
Tissue-like P Systems with Channel-States

Rudolf FREUND1, Gheorghe PĂUN2,3, Mario J. PÉREZ JIMÉNEZ3

1Faculty of Computer Science
Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria
E-mail: rudi@emcc.at

2Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

3Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: {gpaun,marper}@us.es

Abstract. We consider tissue-like P systems with states associated with the
links (we call them synapses) between cells, controlling the passage of objects
across the links. We investigate the computing power of such devices for the
case of using – in a sequential manner – antiport rules of small weights. Sys-
tems with two cells are proven to be universal when having arbitrarily many
states and minimal antiport rules, or two states, and antiport rules of weight
two. Also the systems with arbitrarily many cells, three states, and minimal
antiport rules are universal. In contrast, the systems with one cell and any
number of states and rules of any weight only compute Parikh sets of ma-
trix languages (generated by matrix grammars without appearance checking);
characterizations of Parikh images of matrix languages are obtained for such
one-cell systems with antiport rules of a reduced weight. A series of open
problems are also formulated.

1 Introduction

In membrane computing area there are two main classes of systems: cell-like and tissue-
like P systems. The former type is inspired from the cell organization (and has membranes
hierarchically arranged, hence corresponding to a tree), the latter one mimics the “collab-
oration” of cells from tissues of various kinds (hence corresponds to membranes placed in
the nodes of an arbitrary graph).

Actually, there are two sub-classes of tissue-like P systems, one using symport/antiport
rules for communicating among cells, and the other one, closer to the neural net organiza-
tion, having states associated with the cells, for controlling multiset rewriting rules which
make evolve the multisets of objects from the cells.

206

In the present paper, we take a different perspective, somewhat mixing the two sub-
cases of tissue-like systems: we associate states to the links between cells, and use these
states in order to control the communication among cells; in its turn, the communication is
done by means of symport/antiport rules. Among two cells at most one link is established
(also called synapse). Because the states can be changed by using rules, a conflict can
appear when two rules used on the same link ask for changing the state to two different
new states. That is why we use the rules in a sequential manner: on each possible channel
between two cells we use only one rule. At the level of the whole net of cells, the evolution
is parallel (synchronous): we have to use a rule on each synapse where a rule can be used.

Considering a sequential use of rules on each link between cells is also challenging from
a mathematical point of view; the maximal parallelism, usual in membrane computing,
combined with the definition of successful computations as the halting ones, is a powerful
tool in “programming” the work of P systems of various types (in particular, it provides a
way to implement “appearance checking”, as in regulated context-free grammars). In our
framework, the expected loss in power induced by the sequential use of rules is compensated
by the use of states.

The issue of considering states associated with the communication channels among
membranes is part of a more general research topic, that of considering tissue-like P
systems with a dynamic structure (dynamically changing membranes and/or links among
them). Our approach can be considered as a partial answer to this general problem, as the
states control the passage of objects across the links, selectively permitting the objects to
pass, possibly completely inhibiting certain channels.

The power of systems as suggested above, with antiport rules of small weights used
sequentially are shown to be Turing complete in the case of two cells (even with minimal
antiport rules, if “enough” states are used) and to characterize the Parikh images of
languages generated by matrix grammars without appearance checking in the case of one
cell (no matter how many states and no matter how general rules are used).

The case of the parallel use of rules (in a step we can use simultaneously all rules
which pass from a given state to a unique next state) – as well as other related problems
– remain to be investigated.

2 Tissue-like P Systems with States

The reader is supposed to be familiar with basic elements of membrane computing, e.g.,
from [11] (rather useful is the comprehensive information which can be found in the web
page http://psystems.disco.unimib.it), in particular, with the tissue-like P systems
introduced in [9]. Here we deal with the following type of systems (for the very few
elements of computability – mainly formal language theory – we refer to any monograph
in this area, in particular, to [13]; just for the sake of completeness, we mention that V ∗

is the free monoid generated by the alphabet V under the operation of concatenation and
the empty string, denoted by λ, as identity).

A tissue-like P system (of degree m ≥ 1) with channel-states is a construct

Π = (O, T, K, w1, . . . , wm, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects, K is the
alphabet of states (not necessarily disjoint of O), w1, . . . , wm are strings over O repre-
senting the initial multiset of objects present in the cells of the system (it is assumed

207

that we have m cells, labelled with 1, 2, . . . ,m), E ⊆ O is the set of objects present in
arbitrarily many copies in the environment, syn ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m}, i 6= j}
is the set of links among cells (we call them synapses; 0 indicates the environment) such
that for i, j ∈ {0, 1, . . . , m} at most one of (i, j), (j, i) is present in syn, s(i,j) is the ini-
tial state of the synapse (i, j) ∈ syn, R(i,j) is a finite set of rules of the form (s, x/y, s′),
for some s, s′ ∈ K and x, y ∈ O∗, associated with the synapse (i, j) ∈ syn, and, finally,
io ∈ {1, 2, . . . , m} is the output cell.

We note the important restriction that there is at most one synapse among two given
cells, and the synapse is given as an ordered pair (i, j), with which a state from K is
associated. The fact that the pair is ordered does not restrict the communication among
the two cells (or between a cell and the environment), because we work here in the general
case of antiport rules, specifying simultaneous movements of objects in the two directions
of a synapse.

A rule of the form (s, x/y, s′) ∈ R(i,j) is interpreted as an antiport rule for the ordered
pair (i, j) of cells, acting only if the synapse (i, j) has the state s; the application of the rule
means moving the objects specified by x from cell i (from the environment, if i = 0) to cell
j, at the same time with the move of the objects specified by y in the opposite direction,
as well as the change of the state of the synapse from s to s′. (The rules with one of x, y
empty are, in fact, symport rules, but we do not explicitly consider here this distinction, as
it is not relevant for what follows.) The objects from E are never exhausted, irrespective
how many copies of each of them are brought into the system, arbitrarily many copies
remain available in the environment.

The computation starts with the multisets specified by w1, . . . , wm in the m cells; in
each time unit, a rule is used on each synapse for which a rule can be used (if no rule is
applicable for a synapse, then no object passes over it and its state remains unchanged).
Therefore, the use of rules is sequential at the level of each synapse, but it is parallel
at the level of the system: all synapses which can use a rule must do it (the system is
synchronously evolving). The computation is successful if and only if it halts and the
result of a halting computation is the vector which describes the multiplicity of objects
from T present in cell io in the halting configuration (the objects from O− T are ignored
when considering the result). The set of all vectors computed in this way by the system
Π is denoted by Ps(Π).

The family of sets Ps(Π) of vectors computed as above by systems with at most m
cells, using at most k states, and rules (s, x/y, s′) with |x| ≤ i, |y| ≤ i is denoted by
PsOtPm(statesk, antii). When one of the parameters m, k, i is not bounded, it is replaced
with ∗. We also denote by PsFL the set of Parikh images of languages from a given
family FL; by RE we denote the family of recursively enumerable languages, and by CF
the family of context-free languages.

3 Two Examples

Before investigating the computing power of the above introduced devices, let us illustrate
their work by some examples. The first one (of degree 3) is simpler. Formally, it is given
as follows:

Π1 = (O, T,K, w1, w2, w3, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),
O = {a, b},
T = {a, b},

208

K = {s, s′, s′′},
wi = λ, for all i = 1, 2, 3,

E = O,

syn = {(0, 1), (1, 2), (1, 3)},
R(0,1) = {(s, a/λ, s), (s, a/λ, s′), (s′, b/λ, s′), (s′, b/λ, s′′)},
R(1,2) = {(s, a/λ, s), (s, b/λ, s), (s, λ/a, s), (s, λ/b, s)},
R(1,3) = {(s, b/λ, s′), (s′, a/λ, s)},

io = 3.

The system is pictorially given in Figure 1, with the synapses represented by arrows,
having associated the initial states and the rules from the respective sets (the directionality
of the arrows thus specifies the way the rules are applied); each cell has inside the initial
multiset of objects and outside the label; the output cell, that with label 3, is indicated
by having it doubly encircled.

Figure 1. The system Π1 (rules and initial configuration)

¹¸

º·

¹¸

º·

ÁÀ

Â¿

½¼

¾»?

? ?

1

2 3

s

s s

λ

λ λ

(s, a/λ, s)
(s, a/λ, s′)
(s′, b/λ, s′)
(s′, b/λ, s′′)

(s, a/λ, s)
(s, b/λ, s)
(s, λ/a, s)
(s, λ/b, s)

(s, b/λ, s′)
(s′, a/λ, s)

The functioning of the system Π1 is rather clear: in state s, cell 1 brings inside n ≥ 0
copies of object a, then the synapse (0, 1) changes the state to s′ when one further a in
brought in; in state s′ we bring in cell 1 a number m ≥ 0 of copies of object b; the process
is finished only by passing to state s′′, hence at least one copy of b is introduced. Any
copy of a and b can oscillate forever among cells 1 and 2, hence the computation can stop
only if all objects are moved to cell 3, the output one. The channel from cell 1 to cell
3 can be “open” only by a copy of b, which changes the state of this synapse to s′; in
the presence of s′, a copy of a is moved from cell 1 to cell 3 and the state returns to s.
Consequently, we can stop if and only if either the numbers of a and b introduced in cell
1 were equal, or the number of copies of b is larger by 1 than the number of copies of a.
That is, Ps(Π1) = {(n, n) | n ≥ 1} ∪ {(n, n + 1) | n ≥ 1}.

It is worth noting that the previous system uses only uniport rules (only one object
passes through a synapse, in either direction).

209

The functioning of the second example we discuss here, Π2, is much more intricated.
Instead of giving this system in a formal manner, we present it pictorially, in Figure 2,
following the same conventions as in Figure 1. The output cell is 1 and the only terminal
object is a.

Figure 2. The system Π2 (rules and initial configuration)

¹¸

º·

¹¸

º·

&%

'$

"!

#Ã

?

¾

6

¾

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

?

1

2
3

s′′

s′

s

s

s

ab
def

#

(s′, g/def, s)
(s, b/b′b′a3c, s′)

(s, b/b′a2, s)

(s,#/#, s)
(s′, λ/def, s′′)

(s′′, λ/b, s′′)

(s, c/λ, s′)
(s′, b/#, s)
(s′, λ/d, s)

(s, c/λ, s)
(s, λ/d, s)

(s, λ/e, s′)
(s′, b′/b, s′)

(s′, b′/#, s′)
(s′, b′/bf, s′′)
(s′′, b′/#, s′′)

(s′′, g/λ, s)

(s, def/c, s)
(s, b/λ, s)
(s, b/λ, s′)
(s, λ/g, s)

This system computes the squares of natural numbers, in the following way. We start
with objects abdef in cell 1. The objects def go along the synapse (0, 1) and change its
state to s, bringing g in cell 1; this object passes to cell 3, changing the state of the synapse
to s and then exits through the synapse (0, 3).

Assume that we are in a configuration with all synapses in state s, with n2 copies of
object a and n copies of b present in cell 1; initially, after the steps mentioned above, this
is the case. Each copy of b is sent to the environment, in exchange of b′ and two copies of
a; the last copy of b from cell 1 is exchanged for two copies of b′ and three copies of a. In
this way, the number of copies of a becomes n2 + 2n + 1 = (n + 1)2. In the last step, also
c is brought in cell 1; this object passes to cell 2, “opening” this synapse for object b; if
any copy of b is still present in cell 1, then the trap-object # is brought in cell 1 and the
computation never stops.

From cell 2, c passes to cell 3, and from here exits to the environment, bringing in cell
3 the objects def . The object d will go to cell 2 and then to cell 1, restoring the state of
the synapse (1, 2) to s, while e goes to cell 1, changing the state of the synapse (1, 3) to s′.
This makes possible the exchange of each copy of b′ from cell 1 with a copy of b from cell 3
(this last object is continuously brought in cell 3 from the environment – but the process
can be finished by passing the synapse (0, 3) to state s′; however, if this happens too early,

210

then the object # is moved from cell 3 to cell 1 and the computation will last forever).
The exchange of b′ with b continues until changing the state of the synapse (1, 3) to s′′,
and also moving f from cell 3 to cell 1. This should complete the change of b′, otherwise
again the trap-object is moved to cell 1. In this moment, all objects def are again in
cell 1, as in the initial configuration, hence we can iterate the process (thus passing to
the square of the next natural number). If, instead, we send def outside by means of the
rule (s′, λ/def, s′′), then the synapse (0, 1) passes to state s′′, which only allows the exit
of all objects b from cell 1. In this way, only copies of object a remain in cell 1. The rule
(s′, λ/def, s′′) can be used also in the initial configuration, hence also the square of 1 is
obtained.

Consequently, Ps(Π2) = {n2 | n ≥ 1}. Note that in the halting configuration, only
copies of the terminal object a are present in the output cell.

As we will see soon, the same set of numbers can be computed by systems with a small
number of cells or states, and with simpler rules.

4 Technical Prerequisites

In the proofs from the next section we will use the register machines and the matrix
grammars (without appearance checking), that is why we introduce here these computing
devices.

In what concerns the register machines, we refer to [10] for original definitions, and to
[5], [14] for definitions like that we use in this paper.

An n-register machine is a construct M = (n,R, l0, lh), where n is the number of
registers, R is a finite set of instructions injectively labelled with elements from a given
set lab(M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (add(r), l2),
Add 1 to the contents of register r and proceed to the instruction (labelled with) l2.
(We say that we have an ADD instruction.)

– l1 : (sub(r), l2, l3),
If register r is not empty, then subtract 1 from its contents and go to instruction l2,
otherwise proceed to instruction l3. (We say that we have a SUB instruction.)

– lh : halt,
Stop the machine. The final label lh is only assigned to this instruction.

A register machine M is said to recognize a vector (s1, . . . , sk) of natural numbers if,
starting with the instruction with label l0, with the numbers s1, . . . , sk placed in the first k
registers (and the other registers containing the number 0), the machine stops (it reaches
the instruction lh : halt) with all registers containing the number 0.

The register machines are know to be computationally universal, equal in power to
Turing machines: they recognize exactly the sets of vectors of natural numbers which can
be recognized/computed by Turing machines, that is, the family PsRE.

Without loss of the generality, in the proofs from the following section we will assume
that in each ADD instruction l1 : (add(r), l2) and in each SUB instruction l1 : (sub(r), l2, l3)
the labels l1, l2, l3 are mutually distinct. This goal can be easily achieved. For instance,

211

in the case of SUB instructions, we replace each instruction l1 : (sub(r), l2, l3) with the
instructions l1 : (sub(r), l′2, l′′3), l′2 : (add(n + 1), l′′′2), l′′′2 : (sub(n + 1), l2, lh), l′′3 : (add(n +
1), liv3), liv : (sub(n+1), l3, lh), where n+1 is a new register (the same for all starting SUB
instructions), and all primed labels are distinct and different from the initial labels.

We also use below the matrix grammars. For details, we refer to [3] and to the chapter
of [13] devoted to regulated rewriting, and we introduce here only the particular case we
need below.

A matrix grammar (without appearance checking) is a construct G = (N, T, S, M),
where N, T are disjoint alphabets, S ∈ N , and M is a finite set of ordered sequences
of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N,xi ∈ (N ∪ T)∗, in all cases); N is the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, while the elements of M are called matrices.

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for
all 1 ≤ i ≤ n, wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T)∗. The language

generated by G is defined by L(G) =}w ∈ T ∗ | S =⇒∗ w}.
By MAT we denote the family of languages generated by matrix grammars. It is known

that PsCF ⊂ PsMAT ⊂ PsRE (for instance, PsMAT contains non-semilinear sets of
vectors, which is not the case with PsCF ; on the other hand, the one-dimensional vectors
from PsMAT are semilinear, while PsRE contains non-semilinear sets of numbers).

The power of matrix grammars is not decreased if we only work with matrix grammars
in the binary normal form (see [3]). A grammar G = (N, T, S,M) is in this form if it has
N = N1 ∪N2 ∪ {S}, where these three sets are mutually disjoint, and each matrix in M
is in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

3. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and a matrix of type 3 is used only once,
in the last step of a derivation.

In the following we shall use a slightly different variant of this binary normal form
by adding one new non-terminal f indicating its unique final “state”, i.e., from a matrix
grammar G = (N,T, S, M) in the binary normal form as above we construct the matrix
grammar Gf = (N ∪ {f}, T, S, Mf) in f-binary normal form with

Mf = (M − {(X → λ,A → x) | (X → λ,A → x) ∈ M, X ∈ N1, A ∈ N2, x ∈ T ∗})
∪ {(X → f, A → x) | (X → λ,A → x) ∈ M, X ∈ N1, A ∈ N2, x ∈ T ∗})
∪ {(f → λ)}.

Hence, Mf contains rules of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

3. (X → f, A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2,

4. (f → λ).

212

Moreover, there is only one matrix of type 1 and only one matrix of type 4, which
is only used in the last step of a derivation yielding a terminal result.It is obvious that
a usual tissue-like P system (without states) can be considered as having the same state
associated with all synapses, never changing. Because P systems with one membrane
and using antiport rules of weight at least two are universal in the case of maximally
parallel use of rules (see, e.g., [7], [6]), it is expected that a similar result holds true also
in our case. However, this does not happen: if we have only one cell, irrespective how
many states and how complex rules we use, we get at most the Parikh images of matrix
languages (without appearance checking). The explanation of this important difference
between our results and those from [7], [6] lies in the difference between the way the two
types of systems work: sequentially here, in a maximally parallel manner in the mentioned
papers (as we have mentioned in the Introduction, the maximal parallelism together with
the halting condition for defining the successful computations provides the necessary tools
for simulating the appearance checking, which is not the case for the sequential use of rules;
then, the appearance checking is exactly the difference between MAT and universality –
matrix grammars with appearance checking are equivalent to Turing machines).

However, universality can be obtained also in our case as soon as we use at least two
cells.

We start with the characterization of the Parikh images of matrix languages.

Lemma 4.1 PsMAT ⊆ PsOtP1(state∗, anti1).

Proof. Let us consider a matrix grammar G = (N1 ∪ N2 ∪ {S, f}, T, S, M) in the
f-binary normal form. We construct the tissue-like P system

Π = (O, T,K, A0Z, O, {(0, 1)}, X0, R(0,1), 1),
O = N2 ∪ T ∪ {Z},
K = N1 ∪ {f} ∪ {〈X, α〉 | X ∈ N1 ∪ {f}, α ∈ N2 ∪ T},

R(0,1) = {(X, α/A, Y) | (X → Y, A → α) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f}, A ∈ N2, α ∈ N2 ∪ T ∪ {λ}}
∪ {(X, α1/A, 〈Y, α2〉), (〈Y, α2〉, α2/λ, Y) | (X → Y, A → α1α2) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f}, A ∈ N2, α1, α2 ∈ N2 ∪ T}
∪ {(f, A/A, f) | A ∈ N2} ∪ {(f, λ/Z, f)}
∪ {(X, Z/Z, X) | X ∈ N1},

where (S → X0A0) is the initial matrix of M .
The matrices (X → Y, A → x) of M are simulated by simultaneously changing the state

of the unique synapse and exchanging an internal object A for the multiset x. If x consists
of at most one symbol, then the simulation is done in only one step. If x = α1α2, then the
objects α1, α2 are brought into the system in two consecutive steps. When the state f is
introduced, we check whether the derivation in G is terminal and only in the affirmative
case we halt. As long as the state of the synapse (0, 1) is not f , the computation continues,
at least by a rule of the form (X, Z/Z, X) for some X ∈ N1. The auxiliary object Z is
sent out by means of the rule (f, λ/Z, f) and then the computation stops. Consequently,
ΨT (L(G)) = Ps(Π) and the proof is complete. 2

The number of states can be decreased to one if we can use more powerful rules.

213

Lemma 4.2 PsMAT ⊆ PsOtP1(state1, anti2).

Proof. Consider again a matrix grammar G = (N1 ∪ N2 ∪ {S, f}, T, S,M) in the
f-binary normal form and construct the tissue-like P system

Π = (O, T, {s}, X0A0Z, O, {(0, 1)}, s, R(0,1), 1),
O = N1 ∪ {f} ∪N2 ∪ T ∪ {〈X, αβ〉 | X ∈ N1 ∪ {f}, α, β ∈ N2 ∪ T},

R(0,1) = {(s, Y x/XA, s) | (X → Y, A → x) ∈ M

X ∈ N1, Y ∈ N1 ∪ {f}, A ∈ N2, x ∈ N2 ∪ T ∪ {λ}}
∪ {(s, Y 〈Y, α1α2〉/XA, s), (s, α1α2/〈Y, α1α2〉, s) | (X → Y,A → α1α2) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f}, A ∈ N2, α1, α2 ∈ N2 ∪ T}
∪ {(s, α/α, s) | α ∈ N1 ∪N2}
∪ {(f, λ/Z, f)},

where (S → X0A0) is the initial matrix of M .
The state plays no rôle, the matrices of M are simulated by the antiport rules. As

long as at least a nonterminal from N1 ∪ N2 is present, the computation must continue.
The equality ΨT (L(G)) = Ps(Π) is obvious and this completes the proof. 2

We pass now to considering the opposite inclusions, proving that one-cell systems
cannot exceed the power of matrix grammars, irrespective how many states and how
complex rules are used.

Lemma 4.3 PsOtP1(state∗, anti∗) ⊆ PsMAT .

Proof. Let Π = (O, T ′,K, w1, E, {(0, 1)}, s0, R(0,1), 1) be a tissue-like P system. We
construct the matrix grammar G = (N, T ′, S, M) with

N = K ∪ {s′ | s ∈ K} ∪ {a′ | a ∈ O} ∪ {S},
T = {s′′ | s ∈ K} ∪O,

and the following matrices:

1. (S → s0h(w1)),

2. (s1 → s2h(x)), for (s1, x/λ, s2) ∈ R(0,1),

3. (s1 → s2, x
′
1 → λ, . . . , x′k → λ), for (s1, λ/x, s2) ∈ R(0,1),

for x = x1x2 . . . xk, k ≥ 1, with xi ∈ O, 1 ≤ i ≤ k,

4. (s1 → s2, y
′
1 → x, y′2 → λ, . . . , y′k → λ), for (s1, x/y, s2) ∈ R(0,1),

for y = y1y2 . . . yk, k ≥ 1, with yi ∈ O, 1 ≤ i ≤ k,

5. (s → s′, a′ → a),
(s′ → s′, a′ → a), for s ∈ K, a ∈ O,
(s′ → s′′), for s ∈ K,

where h is the morphism which replaces each a ∈ O with a′.
In the presence of nonterminals from K, we simulate the rules from R(0,1); at any

moment we can introduce a primed state, in the presence of which we transform each a′

214

for a ∈ O into the terminal a; we end the derivation by replacing the primed state by a
double primed version of it, which is a terminal symbol for G.

Now, consider the regular language

L = {s′′1z1yz2 | (s1, x/y, s2) ∈ R(0,1), z1, z2 ∈ O∗}
∪ {s′′1z | (s1, x/λ, s2) ∈ R(0,1), z ∈ T ∗}.

This language contains all strings which describe configurations for which the computation
in Π is not halting. Thus, the language

L′ = {s′′ | s ∈ K}O∗ − L

contains all strings which describe halting configurations. Therefore, L(G) ∩ L′ identifies
all halting configurations which were encoded in the strings of L(G). Consider now the
morphism g which erases the symbol s′′ as well as all symbols from O − T ′. The equality
Ps(Π) = ΨT ′(g(L(G)∩L′)) holds. Because the family of matrix languages is closed under
intersection with regular languages and morphisms (clearly, L and L′ are regular), we
obtain Ps(Π) ∈ PsMAT , and this completes the proof. 2

By combining the previous three lemmas, we get the following characterizations of
PsMAT :

Theorem 4.1 PsMAT = PsOtP1(statek, antii) = PsOtP1(state∗, antij) for all k ≥ 1
and i ≥ 2 as well as for all j ≥ 1 (each of k, i, j can also be equal to ∗).

One-cell systems with one state and antiport rules of weight 1 can only generate finite
languages.

However, if at least two cells are used, then even with minimal antiport rules we get
again the computational universality. The result is relevant both in comparison with
the previous theorem (thus specifying a sharp borderline between universality and non-
universality), and if we compare it with the main result of [1], where the universality (of
cell-like P systems with a maximal use of symport/antiport rules of minimal weight) is
obtained when using five membranes. In our case, two cells suffice, a fact which proves
the power of using states.

Theorem 4.2 PsRE = PsOtPm(state∗, antii) for all m ≥ 2 and i ≥ 1.

Proof. It is sufficient to prove the inclusion PsRE ⊆ PsOtP2(state∗, anti1). To this
aim, let us consider a register machine M = (n,R, l0, lh) (with lab(M) = {g1, . . . , gt}, and
recognizing the set of vectors N(M) ⊆ Nk, for some k ≥ 1) and construct the tissue-like
P system (of degree 2)

Π = (O, T,K, λ, w2, E, {(0, 1), (1, 2), (0, 2)}, s, s, s, R(0,1), R(1,2), R(0,2), 1),

with

O = {ai | 1 ≤ i ≤ n} ∪ {bi | 1 ≤ i ≤ k} ∪ {l, l′, l′′′, lv | l ∈ lab(M)},
T = {bi | 1 ≤ i ≤ k},
K = {si | 1 ≤ i ≤ k} ∪ {s, s′} ∪ {l, l′′, liv | l ∈ lab(M)},
w2 = g′1g

′
2 . . . g′t,

E = O,

and the following sets of rules.

215

1. The next rules are introduced in R(0,1), for all i = 1, 2, . . . , k:
(s, ai/λ, si),
(si, bi/λ, s),
(si, bi/λ, l0).

By using these rules, at the beginning of a computation we introduce in cell 1 some
arbitrary numbers of objects ai, bi, for 1 ≤ i ≤ k, the same number for ai and bi for
each i. The copies of ai will be used for simulating the work of the register machine,
the copies of bi will simply remain in cell 1; if the computation stops, then the result
of the computation will be given by the multiplicity of objects bi. In the last step,
the label of the synapse (0, 1) is changed to l0, the starting label of M .

2. If N(M) also contains the vector (0, 0, . . . , 0), then we introduce in R(0,1) also the
following rules:

(s, a1/λ, s′),
(s′, λ/a1, l0).

In this way, we start the computation with cell 1 empty and with the label l0 marking
the synapse (0, 1).

3. For each ADD instruction l1 : (add(r), l2) of M , we introduce in R(0,1) the rule
(l1, ar/λ, l2).

Clearly, the instruction of the register machine is correctly simulated by Π (the cur-
rent label of the synapse (0, 1) is always related to the label of the current instruction
from the computation of M).

4. For each SUB instruction l1 : (sub(r), l2, l3) from R we introduce in the sets of rules
of Π the rules indicated in the table below. The rules are given as used in the five
steps necessary in Π to simulate this instruction.

Step R(0,1) R(1,2) R(0,2)

1 (l1, l1/λ, l′′1) nothing nothing
2 (l′′1 , l′′′1 /λ, liv1) (s, l1/λ, l1) nothing
3 (liv1 , lv1/l′′′1 , liv1) (l1, ar/l′2, s′) or nothing (s, l′2/l1, s)
4 (liv1 , λ/l′2, l2) or nothing (s′, lv1/λ, s) or (l1, lv1/l′3, s) nothing
5 new instruction or (liv1 , λ/l′3, l3) nothing (s, l′3/lv1, s)

Under the control of the label l1, we bring in the first cell the object l1 (and the
state of the synapse (0, 1) is changed to l′′1). In the second step, object l1 is sent to
the second cell, thus changing the label of the synapse (1, 2) to l1. Simultaneously,
l′′′1 is brought in the first cell (under the control of the label l′′1 of the synapse (0, 1),
which is changed to liv1). Now, we can start checking whether there is any ar in cell
1. If this is the case, then the rule (l1, ar/l′2, s′) must be used, and it sends a copy of
ar to cell 2; if no copy of ar is present, then no rule is applied on the synapse (1, 2).
Simultaneously, l1 leaves cell 2 and in exchange l′2 is brought from the environment
(it could be useful when simulating another instruction of M), while on the synapse
(0, 1) we use the rule (liv1 , lv1/l′′′1 , liv1); its role is to bring the “checker” lv1 in the system,
leaving to cell 1 the time to send a copy of ar to cell 2, provided that such a copy
exists.

In the next step, lv1 is sent to cell 2, nothing is used on the synapse (0, 2), while
on the synapse (0, 1) we have two possibilities. If ar was available, hence l′2 was

216

brought in cell 1, then this objects is sent to the environment and the label of the
synapse (0, 1) becomes l2. In this way, we have completed the simulation of the SUB
instruction for the case when the subtraction was possible. If no ar was available,
then we do not communicate among cell 1 and the environment.

However, the way lv1 passes from cell 1 to cell 2 depends on the label of the synapse
(1, 2), which, in turn, depends on the fact whether or not ar existed. If ar was
present, then the label is s′, and lv1 just returns the label to s, making possible a new
simulation; otherwise, the label is l1, hence lv1 is exchanged with l′3 and the label is
returned to s, too.

In either case, in the next step no rule can be used on the synapse (1, 2), while lv1
is sent from cell 2 to the environment, in exchange with l′3; in this way, also l′3 is
available for a possible use at a subsequent step. If ar was not present, then in
step 5 we send l′3 from cell 1 to the environment, and the label of the synapse (0, 1)
becomes l3. This correctly completes the simulation of the subtraction instruction.

It should be noted the important details that in cell 1 we do not have any object
different from aj , for those j for which we have non-zero registers in M , and bi, 1 ≤
i ≤ k, as in the beginning, and that the contents of cell 2 is restored, with objects l′

present, for all l ∈ lab(M) – with one further copy of one of the above l′2, l′3 (during
the simulation, we bring both of them from the environment into cell 2, although
only one of them was sent to cell 1 in order to change the label of the synapse (0, 1)).

Therefore, the simulation of instructions from R can continue.

5. No rule is introduced for label lh of synapse (0, 1), hence the work of Π will stop
exactly when the work of M stops.

From the above explanation it is clear that N(M) = Ps(Π), and this concludes the
proof. 2

The previous proof uses a number of states which depends on the number of labels
used by the register machine which is simulated by our system. The number of states can
be reduced to 2 at the expense of increasing by one the weight of rules.

Theorem 4.3 PsRE = PsOtPm(statek, antii) for all m ≥ 2, k ≥ 2, and i ≥ 2.

Proof. We consider again a register machine M = (n, R, l0, lh) (with lab(M) =
{g1, . . . , gt} and N(M) ⊆ Nk, for some k ≥ 1) and construct the tissue-like P system (of
degree 2)

Π = (O, T,K, λ, w2, E, {(0, 1), (1, 2), (0, 2)}, s, s, s, R(0,1), R(1,2), R(0,2), 1),

with

O = {ai | 1 ≤ i ≤ n} ∪ {bi | 1 ≤ i ≤ k} ∪ {l, l′, l′′, l′′′ | l ∈ lab(M)} ∪ {e},
T = {bi | 1 ≤ i ≤ k},
K = {s, s′},
w2 = eg1g2 . . . gt,

E = O,

and the following sets of rules.

217

1. The next rules are introduced in R(0,1), for all i = 1, 2, . . . , k:
(s, aibi/λ, s),
(s, l0/λ, s′).

Like in the previous proof, by these rules we introduce in the first cell the vector to
be recognized – the null one included – together with the label l0, thus starting the
simulation of a computation in M .

2. For each ADD instruction l1 : (add(r), l2) from R, we introduce in R(0,1) the rule
(s′, l2ar/l1, s

′).
From now on, the states play no role in the computation, the instructions of M are
simulated by the antiport rules in a way rather similar to that from [6], but using
rules in a sequential manner, and making use of the two cells (and the environment)
for controlling the computation.

3. For each SUB instruction l1 : (sub(r), l2, l3) from R we introduce in the sets of rules
of Π the rules indicated in the table below. The rules are given as used in the five
steps necessary in Π to simulate this instruction.

Step R(0,1) R(1,2) R(0,2)

1 (s′, l′1l′′1/l1, s
′) nothing nothing

2 (s′, l′′′1 /l′′1 , s′) (s, l′1ar/e, s) nothing
3 nothing (s, l′′′1 e/l2, s) or (s, l′′′1 l′1/l3, s) (s, l2/l′1, s)
4 new instruction nothing (s, l3/l′′′1 , s) or (s, l2/l′1, s)
5 new instruction new instruction (s, l2/l′1, s) or (s, l3/l′′′1 , s)

The label l1 is replaced in the first cell by l′1, l′′1 . In the second step, if a copy of ar is
present, then object l′1 is sent to the second cell together with a copy of ar and the
auxiliary object e is brought in cell 1; if no copy of ar exists, then l′1 waits in cell 1.
Simultaneously, l′′′1 is brought in the first cell in exchange of l′′1 . In the third step, l′′′1
checks what happened in cell 1 in the previous step: if we have here e (hence ar was
present), then l′′′1 e bring from cell 2 the label l2, completing the simulation of the
instruction for the case when the substraction was possible. If we still have l′1 in cell
1, then l′′′1 l′1 bring l3 from cell 2, thus completing the simulation of the instruction
for the case when the subtraction is not possible.

In cell 2, we exchange l′1 with l2 (which is brought in from the environment), either
in step 3 (in the case when ar was present), or in one of steps 4 and 5; in the latter
case, the rule (s, l2/l′1, s) is used in alternate steps with the rule (s, l3/l′′′1 , s), which
brings in the system the label l3. In this way, the contents of cell 2 is restored, hence
we can continue simulating the instructions of M .

4. We also introduce in R(0,1) the rule
(s′, λ/lh, s′),

hence the work of Π will stop exactly when the work of M stops (and no other object
than the initial bis are present in cell 1).

From the above explanation it is clear that N(M) = Ps(Π), and this concludes the
proof. 2

This result shows that when rules of weight at least two are available, the hierarchies
on the number of membranes and states collapse, simultaneously at level two. This is

218

not known for minimal antiport rules, although we can again bound the number of states
(the hierarchy collapses at level three) provided that the number of membranes can be
arbitrary.

Theorem 4.4 PsRE = PsOtP∗(statek, antii) for all k ≥ 3 and i ≥ 1.

Proof. Consider a register machine M = (n,R, l0, lh), with u ADD instructions,
v SUB instructions, and N(M) ⊆ Nk, for some k ≥ 1. We construct the tissue-like P
system Π, of degree k + 2 + u + 2v, with the cells labeled with 1, 2, . . . , k, k + 1, k + 2,
add1, . . . , addu, sub1, sub′1, . . . , subv, sub′v, with

O = {ai | 1 ≤ i ≤ n} ∪ {bi, ei | 1 ≤ i ≤ k} ∪ lab(M) ∪ {e, #},
T = {bi | 1 ≤ i ≤ k},
K = {s, s′, s′′},
w1 = l0,

wi = λ, for all 2 ≤ i ≤ k + 2,

waddi = #, for all 1 ≤ i ≤ u,

wsubi = #, for all 1 ≤ i ≤ v,

wsub′i
= e, for all 1 ≤ i ≤ v,

E = O,

syn = {(0, i), (i, k + 2), (i, i + 1) | 1 ≤ i ≤ k}
∪ {(k + 1, k + 2), (0, k + 2)}
∪ {(k + 2, addi), (0, addi) | 1 ≤ i ≤ u}
∪ {(k + 2, subi), (subi, sub′i), (0, subi) | 1 ≤ i ≤ v}.

The initial state of all synapses is s and the output cell is that with label k + 2.
In turn, the sets of rules associated with the synapses are as follows:

R(0,i) = {(s, ai/λ, s′),
(s′, bi/λ, s),
(s, ei/λ, s′′)},

R(i,k+2) = {(s, ai/λ, s),
(s, bi/λ, s)},

R(i,i+1) = {(s, ei/λ, s′),
(s′, l0/λ, s′)}, for all i = 1, 2, . . . , k,

R(k+1,k+2) = {(s, l0/λ, s)},
R(0,k+2) = {(s,#/#, s),

(s, λ/lh, s)},
R(k+2,addi) = {(s, l1/λ, s′),

(s′, λ/ar, s
′′),

(s′′, λ/l2, s),
(s′, λ/#, s),
(s′′, λ/#, s)},

219

R(0,addi) = {(s, ar/λ, s),
(s, l2/λ, s),
(s, e/λ, s′)}, for all i = 1, 2, . . . , u,

with the ith ADD rule being l1 : (add(r), l2),
R(k+2,subi) = {(s, l1/λ, s′),

(s′, ar/λ, s′′),
(s′′, λ/l2, s),
(s′, λ/l3, s),
(s′′, λ/#, s)},

R(subi,sub′i)
= {(s, l2/e, s′),

(s′, e/λ, s),
(s, l3/λ, s)},

R(0,subi) = {(s, l2/l1, s
′),

(s′, l3/λ, s)}, for all i = 1, 2, . . . , v,

with the ith SUB rule being l1 : (sub(r), l2, l3).

The structure of the system Π, in the initial configuration, together with the sets of
rules associated with the typical synapses, is pictorially indicated in Figure 3.

The system works as follows. The cells with labels from 1 to k are used for introducing
in the system objects ai, bi, 1 ≤ i ≤ k; with objects ai we simulate the work of the register
machine M , the copies of objects bi remain in the end of halting computations in cell k+2,
representing the result of the computation. After entering cell i, each object ai and bi is
sent to cell k + 2. Each cell i = 1, 2, . . . , k ends its communication with the environment
by bringing inside the object ei. These objects are used in order to open the channels
among cells i = 1, 2, . . . , k, k + 1: by passing object ei from cell i to cell i + 1, the state of
the synapse (i, i + 1) is changes to s′. This state makes possible the passage of object l0,
the initial label of M , step by step, from cell 1 to cell k + 1. From cell k + 1, the object l0
is sent to cell k + 2, for starting the simulation of a computation in M . Therefore, we can
bring l0 in cell k + 2 if and only if all “input cells” 1, 2, . . . , k has completed their work,
and entered the “blocked state” s′′.

The simulation of ADD instructions of M is done with the help of the cells addi, 1 ≤
i ≤ u. Specifically, for each instruction addi of the form l1 : (add(r), l2) we proceed as
follows. First, l1 passes to cell addi and the state of the synapse (k + 2, addi) is changed
to s′. This makes possible the passage of ar from cell addi to cell k + 2; because the state
of the synapse becomes s′′, in the next step we can also bring l2 in cell k + 2, returning
the state of the synapse to s. The objects ar and l2 must be available in cell addi in the
right moment, because otherwise the trap-object # is brought from cell addi to cell k + 2,
and then the computation never stops (the rule (s,#/#, s) will be used forever on the
synapse (0, k + 2)). The objects ar, l2 are brought to cell addi from the environment in
the presence of state s of synapse (0, addi); in order to stop bringing objects into cell addi,
we change the state of this synapse from s to s′, when bringing inside the auxiliary object
e. Therefore, the instruction l1 : (add(r), l2) is correctly simulated (the states of the used
synapses are returned to the initial s, hence we can simulate other instructions).

220

#

"

Ã

!

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

HHHHHHHHHHHHHHj

Z
Z

Z
Z

Z
Z

Z
ZZ~

C
C
C
C
C
CCW

½
½

½
½

½
½

½
½½=

©©©©©©©©©©©©©©¼

- - - - - -
? ? ? ?

-

µ´
¶³

µ´
¶³

µ´
¶³

-
6

-

-

¾

¾

¾

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

- -

´
´

´
´́+

- -

- -

Z
Z

Z
ZZ}

A
A

A
A

AAK

l0

s s s s

1 2 i k k + 1

s

s
s

s s

s

.
s s

s
s

s

s
add1

s
#

#

#

s
addi

s

. . .

s

. . .

s

addu

k + 2

s

s

s
sub1 sub′1

. . .

s s
subi sub′i

s

s
. . .

s

s

subv sub′v

(s, ai/λ, s′)
(s′, bi/λ, s)

(s, ei/λ, s′′)

s

(s, ei/λ, s′)
(s′, l0/λ, s′)

(s, ai/λ, s)
(s, bi/λ, s)

(s, l0/λ, s)

(s, #/#, s)

(s, λ/lh, s)

e

e

e

(s, ar/λ, s)

(s, l2/λ, s)

(s, e/λ, s′)

(s, l1/λ, s′)

(s′, λ/ar, s
′′)

(s′′, λ/l2, s)

(s′, λ/#, s)

(s′′, λ/#, s)

(s, l1/λ, s′)

(s′, ar/λ, s′′)

(s′′, λ/l2, s)

(s′′, λ/#, s)

(s′, λ/l3, s)

(s, l2/e, s′)
(s′, e/λ, s)

(s, l3/λ, s)

(s, l2/l1, s
′)

(s′, l3/λ, s)

λ

λ λ λ λ

Figure 3. The structure of the system from the proof of Theorem 4.4

The SUB instruction subi, of the form l1 : (sub(r), l2, l3), is simulated through the
interaction of cell k +2 with the cells subi and sub′i, in the following way. First, the object
l1 is sent from cell k + 2 to cell subi, and the state of the synapse (k + 2, subi) is changed
to s′. In the next step, l1 exits cell subi, being exchanged with l2, and the state of the
synapse (0, subi) becomes s′. Simultaneously, if any copy of ar is present in cell k+2, then
the rule (s′, ar/λ, s′′) is used, hence one copy of ar leaves cell k + 2 and the state of the
synapse (k +2, subi) becomes s′′. If no copy of ar exists in cell k +2, then the state of the
synapse remains s′ and no rule is used here. In the third step, if the state of the synapse
(k + 2, subi) is s′′, then l2 passes from cell subi to cell k + 2, returning the state of this
synapse to s (and making possible the simulation of another rule). At the same time, l3
enters cell subi, returning the state of the synapse (0, subi) to s. Instead of passing to cell
k + 2, the object l2 can also pass to cell sub′i, but in this case the trap-object should be

221

sent to cell k + 2, by means of the rule (s′′, λ/#, s), and the computation will never stop.
If the simulation of the case when ar exists is correct, hence l2 enters cell k + 2, then l3
will pass in the next step to cell sub′i: the state of the synapse (subi, sub′i) has remained
s, hence the rule (s, l3/λ, s) ∈ R(subi,sub′i)

can be used.
If no copy of ar is present in cell k+2, then, after passing l1 to cell subi and exchanging

it with l2 from the environment, l2 must pass to cell sub′i, in exchange with e, replacing
state s with s′ on the synapse (subi, sub′i). At the same time, l3 enters cell subi. In the
next step, l3 cannot go to cell sub′i, because of the state s′ of the synapse (subi, sub′i),
hence it will go to cell k + 2, by means of the rule (s′, λ/l3, s) (the state of this synapse
has remained s′, because no ar has changed s′ into s′′ as above). At the same time, the
auxiliary object e passes back from cell subi to cell sub′i, returning the state of this synapse
to s.

The simulation of the SUB instruction is complete, the states of the synapses are again
s, hence the simulation of instructions of M can continue.

In this process, it is essential that the labels l1, l2, l3 from each instruction l1 :
(sub(r), l2, l3) are mutually different.

When the halt label lh is introduced in cell k+2, it exits by means of the rule (s, λ/lh, s)
and the computation stops.

We conclude that N(M) = Ps(Π) and this ends the proof. 2

5 Further Variants

The previous systems work in the generative mode, using the rules in a sequential manner.
Obvious variations are obtained by considering the accepting mode. A possibility is to
designate a cell as the input one, and to start the computation by introducing a multiset
in that cell; this multiset is accepted if and only if the computation halts.

Because in the accepting mode we do not have to take care of the way the initial
values of the register machine simulated by a P system as in Theorems 4.2, 4.3, 4.4 are
introduced, we can save states in the constructions from the proofs of these theorems.
This is especially of interest in the case of Theorem 4.3, where we use the two states only
for introducing the input, and for the computation one state suffices; therefore, in the
accepting case, the universality is obtained with only one state.

Another possibility is to consider as accepted the sequence of objects taken from the
environment during a halting computation (as in [2] and [4]) and in this way we obtain
language recognizing devices. The first example from Section 3 works in a way for which
this mode to define the recognized language is apparent – the language recognized by Π1

is non-regular.
Then, of interest is to consider a parallel use of rules. In order to avoid conflicts in

changing the labels, in each step, on each synapse, all rules leading from a state s to the
same state s′ should be considered. More specifically, “tables” of the form Ti,j(s, s′) =
{(s, x/y, s′) | (s, x/y, s′) ∈ R(i,j)} can be defined, for each synapse (i, j) and for each pair
(s, s′) of states; in each step one table is non-deterministically chosen and then used in a
maximally parallel manner.

All these possibilities remain to be investigated. In general, we believe that the tissue-
like P systems deserve further research efforts, motivated both by the mathematical prob-
lems they raise and also by the interesting connections with inter-cell communication in

222

tissues (an important biological fact, see, e.g., [8]), neuron interaction in the brain, dis-
tributed computing (internet included).

References

[1] F. Bernardini, A. Păun, Universality of minimal symport/antiport: Five membranes
suffice. In Aspects of Molecular Computing. Essays Dedicated to Tom Head on the
Occasion of His 70th Birthday (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture
Notes in Computer Science LNCS 2950, Springer-Verlag, Berlin, 2004, 43–54.

[2] E. Csuhaj-Varju, G. Vaszil, P automata or purely communicating accepting P sys-
tems. In [12], 219–233.

[3] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[4] R. Freund, M. Oswald, A short note on analysing P systems with antiport rules.
Bulletin of the EATCS, 78 (October 2002), 231–236.

[5] R. Freund, Gh. Păun, On the number of non-terminal symbols in graph-controlled,
programmed and matrix grammars. Proc. Conf. Universal Machines and Computa-
tions, Chişinău, 2001 (M. Margenstern, Y. Rogozhin, eds.), Lecture Notes in Com-
puter Science 2055, Springer-Verlag, Berlin, 2001, 214–225.

[6] R. Freund, Gh. Păun, On deterministic P systems. Submitted, 2003.

[7] P. Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with sym-
port/antiport. In [12], 288–301.

[8] W.R. Loewenstein: The Touchstone of Life. Molecular Information, Cell Commu-
nication, and the Foundations of Life. Oxford University Press, New York, Oxford,
1999.

[9] C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón, Tissue P systems. Theo-
retical Computer Sci., 296, 2 (2003), 295–326.

[10] M.L. Minsky, Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

[11] Gh. Păun, Computing with Membranes: An Introduction. Springer-Verlag, Berlin,
2002.

[12] Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds., Membrane Computing. Inter-
national Workshop WMC 2002, Curtea de Argeş, Romania, Revised Papers. Lecture
Notes in Computer Science 2597, Springer-Verlag, Berlin, 2003.

[13] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

[14] P. Sosik, R. Freund, P systems without priorities are computationally universal. In
[12], 400–409.

223

