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Abstract. In cell biology one of the fundamental topic is the study of how
biological signals are managed by cells. Signals can arise from inside the cell
or from the external environment and the correct answer to certain signals is
essential for bacteria to survive in a certain environment. Starting from these
biological motivations we consider a model of P systems where the computa-
tion is controlled by signals which move across the regions. In particular, we
consider Signals-Based P systems where the symbol-objects cannot be moved
and the rules can be activated/inactivated using a finite number of signals
(signal-promoters) moved across the membranes; differently from standard P
systems using promoters, in our case promoters cannot be created during the
computation. After discussing the biological motivations we show how this
model becomes universal when it uses one catalyst, and a bounded number of
signal-promoters.

1 Introduction

In cell biology it is known that many chemical reactions in the cell are catalyzed by the
presence of the respective enzyme (in other words, the enzyme permits the chemical rule
to happen; it is possible to get more information on this topic consulting [8]). On the other
hand, in bacteria, the enzyme (protein) can be activated/inactivated during the cellular
process (in other words, an inactivated enzyme is not able to catalyze the corresponding
reaction).
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In bacteria enzyme activation/inactivation, as well as other important processes, are
controlled by covalent modification of proteins (so called post-translational covalent mod-
ifications of proteins), [12].

The covalent modification involves the attachment of objects (chemical substances)
at different positions along the string represented by the protein (i.e., the enzyme). The
attached object could belong to different type of substances such as phosphoryl or methyl
(details can be found in [1]). One basic fact in biology is that the attachment of the
object (either phosphoryl, methyl or other chemicals) occurs at specific places along the
protein; during the cellular processes the substance (for example, phosphoryl) travels
along the cell and it is attached to the enzyme where such enzyme must be activated. We
can imagine the substance like a promoter that travels along the regions of the cell and
activates the corresponding enzyme (and then the corresponding catalyzed reaction) when
it is attached/unattached from the enzyme.

In what follows we will briefly describe how the phosphoryl movement can control the
process of enzyme activation/inactivation in Escherichia Coli.

The enzyme activation/inactivation by using covalent bond of phosphate (as in the
case of Escherichia Coli) was first described in mammals (liver) around half a century ago
when Fisher and Krebs showed that an enzyme involved in metabolism was regulated by
the addition (reaction called phosphorylation) or the removal (reaction called dephospho-
rylation) of phosphoryl, suggesting that reversible phosphorylation could control enzyme
activity.

Since then the study of protein phosphorylation has flourished in Biology, many scien-
tists being involved in the study of protein phosphorylation and its biological significance;
for their pioneering work Fisher and Krebs received the Nobel Prize in 1992.

One classical example of enzyme activation/inactivation by covalent attaching of phos-
phoryl occurs in Escherichia Coli for isocitrate dehydrogenase. Isocitrate dehydrogenase is
an enzyme which in the active state takes away two atoms of hydrogen (thus its name “de-
hydrogenase”) and one molecule of carbon dioxide from a chemical called isocitrate; thus
isocitrate is converted to another chemical called 2-oxoglutarate. The enzyme isocitrate
dehydrogenase is active when phosphoryl is NOT attached on it. The enzyme is inacti-
vated by attaching the phosphoryl and the inactivated enzyme is not able to perform the
conversion of isocitrate to 2-oxoglutarate.

The bond of phosphoryl to isocitrate dehydrogenase is catalyzed by an enzyme called
kinase whereas the removal of phosphoryl from phosphorylated isocitrate dehydrogenase
is catalyzed by a so called phosphatase.

In particular, phosphate is attached by the kinase at a very precise position within
the protein, exactly at the level of the 113rd aminoacid; these reactions are reversible and
they enable the cell to either activate (by de phosphorylation) or to inactivate (by phos-
phorylation) the enzyme isocitrate dehydrogenase. The idea of this process is described
in Figure 1.

The phosphoryl movement can also control the so-called two-component regulatory
system present, for example, in Escherichia Coli. A two-component regulatory system is a
system composed by two proteins: a sensor (S) and a response regulator (RS). Such system
responses to environmental signals (stimuli) like changes in oxygen concentration, light
intensity, starvation, water activity, and so on (for more details it is possible to consult
[11]). The responses of a two-component regulatory system are essential for bacterial
cells (as well as other types of cells) to survive in a given environment (for example, in
Escherichia Coli, it seems to exist around 50 different two-component regulatory systems).
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Figure 1: Enzyme is activated/deactivated removing/adding phosphoryl

The responses of a two-component regulatory systems are based, again, on the
phosphorylation/ dephosphorylation of proteins described before for enzyme activa-
tion/inactivation (for details about two-component regulatory systems the reader can
consult [1, 11]).

Two-component regulatory systems and enzyme activation/inactivation process are
important because they illustrate how within the same cell (in this case, Escherichia Coli)
the attaching of the same object, phosphoryl (that moves around the cell), can modulate
(activate/deactivate) different functions such as the conversion of izocitrate to 2-oxoglutare
(in the case of enzyme activation/inactivation) or it can change the proportion of some
transport proteins at the plasma membrane (in the case of a two-component regulatory
systems).

Using (some of) the biological motivations described above a new model of P systems,
called Signals-Based P system, can be introduced: it uses symbol-objects (chemical sub-
stances) and chemical reactions (evolution rules) present in the regions; the symbol-objects
evolve using the evolution rules but they cannot be moved; the rules present in the regions
can be activated/deactivated using signals called signal-promoters. The signal-promoters
do not participate in any evolution rule but they are able to move around the regions of
the system (they play the role of the phosphoryl described before).

In other words, this new model can be considered like the classical P systems using
promoters but with two restrictions: the symbol-objects cannot be moved and the signal-
promoters cannot be created but only moved across the membranes (at the beginning
of the computation a fixed number of signal-promoters is given in the regions; for some
aspects the idea of signal-promoters recall the concept of mobile catalyst introduced in [6]).
Informally, we can say that in a Signals-Based P system the computation is realized only

62



moving signals around the regions (from here “computing using signals” in the title of the
paper) and executing the indicated evolution rules. The model considered is related with
the idea of considering signal transduction in cells as computational process (for instance,
see [9]).

In this preliminary paper we introduce the formal definition of Signals-Based P systems
and we prove that they are universal using one catalyst and a bounded number of signal-
promoters. When using non cooperative rules and two promoters, Signals-Based P systems
are able to generate at least the Parikh sets of ET0L languages. In the final section
several open problems are also proposed. In the following sections we suppose the reader
familiar with the basic knowledge of P systems and in particular with P systems using
promoters/inhibitors (for details the reader can consult [2] and [7]).

2 Signals-Based P Systems: Definition

A Signals-Based P system (in short, an SB P system), of degree m ≥ 1, with symbol–
objects is a construct

Π = (V,C, P, µ, w1, . . . , wm, R1, . . . , Rm, R′
1, . . . , R

′
m, io),

where:

• V is the alphabet of Π; its elements are called objects;

• C ⊆ V is the set of catalysts;

• P ⊆ V is the set of signal-promoters;

• µ is a membrane structure consisting of m membranes labeled 1, 2, · · · ,m;

• wi, 1 ≤ i ≤ m, specify the multisets of objects present in the corresponding regions
i at the beginning of a computation;

• Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over V associated with regions
1, 2, . . . , m of µ; these evolution rules are of the form a → v or ca → cv, where a is
an object from V \ {C ∪ P} and v is a string over V \ {C ∪ P};

• R′
i, 1 ≤ i ≤ m, are finite set of signaling rules over P associated with regions

1, 2, . . . , m of µ; these signaling rules are of the form a → v|ptar or ca → cv|ptar ,
where a is an object from V \ {C ∪ P}, v is a string over V \ {C ∪ P}, p ∈ P ,
tar ∈ {here, inj , tar}, j ∈ {1, · · · ,m};

• io is a number between 0 and m and specifies the output membrane of Π (if i0 = 0
then the environment is used for the output).

A configuration of a Signals-Based P system is described using the m-tuple of multiset
of objects, present in the m regions of the system. To each region a finite number of
objects (among them, signal promoters and catalysts) is associated, and a finite number
of simple evolution rules and of signaling rules. The m-tuple (w1, w2, · · · , wm) is the initial
configuration of Π.

A transition between two configurations is governed by the mixed application of the s
imple evolution rules Ri and of the signaling rules R′

i, for each 1 ≤ i ≤ m. A sequence of
transitions of configurations is called computation.
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Simple evolution rules are rules with all targets fixed as “here” (see [3]). Signaling rules
are simple evolution rules, promoted by some signal-promoter p. When a signaling rule
a → v|ptar (or ca → cv|ptar) is applied then the object a is transformed into the objects
specified by v and the promoter p is sent into the (adjacent) region specified by tar.

In every region the signal-promoters are present in the set sense, i.e. we cannot have
more than one copy of the same signal-promoter in one region.

All objects that can be “subject” of the rules of the sets Ri, R
′
i, 1 ≤ i ≤ m, have to

evolve by such rules.
There is no difference between simple evolution rules and signaling rules: both are

applied in the non-deterministic maximally parallel manner.
The system continues parallel steps until there remain no applicable rules in any region

of the system.
Then the system halts (the computation is successful), and we consider the number of

objects contained in the output region io as the result of the computation of Π. This way
to have a computation in a Signal-Based P system is called the mixed approach.

During the computation it can happen that two signaling rules, promoted by the same
promoter p, and with different targets, are applied: in this case a conflict appears and the
computation is considered not successful.

We use the following notation

PsSBPm(α, j), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by SB P systems
with at most m membranes, j signal-promoters, simple evolution rules and signaling rules
that can be non-cooperative (ncoo), or catalytic (catk), using at most k catalysts (as
usual ∗ is used if the corresponding number of membranes, signal-promoters or catalysts
is unbounded).

3 Using Non-Cooperative Rules: Simulating Lindenmayer
Systems

In this section we show how a Signal-Based P systems, using non-cooperative rules and
three signal-promoters are able to generate at least the Parikh sets of ET0L languages.

First we recall the basic notions about Lindenmayer systems (for a complete informa-
tion we suggest [10]).

An ET0L system is a construct G = (Σ, T, H,w′), where the components fulfill the
following requirements: Σ is the alphabet. T ⊆ Σ is the terminal alphabet. H is a finite
set of of finite substitutions H = {h1, h2, · · · , ht} (t is the number of tables); each hi ∈ H
can be represented by a list of context-free rules A → x, such that A ∈ Σ and x ∈ Σ∗ (this
list for hi should satisfy that each symbol of Σ appears as the left side of some rule in hi).
w′ ∈ Σ∗ is the axiom.

G defines a derivation relation ⇒ by x ⇒ y iff y ∈ hi(x), for some 1 ≤ i ≤ t, where hi

is interpreted as a substitution mapping.
The language generated by G is L(G) = {w ∈ Σ∗ | w′ ⇒∗ w} ∩ T ∗, where ⇒∗ denotes

the reflexive and transitive closure of ⇒.
The family of languages generated by ET0L systems is denoted by ET0L.
It is known, [10], that for each L ∈ ET0L, there exist an ET0L system G′, with only

2 tables, such that L = L(G′).
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We also need to present the following normal form for ET0L systems.

Lemma 3.1 (Normal Form) For each L ∈ ET0L there is an extended tabled Lindenmayer
system G = (Σ, T, H,w′) with 2 tables (H = {h1, h2}) generating L, such that the terminals
are only trivially rewritten: for each a ∈ T if (a → α) ∈ h1 ∪ h2 then α = a.

Of interest for the purpose of this paper are the following result

CF ⊂ ET0L ⊂ CS ⊂ RE.

where by CF, CS, and RE we denote the families of languages generated by context-free,
context-sensitive, and type 0 grammars, respectively.

Theorem 1 PsSBP2(ncoo, 3) ⊇ PsET0L.

Proof. Given an ET0L system G = (Σ, T,H, w′) with 2 tables (H = {h1, h2}) in the
normal form described before generating L, we construct an SB P system Π generating
the Parikh set of L (actually, we remove the trivial productions from h1 and h2). Let us
denote N ′ = Σ \ T .

We take
Π = (V,C, P, µ, w1, . . . , wm, R1, . . . , Rm, R′

1, . . . , R
′
m, io),

where

• V = Σ ∪ {#, S′};
• C = ∅;
• P = {p′, p′′, q};
• µ = [1[2]2]1;

• w1 = Sp′p′′q, w2 = w′;

• R1 = {S′ → S};
• R2 = {# → #};
• R′

1 = {S → S′|p′in2

, S → S′|p′′in2

, S → S′|qin2
};

• R′
2 = {u → v|p′out

| u → v ∈ h1} ∪ {u → v|p′′out | u → v ∈ h2}
∪ {N → #qhere

| N ∈ N ′};
• io = 2.

The system Π works in the following way. In region 2 (the output region) are simulated
the applications of the rules of the first table h1 or of the second table h2 over the symbol-
objects corresponding to a sentential form.

In region 1 the object S is changed to S′ using, in a non deterministic way, one of the
three signaling-rules in R′

1. If the rule S → S′|p′in2

is applied, then the signal-promoter p′

is sent to region 2; in the same way, if the rule S → S′|p′′in2

is applied, then the signal-

promoter p′′ is sent to region 2. When the signal-promoter p′ is sent to region 2, then the
rules of h1 are activated and then, possibly, applied; when the signal-promoter p′′ is sent
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to region 2, then the rules of h2 are activated (the presence of the signal-promoters p′ and
p′′ guarantees that the rules of the first and second table are not applied in a mixed way
in region 2).

To stop the movements of signal-promoters between the two regions the rule S → S′|qin2

must be applied in region 1. In this case the signal-promoter q is sent into region 2 and
this activates the rules N → #qhere

| N ∈ N ′} present in that region (checking in this way
that, when the computation halts, only objects corresponding to terminal symbols have
been obtained in region 2).

Therefore, the system Π generates, in the output region, exactly the Parikh set of
L(G).

2

4 Using Catalytic Rules: Universality

In this section we prove that, if we use one catalyst and a (bounded) number of signal-
promoters, then Signal-Based P systems become universal. The proof is based on simu-
lating matrix grammars with appearance checking.

4.1 Matrix Grammars

A matrix grammar with appearance checking is a construct G = (N, T, S, M, C), where
N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1,
. . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪ T )∗, in all
cases), and C is a set of occurrences of rules in M (N is the nonterminal alphabet, T is
the terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for
all 1 ≤ i ≤ n, either (1) wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T )∗, or (2)

wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in C. The rules of
a matrix are applied in order, possibly skipping the rules in C that cannot be applied –
therefore we say that these rules are applied in the appearance checking mode.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
By MATac we denote the families of languages generated by matrix grammars with

appearance checking. It is known that MATac = RE.
We say that a matrix grammar with appearance checking (ac) G = (N,T, S,M,F ) is

in the Z-binary normal form if N = N1 ∪ N2 ∪ {S,Z, #} with these three sets mutually
disjoint and the matrices in M of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, | x |≤ 2

3. (X → Y,A → #), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,

4. (Z → λ)

There is only one matrix of type 1, and F consists of all rules A → # appearing in
matrices of type 3, and if a sentential form in G contains Z, it is of the form Zw, with
w ∈ (T ∪ {#})∗.
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Lemma 4.1 For each language L ∈ RE there is a matrix grammar with appearance
checking in the Z-binary normal form such that L = L(G).

Theorem 2 PsSBP2(cat1, t) = PsRE, for some t ∈ N.

We only show that PsSBP2(cat1, t) ⊇ PsRE (the reverse inclusion is based on Turing-
Church thesis).

Take a grammar G = (N, {a}, S,M, F ) in the Z-binary normal form, in the standard
notation, presented before. Also, let us consider that | M |= n and let us enumerate the
matrices of M ; moreover let us consider that we are not in the trivial case, i.e., there
exists:

• one rule (S → X0A0) ∈ M ;

• j ≥ 1 rules of type (Xi → Yi, Ai → xi) ∈ M , 1 ≤ i ≤ j;

• k ≥ 1 rules of type (Xi → Yi, Ai → #) ∈ M , j + 1 ≤ i ≤ j + k = n − 2}, with
(Ai → #) ∈ F ;

• one rule of type (Z → λ).

We will construct a Signals-Based P system Πsignals which simulates any derivation of
the grammar G. Formally we define

Πsignals = (V, C, P, µ,w1, w2, R1, R2, 0),

where:

• V = {M0,M5,M6, N0, N1, N2} ∪ {Mi,t | 1 ≤ i ≤ j, 1 ≤ t ≤ 4} ∪
{Mi,t | j + 1 ≤ i ≤ j + k, 1 ≤ t ≤ 3} ∪ C ∪ P ;

• C ⊆ V = {c} the set of catalysts;

• P ⊆ V = {R, Q,Q,W}∪{Pi | 1 ≤ i ≤ k+ l}∪{P i | 1 ≤ i ≤ k+ l}∪{Ri | 1 ≤ i ≤ l}
the set signaling promoters;

• µ = [1[2 ]2]1;

• w1 = {Pi, P i | 1 ≤ i ≤ j + k} ∪ {Q,Q,M0, R,W}
w2 = {c,N0,W} ∪ {X0, A0}.

The sets of rules, associated to the regions, are constructed in the following way.

1. For a matrix mi : (Xi → Yi, Ai → xi) with 1 ≤ i ≤ j we add to the sets R1, R
′
1 and

R′
2 the following sequences of rules:

to R1 : to R′
1 : to R′

2 :
Mi,4 → M5 M0 → Mi,1|Piin

cXi → cYi|Piout

M6 → M0 Mi,1 → Mi,2|Qin N0 → N1|Qout

Mi,2 → Mi,3|P iin
N1 → #|Piout

Mi,3 → Mi,4|Qin
cAi → cxi|P iout

M5 → M6|Rin N1 → N2|Qout

N2 → #|P iout

N2 → N0|Rout
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2. For a matrix mi : (Xi → Yi, Ai → #) with j + 1 ≤ i ≤ j + k we add to the sets
R1, R

′
1 and R2 the following sequences of rules:

to R1 : to R′
1 : to R′

2 :
Mi,2 → Mi,3 M0 → Mi,1|Piin

cXi → cYiT0|Piout

Mi,1 → Mi,2|Qin N0 → N1|Qout

Mi,3 → M4|P iin
N1 → #|Piout

M4 → M0|Win T0 → T1|P iout

cAi → c#|P iout

N1 → N0|P iout

T1 → λ|Wout

3. For the matrix mn−1 : (Z → λ) we add to the sets R1 and R′
2 the following sequences

of rules:

to R1 : to R′
2 :

M0 → M#|Din Z → λ|Dout

X → #|Dout ∀X ∈ N \ {Z}

4. Rule # → # is added to R2;

5. No other rules are added to the sets R1, R2, R′
1 and R′

2.

Proof. Let us now discuss how the system works by having initially an overview of the
simulation and coming back to the details later on. At the beginning, region 1 contains the
signaling-rules used to choose nondeterministically a certain matrix to have to be applied,
while the region 2 contains the evolution rules that simulate the application of the matrix
selected in region 1.

Informally, the whole computation is based on an exchange of signal-promoters between
the two regions which coordinates the process by activating certain rules, at certain steps.

The P system uses a bounded number (depending on the grammar G) of signal-
promoters.

In region 2 we will have rules that handle the correct application of the selected matrix,
but also rules which manage the case when the selected matrix (of type 2 or type 3) cannot
be simulated.

In this last case (if a “wrong” matrix has been selected) the symbol # is generated
(therefore the computation will never stop since the presence of the evolution rule # → #).

In the derivation of a matrix grammar, a matrix is non-deterministically chosen and
it is applied on the current sentential form. The process starts from the axiom S and
is iterated up to the moment when all the symbols in the sentential form are terminal
symbols or no matrix is applicable anymore despite the fact that in the sentential form
there still exist nonterminals. One can modify the grammar in an equivalent one such that
every possible derivation leads to a terminal sentential form, or, never halts.

A similar mechanism will be used in our simulation: a matrix will be randomly chosen
(by means of the non-determinism) in region 1 and, if it is possible, then it will be simulated
in region 2 and such process will be iterated; if the chosen matrix cannot be simulated,
then the P system will cycle forever. Finally, when the object Z is produced in region 2
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then we either stop the computation – in the case that the computation in G was terminal,
or we use forever the rule # → #. Since in the Z-binary normal of the grammar G there
exists only one rule of type (S → X0A0) ∈ M , we can start our simulation directly by
placing the objects X0 and A0 inside region 2.

In order to select a certain matrix, the object M0 is non-deterministically changed into:

1. Mi,1, 1 ≤ i ≤ j, by the rule M0 → Mi,1|Piin if a matrix not used in appearance
checking mode was chosen (matrices of type (Xi → Yi, Ai → xi));

2. Mi,1, j + 1 ≤ i ≤ j + k, by the rule M0 → Mi,1|Piin if a matrix used in appearance
checking mode was chosen (matrices of type (Xi → Yi, Ai → #));

3. M# by the rule M0 → M#|Din

In the first case the object M0 is rewritten into Mi,1, 1 ≤ i ≤ j, and the signal-promoter
Pi is sent into region 2.

The signal-promoter Pi corresponds to the matrix i of the grammar G, and when it is
present the process of applying the rules of such matrix is started.

At the beginning the system attempts to execute the first rule of the matrix Xi → Yi.
This will be done in our simulation by the rule cXi → cYi|Piout

in R′
2.

The catalyst is used to inhibit the parallelism of the system such that if the rule is
applied, then it is applied only once in one step. Let us consider that the rule is indeed
applied. Then, between regions 1 and 2 an exchange of signals takes place: signal-promoter
Q enters region 2 (Mi,1 → Mi,2|Qin), while signal-promoter Pi comes back to region 1
(cXi → cYi|Piout

). Since the signal-promoter Pi there is not anymore in region 2, the rule
cXi → cYi|Piout

cannot be executed. Now, the system is ready to try to simulate the next
rule of the matrix. In particular, the signal-promoter P i (which corresponds to the second
rule of the matrix i) enters into region 2, being sent by the rule Mi,2 → Mi,3|P iin

∈ R′
1. In

the meantime, the signal-promoter Q returns to its initial region 1. Such signal-promoter
was used only to promote the rule N0 → N1|Qout . The object N1 is used when we have
tried without success to simulate the matrix i. Then, since the signal-promoter Pi is still
in region 2, the rule N1 → #|Piout

is executed and then the trap symbol # is generated
and the computation will never stop.

With a similar mechanism, the simulation of the application of the second rule is done.
If the simulation of a matrix works good then the initial configuration is re-established

in region 1, while in region 2 we will have the symbol objects corresponding to the new
sentential form obtained. In this way we can iterate this process again choosing in a non-
deterministic way the next matrix to be applied. Therefore the system Π generates in the
output region exactly the Parikh set of L(G).

Below are the tables which represent the computations made by the P system con-
sidering both regions (here, only the significant computational steps of an iteration are
presented). Each cell of the table contains the current configuration (for a given step and
a certain region) and the rules that can be applied to the current multiset.
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Region1 Region2
step 1 Pi, P i, Q, Q,M0, R c,N0, Xi, Ai?

M0 → Mi,1|Piin

step 2 P i, Q, Q,Mi,1, R c, Pi, N0, Xi, Ai?
Mi,1 → Mi,2|Qin cXi → cYi|Piout

step 3 Pi, P i, Q,Mi,2, R c,Qi, N0, Yi, Ai

Mi,2 → Mi,3|P iin
N0 → N1|Qout

step 4 Pi, Q,Q,Mi,3, R c, P i, N1, Yi, Ai

Mi,3 → Mi,4|Qin
cAi → cxi|P iout

step 5 Pi, P i, Q, Mi,4, R c, Q,N1, Yi, xi

Mi,4 → M5 N1 → N2|Qout

step 6 Pi, P i, Q, Q,M5, R c,N2, Yi, xi

M5 → M6|Rin

step 7 Pi, P i, Q, Q,M6 c,N2, R, Yi, xi

M6 → M0 N2 → N0|Rout

Table 1. The simulation of matrices with rules not in
appearance checking mode; the matrix is correctly applied.

For a failed simulation of the matrix i, the following table shows how the trap symbol
# is generated. Once it is generated it cannot be removed. Therefore it does not matter
what will happen with the rest of objects since the computation will never halt.

Region1 Region2
step 1 Pi, P i, Q,Q,M0, R c,N0, Ai?

M0 → Mi,1|Piin

step 2 P i, Q,Q,Mi,1, R c, Pi, N0, Ai?
Mi,1 → Mi,2|Qin

step 3 P i, Q, Mi,2, R c, Pi, Qi, N0, Yi, Ai?
Mi,2 → Mi,3|P iin

N0 → N1|Qout

step 4 Q,Q,Mi,3, R c, Pi, P i, N1, Yi, Ai?
Mi,3 → Mi,4|Qin

N1 → #|Piout

cAi → cxi|P iout
?

Table 2. The simulation of matrices with rules not in appearance
checking mode; the first rule of the matrix cannot be applied.

The following table describes the computation that happens when the second rule of
matrix i cannot be simulated (since the corresponding object Ai is missing).
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Region1 Region2
step 1 Pi, P i, Q,Q,M0, R c,N0, Xi, Ai?

M0 → Mi,1|Piin

step 2 P i, Q,Q, Mi,1, R c, Pi, N0, Xi, Ai?
Mi,1 → Mi,2|Qin cXi → cYi|Piout

step 3 Pi, P i, Q, Mi,2, R c,Qi, N0, Yi, Ai

Mi,2 → Mi,3|P iin
N0 → N1|Qout

step 4 Pi, Q, Q,Mi,3, R c, P i, N1, Yi, Ai?
Mi,3 → Mi,4|Qin

step 5 Pi, Q, Mi,4, R c, P i, Q,N1, Yi, Ai?
Mi,4 → M5 N1 → N2|Qout

step 6 Pi, Q, Q,M5, R c, P i, Q,N2, Yi, Ai?
M5 → M6|Rin N2 → #|P iout

Table 3. The simulation of matrices with rules not in appearance
checking mode; the second rule of the matrix cannot be applied.

The appearance checking case is described by the following tables:

Region1 Region2
step 1 Pi, P i, Q,M0 c,N0, Xi, Ai?,W

M0 → Mi,1|Piin

step 2 P i, Q,Mi,1 c, Pi, N0, Xi, Ai?,W
Mi,1 → Mi,2|Qin cXi → cYiT0|Piout

step 3 Pi, P i, Mi,2 c,Qi, N0, Yi, T0, Ai?,W
Mi,2 → Mi,3 N0 → N1|Qout

step 4 Pi, P i, Q,Mi,3 c,N1, Yi, T0, Ai?, W
Mi,3 → M4|P iin

step 5 Pi, Q, M4 c, P i, N1, Yi, T0, Ai?,W
cAi → c#|P iout

?
T0 → T1|P iout

N1 → N0|P iout

step 6 Pi, P i, Q,M4 c,N0, Yi, T1,#?,W
T1 → λ|Wout

step 7 Pi, P i, Q,M4,W c,N0, Yi,#?
M4 → M0|Win

Table 4. The simulation of matrices with a rule in appearance
checking mode; the first rule of the matrix is applied; the second

one is applied if it can be applied, or, otherwise, it can be skipped.
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Region1 Region2
step 1 Pi, P i, Q, M0 c, N0, Ai?,W

M0 → Mi,1|Piin

step 2 P i, Q, Mi,1 c, Pi, N0, Ai?,W
Mi,1 → Mi,2|Qin

step 3 P i,Mi,2 c, Pi, Q, N0, Yi, T0, Ai?,W
Mi,2 → Mi,3 N0 → N1|Qout

step 4 P i, Q, Mi,3 c, Pi, N1, Yi, T0, Ai?,W
Mi,3 → M4|P iin

N1 → #|Piout

Table 5. The simulation of matrices with a rule in
appearance checking mode; the first rule cannot be applied.

At the beginning of each iteration, the object M0 can be also rewritten into M# (the
rule M0 → M#|Din is applied in region 1). In this case, the system non-deterministically
check if the end of computation was reached, i.e., the symbol Z was produced. If the
object Z is present in region 2, then it is deleted (the rule Z → λ|Dout is applied in region
2) and, if no nonterminal of G is still present, then the computation stops. Otherwise, the
trap symbol is produced and the computation will not stop.

2

5 Concluding Remarks and Open Problems

A new type of P systems has been introduced in this preliminary paper: Signals-Based P
systems.

The idea of the model is simple: in a Signals-Based P system the symbol-objects
cannot be moved across the membranes, but only a finite number of promoters can be
moved through the regions of the system. The evolution rules are activated/deactivated
by the presence/absence of these promoters, which are used like signals (from here the
name of signal-promoter). We have discussed the biological motivations of this model and
we have proved the universality when the systems use one catalyst and a bounded number
of signal-promoters.

On the other hand, several open problems have been left open. Here are some of them.
What we get when the system uses non cooperative rules? We suspect that the power of
such systems is not more than the Parikh set of ET0L languages.

Moreover, in the universality proof we have used a bounded number of signal-
promoters. What happens if we use a unique signal-promoter? Maybe one signal-promoter
is enough to reach universality if we move also symbol-objects. What is the minimal num-
ber of different signal-promoters that we need to get universality?

Moreover in the universality proof we have also used a global clock. Is it possible to
get universality only using signal-promoters? In other words is it possible to compute just
using signals and to skip the help of the global clock? (That would constitute a first step
in the construction of an asynchronous model of P systems.)

Of course, it would be also possible to consider Signals-Based P systems using signal-
inhibitors instead of signal-promoters. Which results are possible get in this case?

Also, is it possible to compute just observing the traces of the signals (following the
approach proposed in [5])?
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A more general suggestion is to consider the idea of computing using signals in a more
general framework: for example, what does this mean in the formal language area? or in
the area of distributed computing (already linked with P systems area, [4]).
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