
About P Systems with Symport/Antiport

Pierluigi FRISCO

Leiden Institute for Advanced Computer Science – LIACS
Leiden University, Niels Bohrweg 1
2333 CA Leiden, The Netherlands

E-mail: pier@liacs.nl

Abstract. It is proved that four membranes suffice to P systems with minimal
symport/antiport to generate all recursively enumerable sets of numbers.

It is also proved that P systems with symport/antiport without maximal par-
allelism are equivalent to partially blind counter automata.

1 Introduction

In recent years observations of cells and their biochemical processes have been of in-
spiration for the creation of theoretical computational devices. One of these models
looks at the structure of a cell as a set of (nested) compartments delimited by mem-
branes. The chemicals present in a cell in each of its membrane compartments are seen
as objects interacting, changing (evolving), and passing to other compartments. Mem-
brane systems (also known as P systems) were introduced in [11] and since then ther
were the object of intense investigation (the latest news about P systems are present at
http://psystems.disco.unimib.it/). A book [12] covering the subject of membrane
computing has recently been published.

One of the most elegant variants of the general model was introduced in [10] under
the name of membrane systems with symport/antiport. This variant models in a straight-
forward way the synchronized movement of chemicals present in a cell: specific groups of
objects may pass together through a membrane either in the same or in opposite direction.
In the former case we refer to symport, in the latter to antiport. There is no modification
(evolution) of any sort of the objects (as present in other variants), communication is the
only driving power of these systems.

Various variants of these systems compute all recursively enumerable sets of numbers;
the result has been first obtained in [10], and then improved in complexity (reducing the
number of membranes and the number of objects that are transported at the same time)
in [7, 8, 4].

In [1] the authors show that P systems with symport/antiport passing at most one
object per time can generate any recursively enumerable set of numbers; such systems
have nine membranes. This result is improved in [6] reducing the number of membrane
to six; later in [2] this result is further on improved reducing the number of membrane to
five. In Section 3 we prove that four membrane suffice for this variant of P systems to
generate any recursively enumerable set of numbers.

224

In the area of P systems the lack of a global clock (or of synchronization) has not
been broadly studied. The first research in this direction was presented in [13] where P
systems with bi-stable catalyst are studied, and later in [3] where conformon-P systems
are considered. In [12] the study of P systems without maximal parallelism is cited as an
open problem. In Section 4 we study P systems with symport/antiport without maximal
parallelism. We prove that the generative power of these systems is at most the one of
partially blind counter automata.

2 Basic Definitions

We assume the reader to have familiarity with basic concepts of formal language theory [5],
and in particular with the topic of membrane systems with symport/antiport [10, 7, 8], and
[12, Chapter 4]. In this section we recall particular aspects relevant to our presentation.

We use N·RE to denote the family of recursively enumerable sets of natural numbers
(where 0 ∈ N).

Let V be a finite set of objects. With V ∗ we indicate the free monoid generated by V
with the operation of concatenation; λ indicates the empty word.

A multiset (over V) is a function M : V → N ∪ {+∞}; for a ∈ V , M(a) defines the
multiplicity of a in the multiset M . We say that an element a of a multiset M has infinite
multiplicity if M(a) = +∞. In case the multiplicity of an element of a multiset is 1 we
indicate just the element.

The support of a multiset M is the set supp(M) = {a ∈ V | M(a) > 0}. The size
of a multiset is defined by the function | · | : (V → N ∪ +{∞}) → N ∪ {+∞}, where for
M multiset over V , |M | = ∑

a∈supp(M) M(a). The symbol φ indicates the empty multiset,
that is, the multiset whose support is the empty set.

Let M1,M2 : V → N ∪ {+∞} be two multisets. The union of M1 and M2 is the
multiset M1 ∪M2 : V → N ∪ +{∞} defined by (M1 ∪M2)(a) = M1(a) + M2(a), for all
a ∈ V . The difference M1 −M2 is here defined only when M2 is included in M1 (which
means that M1(a) ≥ M2(a) for all a ∈ V) and it is the multiset M1−M2 : V → N∪{+∞}
given by (M1 −M2)(a) = M1(a) −M2(a) for all a ∈ V . Of course, if M1(a) = +∞ and
M2(a) is finite, then M1(a)−M2(a) = +∞. If M2(a) = +∞, then M1(a)−M2(a) = 0.

A membrane system with symport/antiport with maximal parallelism of degree m, m ≥
1, is a construct Π = (V, µ, L0, L1, . . . , Lm, R1, . . . , Rm, fin). A membrane system with
symport/antiport without maximal parallelism of degree m, m ≥ 1, is a construct Π6= =
(V, µ, L0, L1, . . . , Lm, R1, . . . , Rm, ack, fin). The set V is a finite set of objects; µ = (N, E)
is a tree underlying Π. The set N ⊂ N contains vertices, for simplicity we assume N =
{0, 1, . . . , m} where the vertex 0 is the root of the tree. Each vertex in N except the
root defines a membrane compartment (in this paper referred simply as membrane) of the
system Π; the root 0 defines the environment; fin ∈ N \{0} is a leaf, that is a vertex with
no children, which defines the final membrane; ack ∈ N \{0} is a distinguished membrane
called acknowledgment membrane. In this paper we consider only P systems where the root
has only one child; this last is called skin membrane. The set E ⊆ N ×N defines directed
edges between vertices. The set E is the ‘father of’ relation relation present in µ equivalent
to the nesting of membranes normally used in the literature of P systems. The multisets
L0, L1, . . . , Lm over V define the initial multisets of objects with the peculiarity that all
the objects in L0 have infinite multiplicity while the ones in L1, . . . , Lm do not. The sets
R1, . . . , Rm contain a finite number of rules of the form: (v, in), (v, out) (called symport

225

rules), or (v, in;w, out) (called antiport rules), with v, w nonempty multisets over V with
a finite support. Thus the symports (φ, in) and (φ, out) and the antiports (a, in; b, out)
with a = φ or b = φ are not allowed.

A configuration of a membrane system with symport/antiport of degree m is given
by the (m + 1)-tuple (M0 − L0,M1, . . . , Mm) of multisets over V associated to the root
and the membranes {1, . . . , m}, respectively. Note that the configuration does not record
the objects in the environment that occur with infinite multiplicity as they are invariant
to any configuration. The (m + 1)-tuple (φ,L1, . . . , Lm) is called initial configuration. If
the system does not have maximal parallelism, then Lack = ∅ in the initial configuration.
For two configurations (M0 − L0, M1, . . . , Mm), (M ′

0 − L0,M
′
1, . . . ,M

′
m) of Π we write

(M0 − L0, M1, . . . , Mm) ⇒ (M ′
0 − L0,M

′
1, . . . ,M

′
m) indicating a transition from (M0 −

L0,M1, . . . , Mm) to (M ′
0 − L0,M

′
1, . . . , M

′
m) that is the application of a multiset of rules

associated to each membrane. The system is with maximal parallelism if the largest
multiset of applicable rules is considered for each transition of the system. If more than
one multiset of rules can be applied, then exactly one of them is nondeterministically
chosen. All rules present in this multiset are applied in parallel. The system is without
maximal parallelism if any multiset (obviously except the empty one) of applicable rules
can be considered for each transition of the system. The reflexive and transitive closure
of ⇒ is indicated by ⇒∗.

The rules Rq associated to a membrane q ∈ N\{0} can change the multisets Mq and
Mp of p father of q in µ.

• A multiset v included in Mp may be subtracted from Mp and may be united to Mq,
if the symport rule (v, in) is present in Rq. In this case the multisets change from
Mp and Mq to M ′

p = Mp − v and M ′
q = Mq ∪ v, respectively.

• A multiset v included in Mq may be subtracted from Mq and united to Mp if the
symport rule (v, out) is present in Rq. The multisets change from Mp and Mq to
M ′

p = Mp ∪ v and M ′
q = Mq − v, respectively.

• A multiset v included in Mp may be united to Mq while, at the same time, a multiset
w included in Mq may be united to Mp if the antiport rule (v, in;w, out) is associated
to membrane q. In this case the multisets of objects change from Mp and Mq to
M ′

p = (Mp − v) ∪ w and M ′
q = (Mq − w) ∪ v, respectively.

In general, if a multiset v is subtracted from Mp and united to Mq we say that v passes
from membrane p to membrane q.

A computation is a finite sequence of transitions between configurations of a system
Π starting from the initial configuration (φ,L1, . . . , Lm). If the system has maximal par-
allelism, then the result of a computation is given by the multiset of objects present in
membrane fin when the computations halts (that is, when the multiset of applicable rules
has empty support). If the system does not have maximal parallelism the result of a
computation is given by the multiset of objects present in membrane fin when an object
is in membrane ack.

The set N(Π) denotes the set of numbers computed by a P system Π with sym-
port/antiport with maximal parallelism; the set N(Π6=) denotes the set of numbers com-
puted by a P system Π6= with symport/antiport without maximal parallelism.

The weight of a rule is given by |v| in case of a symport (v, in) or (v, out) and by
max(|v|, |w|) in case of an antiport (v, in; w, out).

226

The family of all sets N(Π) computed by P systems with symport/antiport with
maximal parallelism of degree at most m, using symports of weight at most x and
antiports of weight at most y is denoted by N ·PPm(symx, antiy). The family of all sets
N(Π6=) computed by P systems with symport/antiport without maximal parallelism of
degree at most m, using symports of weight at most x and antiports of weight at most
y is denoted by N·P6=Pm(symx, antiy). When m, x or y is not bounded it is replaced with ∗.

Counter automata were introduced by M.L. Minsky in [9] as finite state devices with
a read-only input tape and equipped with additional external storage in the form of one
or more counters. Each of these counters has an unbounded capacity recording a natural
number. Simple operations can be performed on the counters: increment of one unit,
decrement of one unit (when positive), and test for zero, while the input tape is scanned
one cell per time. After each of these operations the automaton may change state. It is
shown in [9] that counter automata with an input tape can simulate any Turing machine
when equipped with (at least) two counters.

It is possible to consider counter automata without input tape but with an output
counter. Reading input symbols is syntactically replaced by adding to the distinguished
output counter; the output counter is never decremented nor tested for zero. Formally
a counter automaton with n counters (n ∈ N) with output counter is defined as M =
(S, C, R, s0, f), where S is a finite set of states, s0, f ∈ S are respectively called the initial
and final state; C is the set of counters; R is the set of instructions of the form (s → r, ι),
where s → r indicates the state change with s, r ∈ S, s 6= f , and ι is a counter operation,
with ι ∈ {A+, A−, A=0, ε} for some A ∈ C.

The effect of each kind of instruction in R is described below:

• (s → r,A+): if the automaton is in state s, it changes state to r, incrementing the
content of counter A by one unit;

• (s → r,A−): if the automaton is in state s and the content of counter A is bigger
than 0, then it decreases the counter by one unit and changes state to r;

• (s → r,A=0): if the automaton is in state s and the counter A has 0 as content, then
it changes state to r;

• (s → r, ε): if the automaton is in state s, then it changes state to r.

The configuration of a counter automaton M with n + 1 counters with output counter
is given by (s, x0, · · · , xn), where s ∈ S and x0, x1, · · · , xn ∈ N. The number x0 indicates
the value of the output counter, while the other elements indicate the value of the rest of
the counters.

Given two configurations (s, x0, x1, . . . , xn), (r, y0, y1, . . . , yn) of a counter automaton
with output counter we define a computational step as the relation of configurations given
by (s, x0, x1, . . . , xn) ` (r, y0, y1, . . . , yn) as follows.

For instructions (s → r, ι) ∈ R we have:

• if ι = A+, then yA = xA + 1 and yj = xj for 1 ≤ j ≤ n, j 6= A;

• if ι = A− and xA > 0, then yA = xA − 1 and yj = xj for 1 ≤ j ≤ n, j 6= A;

• if ι = A=0 and xA = 0, then yj = xj for 1 ≤ j ≤ n;

• if ι = ε, then yj = xj for 1 ≤ j ≤ n.

227

The reflexive and transitive closure of ` is indicated as `∗.
A computation is a finite sequence of computational steps of a counter automaton M

starting from the initial configuration (s0, 1, 0, . . . , 0). If we consider an automaton M
with output counter and (s0, 0, 0, . . . , 0) `∗ (f, y0, y1, . . . , yn), then we say that M accepts
the number y0 (where 0 is the index of the output counter).

The language accepted by M is defined as L(M) = {y0 ∈ N | (s, 0, 0, . . . , 0) `∗
(f, y0, y1, . . . , yn)}, where y0 is the content of the output counter.

For every counter automaton it is possible to create another one accepting the same
set of numbers, and having all counters empty (with the obvious exception of the output
counter) in the final state. We will assume this normal form in the sequel.

Partially blind counter automata were introduced by M.L. Minsky also in [9] as counter
automata without test on zero. In case the automaton tries to subtract from a counter
having value zero it stops in a non final state. In [9] partially blind counter automata are
proved to be strictly less powerful than counter automata.

A partially blind counter automaton with output counter Mpb is defined as a counter
automaton M with output counter lacking of instructions of the kind (s → r,A=0).

3 Universality with Four Membranes

As already said in Section 1, P systems with symport/antiport with maximal parallelism
and weight 1 for both symports and antiports have been studied by several authors. The
obtained results show that nine, six, and then five membrane were sufficient to generate
all recursively enumerable sets of numbers. In the following we prove that four membranes
suffice for these systems to generate all recursively enumerable sets of numbers.

Theorem 3.1 N·RE = N·PP4(sym1, anti1).

Proof. We consider the inclusion N·RE ⊆ N·PP4(sym1, anti1), proving it constructing a P
system with symport/antiport with maximal parallelism simulating a counter automaton
with output counter. The inclusion N·PP4(sym1, anti1) ⊆ N·RE can be shown constructing
a Turing machine simulating a P system with symport/antiport.

Let M = (S,C, R, s0, f) be a counter automaton as specified in Section 2. The P
system with symport/antiport is defined by

Π = (V, µ, L0, L1, L2, L3, L4, R1, R2, R3, R4, 4),

where:

V = S ∪W ∪ {b1, b2, e, e
′, e′′, e′′′, e1, e2, a1, a2, a3, a4, †, k, k′1, k

′
2, k

′
3, k

′
4, k

′
5,∞1,∞2};

W = {cr | c ∈ C, r ∈ S and (s → r, c+) ∈ S}∪
{c′r, dc,r | c ∈ C, r ∈ S and (s → r, c−) ∈ S}∪
{c′′r , d′′c,r | c ∈ C, r ∈ S and (s → r, c=0) ∈ S};

µ = ({0, 1, 2, 3, 4}, {(i, i + 1), (i + 1, i) | 0 ≤ i ≤ 3});
L0= S ∪W ∪ {e, e′′, e′′′};
L1= b1b2†;
L2= a1e1e2kk′1k

′
2k
′
4k
′
5∞1;

L3= a2a3k
′
3∞2;

L4= a4e
′;

Ri= R∞
3 ∪R′

i ∪R′′
i ∪R′′′

i , 1 ≤ i ≤ 4.

228

Each computation of M can be simulated by Π. The simulation can be divided in
three main logical phases:

1. initialization: using the rules present in R′
i, 1 ≤ i ≤ 4, an unbounded number of

objects of the kind cr, dc,r and d′′c,r present in the environment may pass to other
regions of the P system;

2. simulation: using the rules present in R′′
i , 1 ≤ i ≤ 4, the instruction of the counter

automaton M are simulated. If M halts in a non final state, then the computation
of Π never stops. If M halts in a final state, then Π can reach the third phase;

3. termination: using the rules present in R′′′
i , 1 ≤ i ≤ 4, the P system Π moves into

the final membrane the objects defining the result of the computation and moves out
from this membrane the objects that are irrelevant for the result of the computation.
This process eventually leads to the end of the computation of Π.

The set R∞
3 = {(∞1, in;∞2, out), (∞2, in;∞, out), (†, in), (†, out)} contains rules forcing

the system to an endless computation. The rules involving ∞1 and ∞2 are used during
the initialization and simulation phase and part of the termination phase. The movement
of the objects ∞1 and ∞2 between membrane 2 and membrane 3 can be interrupted only
during the termination phase. These rules force the P system to an endless computation
unless the counter automaton has been correctly simulated. The rules involving † can start
to be applied during the initialization or simulation phase, in this case the system never
renders a result even if the termination phase is reached. The rules involving † are present
to avoid that the P system reaches a halting configuration after a computation that is not
a simulation of the counter automaton. As indicated in the following, the rules involving
† can also be applied even if the P system was properly simulating the counter automaton.

The rules associated to the initialization phase are:

R′
1 = {(X, in; b1, out) | X ∈ {r, dc,r, d

′
c,r | c ∈ C, r ∈ S}} ∪ {(b1, in), (p0, in; a4, out)};

R′
2 = {(X, in; b2, out) | X ∈ {r, dc,r, d

′
c,r | c ∈ C, r ∈ S}}∪

{(b2, in), (a4, out), (b1, in; a1, out), (a1, in; a2, out), (†, in; b2, out), (†, in; a2, out)};
R′

3 = {(d, in; a3, out) | d ∈ {dc,r, d
′
c,r | c ∈ C, r ∈ S}}∪

{(a3, in), (b2, in; a2, out), (b1, in; a4, out)};
R′

4 = {(d, in; a4, out) | d ∈ {dc,r, d
′
c,r | c ∈ C, r ∈ S}}∪

{(a4, in), (b2, in; a4, out), (a3, in; b2, out)}.
In this phase an unbounded number of objects q ∈ S ⊂ E can pass from the environment to
membrane 2 and an unbounded number of objects dc,r, d

′
c,r ∈ E, c ∈ C, r ∈ S can pass from

the environment to membrane 4. This process starts with the parallel application of one of
the rules (X, in; b1, out) ∈ R′

1 and the rule (b2, in) ∈ R′
2. After this the rules (b1, in) ∈ R′

1

and one of the rules (X, in; b2, out) ∈ R′
2 can be applied. The configuration of the system

is almost similar to the initial one: the only difference is that an object of the kind r, dc,r

or d′c,r is in membrane 2. The process of moving this kind of objects from the environment
to membrane 2 can be indeed repeated as b1 and b2 are in membrane 1 as in the initial
configuration. Following a similar process, an object of the kind dc,r or d′c,r present in
membrane 2 can pass to membrane 4. This is performed by the application of one of
the rules (d, in; a3, out) ∈ R′

3 followed by the parallel application of (d, in; a4, out) ∈ R′
4

and (a3, in) ∈ R′
3. Once in membrane 3 the object a4 can pass to membrane 4 by the

application of the rule (a4, in) ∈ R′
4.

229

When the object b2 (or one of the objects d′c,r) is in membrane 2 the object † can
pass from membrane 1 to membrane 2 by the application of the rule (†, in; b2, out) ∈ R′

2

(or (†, in; d′c,r, out) ∈ R′′
2 , see the following of the proof). If this happens, then the P

system will never render a result. The rule (†, in; b2, out) is present because, as we will
see later in the proof, the objects of the kind r, dc,r and d′c,r are used (in phase 2) by the
P system to simulate some specific rules of the counter automaton. Once in membrane 1
these symbols can pass to the environment by the applications of rules in R′′

1 starting in
this way the simulation of an instruction of the counter automaton. This could lead the P
system to reach an halting configuration after a computation that was not a simulation of
the counter automaton. To avoid this, if in the initialization phase an object of the kind
r, dc,r and d′c,r passes from membrane 1 to the environment when b2 is in membrane 2,
then the rule (†, in; b2, out) has to be applied.

Also the rule (b2, in; a2, out) ∈ R′
3 can be applied when the object b2 is in membrane 2.

Also in this case the computation of the P system will never render a result as the rule
(†, in; a2, out) ∈ R′

2 is then applied.
When in membrane 1 the object b1 can pass to membrane 2 by the application of the

rule (b1, in; a1, out) ∈ R′
2; parallel to this rule also the rule (b2, in) ∈ R′

2 is applied. As
the object b1 is no longer in membrane 1 the rules (X, in; b1, out) ∈ R′

1 cannot be applied:
the passage of objects from the environment to other membranes stops. In the rest of
this phases other objects pass to one membrane to another such that the systems can
eventually start the simulation phase.

If the rule (b2, in; a2, out) ∈ R′
3 is applied when a1 is in membrane 1, then the rules

(b2, in; a4, out) ∈ R′
4 and (a1, in; a2, out) ∈ R′

2 can be applied in parallel and then the
rules (b1, in; a4, out) ∈ R′

3 and (a3, in; b2, out) ∈ R′
4 can also be applied in parallel. When

a4 is in membrane 3 and b1 in membrane 4, also the rule (a4, in) ∈ R′
4 can be applied.

In this case the system never reaches the simulation phase. On the other hand, once in
membrane 2 the object a4 can pass to membrane 1 by the application of (a4, out) ∈ R′

2,
then the rule (s0, in; a4, out) ∈ R′

1 is applied. In this way one occurrence of the object s0,
related to the initial state of the simulated automaton, passes from the environment to
membrane 1. The initialization phase ends and the simulation phase starts.

If no rule involving † has been used during the initialization phase, then the simulation
phase starts with the object a4 in the environment, the objects a2s0 and † in membrane
1; with some objects r ∈ S ⊂ E, either ∞1 or ∞2 and a1e1e2kk′1k

′
2k
′
4k
′
5 in membrane 2,

with either ∞1 or ∞2 and b1b2k
′
3 in membrane 3; and with a3e

′ and some objects of the
kind dc,r, d

′
c,r in membrane 4.

The rules associated to the simulation phase are:

R′′
1 = {(r, in; s, out) | s, r ∈ S, (s → r, ε) ∈ R}∪

{(cr, in; s, out), (r, in; dc,r, out) | r, s ∈ S, c ∈ C, (s → r, c+) ∈ R}∪
{(c′r, in; s, out), (r, in; dc,r, out) | r, s ∈ S, c ∈ C, (s → r, c−) ∈ R}∪
{(c′′r , in; s, out), (r, in; d′c,r, out) | r, s ∈ S, c ∈ C, (s → r, c=0) ∈ R},

R′′
2 = {(cr, in; r, out) | r ∈ S, c ∈ C, (s → r, c+) ∈ R for a s ∈ S}∪

{(c′r, in; k, out), (k, in; dc,r, out) | r ∈ S, c ∈ C, (s → r, c−) ∈ R for a s ∈ S}∪
{(c′′r , in; k′1, out), (†, in; d′c,r, out), (k′5, in; d′c,r, out) | r ∈ S, c ∈ C,

(s → r, c=0) ∈ R for a s ∈ S}∪
{(k′1, in; k′2, out), (k′2, in; k′3, out), (k′3, in; k′4, out), (k′4, in; k′5, out)},

R′′
3 = {(c′r, in), (ct, in; dc,r, out) | r, t ∈ S, c ∈ C, (s → r, c−) ∈ R for a s ∈ S}∪

230

{(c′′r , in; k′3, out), (c′′r , in; d′c,r, out), (ct, in; d′c,r, out) | r, t ∈ S, c ∈ C,

(s → r, c=0) ∈ R for a s ∈ S},
R′′

4 = {(c′r, in; dc,r, out) | r ∈ S, c ∈ C, (s → r, c−) ∈ R for as ∈ S}∪
{(c′′r , in; d′c, r, out) | r ∈ S, c ∈ C, (s → r, c−) ∈ R for as ∈ S}.

During this phase only one object per time related to a state of the simulated automa-
ton can be present in membrane 1. If more than one instruction can be applied when the
counter automaton is in a certain state, then in the P system the object related to the
state present in membrane 1 can be subject to more than one rule. The value of a counter
c is represented with occurrences of cr, r ∈ S present in membrane 2.

The simulation of an instruction of the kind (s → r, ε) is performed by the rule (r, in;
s, out)∈ R′′

1

The simulation of an instruction of the kind (s → r, c+) starts with the application of
the rule (cr, in; s, out) ∈ R′′

1 followed by the application of the rule (cr, in; r, out) ∈ R′′
2 . If

no occurrence of r is present in membrane 2, then the system never reaches the termination
phase.

The simulation of an instruction of the kind (s → r, c−) starts with the application of
the rule (c′r, in; s, out) ∈ R′′

1 . The object c′r is used by the P system to let an occurrence of a
ct, t ∈ S, to pass from membrane 2 to membrane 3 (simulating in this way the subtraction
of one unit from counter c) if such an occurrence is present; if not, then the P system never
reaches the termination phase. Once an object of the kind c′r is present in membrane 1
a sequence of two, or eventually three rules is applied: first (c′r, in; k, out) ∈ R′′

2 , then
(c′r, in) ∈ R′′

3 and then (c′r, in; dc,r, out) ∈ R′′
4 if one object of the kind dc,r is present in

membrane 4 (if this last rule cannot be applied the termination phase is never reached). If
all three rules in sequence are applied, then the object c′r is in membrane 4, one occurrence
of dc,r is in membrane 3 and k is in membrane 1. If no occurrence of ct for any t ∈ S
is present in membrane 2, then the system never reaches the termination phase. If there
is at least one occurrence of ct for any t ∈ S, then two rules can be applied in sequence:
(ct, in; dc,r, out) ∈ R′′

3 (effectively simulating the decrement of one unit of the counter c)
and (k, in; dc,r, out) ∈ R′′

2 . The simulation of the instruction ends with the application of
the rule (r, in; dc,r, out) ∈ R′′

1 .
The simulation of an instruction of the kind (s → r, c=0) starts with the application

of the rule (c′′r , in; s, out) ∈ R′′
1 . Once a c′′r is in membrane 1 a sequence of rules is

applied. First the rule (c′′r , in; k′1, out) ∈ R′′
2 , then in parallel the rules (c′′r , in; k′3, out) ∈ R′′

3

and (k′1, in; k′2, out) ∈ R′′
2 , and then in parallel the rules (k′2, in; k′3, out) ∈ R′′

2 and
(c′′r , in; d′c,r, out) ∈ R′′

3 . If there is no object d′c,r in membrane 4, then this rule cannot
be applied and the termination phase is never reached. In this phase once one occur-
rence of one object of the kind d′c,r is in membrane 3 two sequences of rules can be
applied. If an occurrence of one ct, t ∈ S is present in membrane 2, then first the rules
(k′3, in; k′4, out) ∈ R′′

2 and (ct, in; d′c,r, out) ∈ R′′
3 and then the rules (†, in; d′c,r, out) ∈ R′′

2

and (k′4, in; k′5, out) ∈ R′′
2 are applied. As already said, once in membrane 2 the object

† forces the system to an infinite computation. If when one occurrence of one object
of the kind d′c,r is in membrane 3 no of ct, t ∈ S is present in membrane 2, then the
applied rules are first (k′3, in; k′4, out) ∈ R′′

2 , and then, in parallel, (k′4, in; k′5, out) ∈ R′′
2 and

(k′3, in; d′c,r, out) ∈ R′′
3 . In this case either (†, in; d′c,r, out) ∈ R′′

2 or (k′5, in; d′c,r, out) ∈ R′′
2

can be applied. If this last is the applied rule, then the application of the rule
(r, in; d′c,r, out) ∈ R′′

1 ends the proper simulation of the instruction. One can notice that
all the objects ki, 1 ≤ i ≤ 5, are in the same membranes as they were at the beginning of

231

the simulation of the instruction.

When the object f related to the final state of the counter automaton is present
in membrane 1, then the simulation phase ends and the termination phase starts. The
instructions related to this phase let all the occurrences of out, the object related to the
output counter of the simulated automaton, to pass from membrane 2 to membrane 4,
and let all the objects different from out to pass from membrane 4 to other membranes
of the system. Eventually the continuous passage of ∞1 and ∞2 from membrane 2 to
membrane 3 and vice versa, is interrupted. It is important to notice that even if this
phase is reached no result can be rendered by the P system (as, for instance, the object †
can keep passing from membrane 1 to membrane 2 and vice versa). If no rule involving †
has been used until the begin of the termination phase, the configuration of the P system
at the beginning of this phase is similar to the one at the begin of the simulation phase
with the exception that membrane 2 and membrane 3 can contain occurrences of objects
related to the counters (except the ones related to the output counter) of the simulated
automaton.

The rules related to the termination phase are:

R′′′
1 = {(e, in; f, out)} ∪ {(e′′, in; e′, out), (e′′′, in; a3, out)};

R′′′
2 = {(e′′, in; ct, out) | t ∈ S, t 6= out} ∪ {(e′′, in; a3, out), (e, in), (e′, out), (e′′′, in)};

R′′′
3 = {(ct, in; e, out) | q ∈ Q} ∪ {(e, in), (e1, in; e′, out), (e2, in; e1, out), (e1, in; a3, out),

(e′′′, in;∞1, out), (e′′′, in;∞2, out)};
R′′′

4 = {(e′′′, in;X, out) | X ∈ {c′t, dc,t, d
′
c,t | c ∈ C, t ∈ S}}∪

{(out, in)} ∪ {(e, out), (e2, out), (e′′′, out), (e, in; e′, out), (e2, in; a3, out)}.
In the first part of this phase all the objects of the kind cq can pass from membrane 2 to
membrane 3, the objects out, related to the output counter of the simulated automaton,
pass from membrane 3 to membrane 4 by the application of the rules (out, in) ∈ R′′′

4 .
In the second part of this phase all the objects of the kind c′t, c′′t , dc,t and d′c,t pass from
membrane 4 to membrane 3 only if there are no more objects of the kind ct in membrane 2.

When the object f related to the final state of the counter automaton is present in
membrane 1, then the rule (e, in; f, out) ∈ R′′′

1 can be applied. Once in membrane 1 the
object e passes to membrane 3 by the sequential application of (e, in) ∈ R′′′

2 and (e, in) ∈
R′′′

3 . Once in membrane 3 the object e can be subject of two sequences of rules. One of the
rules (ct, in; e, out) ∈ R′′′

3 (moving one occurrence of ct from membrane 2 to membrane 3)
can be applied and followed by (e, in) ∈ R′′′

3 . Otherwise the rule (e, in; e′, out) ∈ R′′′
4 is

first applied and followed by (e, out) ∈ R′′′
4 and (e1, in; e′, out) ∈ R′′′

3 applied in parallel.
This second sequence of rules can be applied only once in the system (as there is only
one occurrence of e′ in membrane 4), while the first can be applied continuously (until
there are objects of the kind ct in membrane 2). Once the object e′ is in membrane 2
a sequence of rules can be applied in the P system. First in parallel (e′, out) ∈ R′′′

2 and
(e2, in; e1, out) ∈ R′′′

3 , then in parallel (e′′, in; e′, out) ∈ R′′′
1 and (e2, in; a3, out) ∈ R′′′

4 .
When e′′ is in membrane 1 two scenarios are possible: in membrane 2 there are objects
of the kind ct, so the rule (e′′, in; ct, out) ∈ R′′′

2 can be applied for a t ∈ S; or there are no
objects of the kind ct in membrane 2. In either cases the rule (e1, in; a3, out) ∈ R′′′

3 can
be applied in parallel with (e2, out) ∈ R′′′

4 . Once the object a3 is in membrane 2 the rule
(a3, in) ∈ R′

3 can be applied, if this happens the P system never renders a result. If not,
then also the rule (e′′, in; a3, out) ∈ R′′′

2 can be applied. It is worth notice that a3 may
pass to membrane 1 only if no object of the kind ct is in membrane 2.

232

When the object a3 is in membrane 1 a sequence of rules can be applied: first
(e′′′, in; a3, out) ∈ R′′′

1 , then (e′′′, in) ∈ R′′′
2 , then either (e′′′, in;∞1, out) or (e′′′, in;∞2, out)

(both in R′′′
3 , the application of one of these rules ends the continuous passage of

∞1 and ∞2 from membrane 2 to membrane 3 and vice versa), then one of the rules
(e′′′, in;X, out) ∈ R′′′

4 followed by (e′′′, out) ∈ R′′′
4 . The application of these two last rules

let the objects of the kind c′t, c′′t , dc,t and d′c,t to pass from membrane 4 to membrane 3. It
is important to notice that if c′t (or c′′t) passes to membrane 3 while an occurrence of dc,t

(or d′c,t) is in membrane 4, then the rule (c′r, in; dc,r, out) ∈ R′′
4 (or (c′′r , in; d′c,r, out) ∈ R′′

4)
can be applied without changing the output of the P system. The computation stops when
none of the rules (e′′′, in; X, out) ∈ R′′′

4 can be applied any more. In this case the result of
the computation is given by the number of objects of the kind out present in membrane 4.

2

4 No Maximal Parallelism

A few variants of P systems without maximal parallelism have been studied. The following
two theorems show that the generative power of P systems with symport/antiport without
maximal parallelism is equivalent to the one of partially blind counter automata.

Theorem 4.1 N·P6=P∗(sym∗, anti∗) ⊆ L(Mpb).

Proof. In P systems with symport/antiport the number of membranes and the number of
different objects is finite. So it is possible to construct a partially blind counter automaton
having a finite number of counters of the form Om indicating how many occurrences of the
object O are present in membrane m. Such counters are not present for objects initially
present (with infinite cardinality) in the environment on the simulated P systems.

The simulation is performed in two, or possibly three logical phases: initialization,
simulation, and, eventually, termination.

In the initialization phase a deterministic sequence of instructions codes the initial
configuration of the simulated P systems in the registers. If, for instance, the initial
configuration of the simulated P system has the objects aac in membrane 1 and bb in
membrane 2, then the sequence of instructions is: (s0 → s1, a1+), (s1 → s2, a1+), (s2 →
s3, c1+), (s3 → s4, b2+), (s4 → s5, b2+). The state reached by the last of this sequence
of instruction should be s̄ (so, in the previous example s5 = s̄). Once in this state, the
partially blind counter automaton is in the simulation phase.

As the name suggests, during the simulation phase the rules of the P systems are
simulated. As the maximal parallelism is not present, in the simulated system all its rules
can be simulated in sequence. Each symport and antiport rule is simulated by a sequence
of instructions all starting and ending in state s̄. In this way any symport or antiport
can be simulated at any moment during the computation. If the partially blind counter
automaton tries to simulate a rule that cannot be applied in a particular situation of the
simulated P system, then it halts in a non final state.

As a symport rule can be considered as an antiport rule with one of the two moved
multisets of objects missing, in the following we are going to give a description of the
simulation of a generic antiport rule. We consider that each rule of the simulated P
system has a unique number associated to it. So, for instance, we consider the antiport
rule (a1a2 . . . ap, in; b1b2 . . . bq, out) having index r present in Rj , with membrane i father
of membrane j. The sequence of instructions simulating this rule are:

233

(s̄ → s̄1
r, a1i−), (s̄1

r → s̄2
r, a2i−), . . . , (s̄(p−1)

r → s̄p
r , api−),

(s̄p
r → s̄1′

r , b1i−), (s̄1′
r → s̄2′

r , b2i−), . . . , (s̄(q−1)′
r → s̄q′

r , bqi−),
(s̄q′

r → s̄1′′
r , a1j+), (s̄1′′

r → s̄2′′
r , a2j+), . . . , (s̄(p−1)′′

r → s̄p′′
r , apj+),

(s̄p′′
r → s̄1′′′

r , b1j+), (s̄1′′′
r → s̄2′′

r , b2j+), . . . , (s̄(q−1)′′′
r → s̄, bqj+).

The sequence of instructions present in the top line decreases of one unit the counters
related to the objects a1a2 . . . ap present in membrane i; the following line indicates the
sequence of instructions decreasing the counters related to the objects b1b2 . . . bq that pass
to membrane i; the following line indicates the sequence of instructions increasing the
counters related to the objects a1a2 . . . ap that pass to membrane j, while the bottom
line indicates the sequence of instructions increasing the counters related to the objects
b1b2 . . . bq that pass to membrane i.

If membrane i is the environment and (some of) the objects a1a2 . . . ap are initially
present (in unbounded copies) in the environment, then in the previous sequence of in-
structions the top line is not present and s̄p

r = s̄. If membrane i is the environment and
(some of) the objects b1b2 . . . bq are initially present (in unbounded copies) in the envi-
ronment, then in the previous sequence of instructions the bottom line is not present and
s̄p′′
r = s̄.

If any of the instructions tries to subtract one unit from a counter, then the partially
blind counter automaton stops in a non final state. If the simulated rule concerns the
passage of a (particular) object in the acknowledgment membrane, then the last state
reached by the counter automaton by the simulation of the rule is the final state f .

It is possible to construct a partially blind counter automaton ending with all counter
at zero with the exception of the output counter.

In this case the simulation of a rule letting a (particular) object to pass to the
acknowledgment membrane would not bring the counter automaton to the final state f
but to the non final state ¯̄s. In this case the instruction (¯̄s → f, ε), with f final state would
be present in the counter automaton together with the instructions (¯̄s → ¯̄sc, ε), (¯̄sc → ¯̄s, ε)
and (¯̄sc → ¯̄sc, c−) for each counter c different than the output counter. These last
instructions decrease of a random value each counter different than the output one, the
attempt of subtraction of an empty counter would stop the automaton in a non final
state. The counter automaton accepts the number present in the output counter if when
in the final state all the counters except the output one are empty. 2

Theorem 4.2 L(Mpb) ⊆ N·P6=P2(sym1, anti2).

Proof. We consider that given any partially blind counter automaton it is possible to
create another one that ends with all counters empty except the output counter.

The P system with symport/antiport without maximal parallelism has in its initial
configuration one instance of the object s0, related to the initial state of the simulated
counter automaton, in membrane 1. Objects related to the other states and to the counters
of the simulated automaton are present in unbounded copies in the environment. Mem-
brane 2, the acknowledgment membrane, is empty for all configurations except the final
one. In this configuration it contains the object related to the final state of the simulated
automaton. Membrane 1 is the final membrane.

The simulation of an instruction of the kind (s → r, ε) is performed by the rule
(r, in; s, out). The simulation of an instruction of the kind (s → r, c+) is performed by the

234

rule (rc, in; s, out). The simulation of an instruction of the kind (s → r, c−) is performed
by the rule (r, in; sc, out).

The only rule associated to membrane 2 is (f, in), where f is the final state of the
simulated automaton. The computation of the P system halts when on occurrence related
to a final state of the simulated automaton passes from membrane 1 to membrane 2. The
number of objects present in membrane 1 in the final configuration is equal to the value
of the output counter of the simulated automaton. 2

5 Final Remarks

This paper first gives a result concerning P systems with symport/antiport with maximal
parallelism. It is proved that four membranes suffice to generate all recursively enumerable
sets of numbers. The challenge to discover the family of sets of numbers generated by these
systems with less than four membranes remains.

We also investigate the power of P systems with symport/antiport without maximal
parallelism discovering that it is equivalent to the power of partially blind counter au-
tomaton. In this way we partially answer an open problem present in [12]

Acknowledgments. We thank F. Bernardini for the stimulating discussion related
to what presented in Section 3.

References

[1] F. Bernardini, M. Gheorghe. On the power of minimal symport/antiport. PreProced-
ings Workshop on Membrane Computing, WMC-2003, Tarragona, July 17-22, 2003,
2003. Technical Report, 28/03, Research Group on Mathematical Linguistics, Uni-
versitat Rovira i Virgili, Tarragona, 72–83.

[2] F. Bernardini, A. Păun. Symport/antiport: Five membranes suffices. In A. Alhazov,
C. Martin-Vide, and G. Păun, editors, Workshop on Membrane Computing, WMC-
2003, Tarragona, pages 72–83, 2003.

[3] P. Frisco. The conformon-P system: A molecular and cell biology-inspired comutabil-
ity model. Theoretical Computer Science, 312(2-3):295–319, 2004.

[4] P. Frisco, H.J. Hoogeboom. P systems with symport/antiport simulating counter
automata. Submitted.

[5] J.E. Hopcroft, D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[6] L. Kari, C. Mart́ın-Vide, A. Păun. Aspects of Molecular Computing: Essays Dedi-
cated to Tom Head, on the Occasion of His 70th Birthday, volume 2950 of Lecture
Notes in Computer Science, chapter On the Universality of P Systems with Minimal
Symport/Antiport Rules, pages 254–265. Springer-Verlag, Berlin, Heidelberg, New
York, 2004.

[7] C. Mart́ın-Vide, A. Păun, G. Păun. On the power of P systems with symport rules.
The Journal of Universal Computer Science, 8:317–331, 2002.

235

[8] C. Mart́ın-Vide, A. Păun, G. Păun, G. Rozenberg. Membrane systems with coupled
transport: universality and normal forms. Fundamenta Informaticae, 49:1–15, 2002.

[9] M.L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437–455, November 1961.

[10] A. Păun, G. Păun. The power of communication: P systems with symport/antiport.
New Generation Computing, 20(3):295–306, 2002.

[11] G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000.

[12] G. Păun. Membrane Computing, An Introduction. Springer-Verlag, Berlin, Heidel-
berg, New York, 2002.

[13] G. Păun, S. Yu. On synchronization in P systems. Fundamenta Informaticae,
34(4):397–410, 1999.

236

