[7] Gh. Păun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

[8] M. Pérez-Jiménez, A. Roméro-Jimenez, F. Sancho-Caparrini, Teoria de la complejidad
en modelos de computación celular con membranas, Kronos Editorial, Sevilla, 2002.

[9] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press,
New York, 1980.

[10] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

[11] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

379

