
Covering Rules in P Systems:

Some Preliminary Ideas 1

José M. SEMPERE

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n 46020 Valencia, Spain
E-mail: jsempere@dsic.upv.es

Abstract. In this paper we propose a new kind of rules inside the regions of a
P system. We have called them covering rules due to the fact that, if selected,
they can manage all the objects of the region in an exhaustive manner (i.e., they
cover all the objects of the region). First, we propose the formal definition of
the rules and different ways of using them. This will introduce a second degree
of nondeterminism in the complete behavior of a given P system. We will
introduce an effective way to reduce the nondeterminism by defining indexed
covering rules. Finally, we will initiate a study of several language families
characterized in terms of the covering rules language families.

1 Introduction

Membrane Computing [3] is a rapidly increasing research area motivated by some aspects
of the biology of the cell and how these aspects can be adapted to formalize universal com-
putational models that show high parallelism, distributed and cooperative computation
and formal language (or r.e. number sets) acceptance or generation.

Several variants of P systems (as the main membrane computing model) have been pro-
posed along the time. For instance, the importance of the catalysts on the evolution rules,
the symport/antyport behavior of the membranes and the use of promoters/inhibitors
have been studied, among other aspects, in order to produce different universal models of
computation. We refer to [4, 2] for some of those variants.

A P system consists of a hierarchical finite set of regions where there are an undefined
number of objects that react according to a previously defined set of rules. The reactions
take part in every region in a parallel nondeterministic manner and the result of the
reactions can be communicated to other regions by allowing the pass of objects from one
region to a closest one through the membranes. In a previous work [7], we introduced
some aspects about the influence of the external environment over the behavior of a P
system. We proposed some differences between persistent and nonpersistent environments
depending on the way in which the external information was introduced in the outer region

1Work partially supported by the Ministerio de Ciencia y Tecnoloǵıa under project TIC2003-09319-
C03-02

449



(through the skin membrane). In the same work, we introduced a new kind of rules that
could manage an undefined number of objects coming from the external environment every
time unit. We named those rules covering rules.

In this work we initiate a study of the use of covering rules and how they can be
managed to simulate different aspects of P systems proposed by other authors. We will
make use of covering rules to take into account only the presence of objects without taking
into account the number of objects. Also, they will be useful to simulate the equilibrium
between regions or dealing with the descriptional complexity of the system.

The structure of this work is as follows. First, we will give the basic definitions and
notation to be used in the sequel. We will formally define the notion of covering rule and
we will propose some simulation tasks for different aspects of P systems. Then, we will in-
troduce a language setting framework by defining the sets of languages generated/accepted
by different types of P systems depending on the use of different kind of covering rules.
Finally, we will introduce some aspects to be studied in the near future about descriptional
complexity, characterization of nonrecursive languages, etc.

2 Basic Definition and Notation

Here, we will introduce some basic concepts from formal language theory according to
[1, 6], and from membrane computing according to [3].

An alphabet Σ is a finite nonempty set of elements named symbols. A string defined
over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all the strings
defined over Σ will be denoted by Σ∗. The empty string will be denoted by λ and Σ+ will
denote Σ∗−{λ}. A language L defined over Σ is a set of strings from Σ. L can be empty,
finite or infinite. The number of strings that belong to a language L is its cardinality.

Now, we will introduce some basic concepts about P systems. A general P system of
degree m, according to [3], is a construct

Π = (V, T, C, µ,w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects),

• T ⊆ V (the output alphabet),

• C ⊆ V , C ∩ T = ∅ (the catalysts),

• µ is a membrane structure consisting of m membranes,

• wi, 1 ≤ i ≤ m is a string representing a multiset over V associated with the region
i,

• Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with the ith region
and ρi is a partial order relation over Ri specifying a priority.

An evolution rule is a pair (u, v) (or u → v) where u is a string over V and v = v′

or v = v′δ, where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

450



and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set {here, out, ink : 1 ≤ k ≤ m} by tar.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in the
case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π) and it is
defined as the set of strings that can be defined by collecting the objects that leave the
system by arranging them in the leaving order (if several objects leave the system at the
same time, then permutations are allowed). The set of numbers that represent the objects
in the output membrane i0 will be denote by N(Π). Obviously, both sets L(Π) and N(Π)
are defined only for halting computations. We suggest to the reader Păun’s book [3] to
learn more about P systems.

3 Covering Rules

Now, we will introduce a variant of P systems by defining a new kind of evolution rules
that we will name covering rules. Observe that in general P systems, as described in the
previous section, different rules can manage identical objects (e.g., a → bc and a → de will
transform a objects into objects b, c, d, and e). Here, the application of a covering rule
can manage the objects in an exclusive manner. The term covering refers to the situation
in which the rule covers an undefined number of objects.

In addition, we can see that general P systems are systems with covering rules in which
the languages used in the right and left parts of the evolution rules are composed only by
languages with cardinality equal to 1.

We provide the formal definition of covering rules, as follows.

Definition 3.1 Let Π be a P system. We will say that r is a covering rule if r : Lu → Lv

or r : Lu → Lvδ, where Lu ⊆ V ∗ and Lv ⊆ (V × tar)∗ and δ implies membrane dissolving.

Now, we will show how covering rules manage the objects of the region.

Example 3.1 Let ab∗ → (chere)∗ be a covering rule and abab be the set of objects of its
region. Then, after applying the rule, we will obtain the set of objects accc.

In the previous example we have managed the objects in a conservative manner. That
is, the number of objects after applying the rule does not decrease. The non conservative
choice implies that the result of the rule application could be a, ac, acc, or accc, given
that the object a or the objects b could be substituted by λ (which belongs to c∗), so they
disappear.

Example 3.2 Let the following covering rules be in the same region: r1 : ab+ → (chere)∗

and r2 : ab+ → (dhere)∗. Let us suppose that the objects in the region before applying the
rules are aabbb. If we manage the rules in the exclusive mode, then the result will be acccc
or adddd (both in conservative mode). That is, the selected rule r1 or r2 covers all the
objects b.

If we apply the rules in non exclusive manner, then the combinatorics increase the
number of results: we can obtain cccdd or ccddd or acccc or adddd depending on the
number of objects b that every rule covers.

451



We can combine different ways of application of every rule (exclusive vs. non exclusive
together with conservative vs. non-conservative). Furthermore, in the case that the rules
are applied in non-conservative manner we can arrive to an extremely non-conservative
mode. So, in example 3.1 the rule can be applied in a non-conservative manner by elimi-
nating some objects, as explained before, or it can increase the number of objects so, an
undefined number of objects are presented at a given computation step.

All the mentioned ways of application of the covering rules imply that a second degree
of nondeterminism appears in P systems. Obviously, general P systems are nondetermin-
istic in the first sight. That is, whenever two or more rules can be applied at a given
computation step, then the election of the rules to work is made in a non-deterministic
manner, so all the combinatorics must be taken into account in order to study the different
computation sequences. Here, the covering rules introduce a second degree of nondeter-
minism given that, first a rule is nondeterministically selected and then, if it is a covering
rule, the result of its application is again non-deterministically produced. Let us illustrate
this situation in the following example.

Example 3.3 Consider the rules r1 : ab → cd (non-covering rule) and r2 : ab+ →
e+f+g+. Let us suppose that the present objects in the region are aabbb. Then, if rule
r1 is selected twice, the result is ccddb, if rule r2 is selected and it works in the exclusive
conservative manner, then the result can be aeefg or aeffg or aefgg. If rule r2 works
in non-exclusive manner the rule r1 could be applied together with the covering rule. In
the case that rule r2 is applied in extremely non-conservative exclusive manner, then an
infinite number of results can be obtained.

We can summarize all the application modes by means of the following definition.

Definition 3.2 Let Π be a P system, and r : α → β a covering rule of the system. We
will say that P works in

(a) conservative mode if the application of r will never decrease the number of selected
objects in the system.

(b) non-conservative mode if the application of r can decrease the number of selected
objects in the system.

(c) exclusive mode: if rule r is selected and applied, then it covers all the objects
according to expression α and no object that belong to α remains free.

(d) extremely non-conservative mode if the result of applying the rule r is any
string that belongs to β and the number of selected objects can be increased.

Limiting the nondeterminism: Indexed covering rules

As mentioned before, the introduction of covering rules in P systems increases the non-
determinism of the system. Now, we will introduce a variant of covering rules that
attempts to reduce this non-determinism. For example, let us take the rule ab+c+ →
(chere)+(dhere)+(ehere)+. There is no explicit correspondence between symbols of left-
hand side and right-hand side. So, the objects abbcc could be transformed in cddee or
cccde or cdeee, etc. (always in the case that the conservative mode be applied). That is,
there is no “a priori” knowledge to make correspondences between every pair of symbols

452



from left and right sides. In order to control this situation we will introduce indexes to
make this correspondence explicit.

Definition 3.3 Let Π be a P system. We will say that r is an indexed covering rule if
r : Lu → Lv or r : Lu → Lvδ, where Lu ⊆ (V × N)∗ and Lv ⊆ (V × tar × N)∗, δ implies
membrane dissolving and domN(Lu) = domN(Lv) 2.

Example 3.4 Let a1b
+
2 c+

3 → (chere)+1 (dhere)+2 (ehere)+3 be an indexed covering rule. The
meaning of the rule is that every object a is substituted by at least one object c, every object
b is substituted by at least one object d and every object c is substituted by at least one
object e.

Obviously, different objects can collapse to a single one: the rule a1b
+
1 → (chere)1

means that one single object a together with an undefined positive number of objects b are
replaced by the object c. Observe that the previous rule always works in non conservative
mode.

4 Some Applications of Covering Rules

Once we have introduced covering rules and some variants, we will show some applications
of these rules to several aspects of P systems design and related topics.

4.1 Decreasing the Description Complexity

First, we assume that the number of rules of a given P system is a parameter of its
descriptional complexity. So, several rules can be compressed into one single covering
rule. In this sense we are compressing the information needed to describe the system, so
we reduce its descriptional complexity. Here is an example.

Example 4.1 Let the rules r1 and r2 be defined as a → bherechere and a →
dhereehere. The rules r1 and r2 can be described as the indexed covering rule a∗1a

∗
2 →

(bherechere)∗1(dhereehere)∗2. Observe that in a conservative mode the effect of the covering
rule is identical to the application of r1 together with r2.

4.2 Controlling the Predominance of Objects

Other aspect that come from biology is the fact that in several reactions that happen in
the cell, what is important is not the exact quantities of objects involved in the reaction,
but some relationship between them. So, the equilibrium between substances is important
to the functioning of the cell. For example, a given reaction can happen only if the total
amount of a substance, let say a, is greater than the total amount of substance b. Not
the exact quantities matter, but the broken equilibrium. We can easily formalize such a
situation by using covering rules.

Example 4.2 Let the covering rule r be defined as {anbm : n ≥ m} → {an
hereb

m
here : n <

m}. This rule changes the relationship between the objects a and b. That is, whenever the
number of objects a is greater than or equal to the number of objects b, the equilibrium is
changed by adding more objects b than objects a.

2Given L ⊆ (V ×N)∗ or L ⊆ (V × tar×N)∗ we will denote by domN(L) the set of positive integers that
appear in the description of L.

453



4.3 Putting Thermodynamic Equilibrium to Work

In the last Brainstorming Week on Membrane Computing (Sevilla, 2-7 february 2004)
G. Ciobanu proposed an initial work on thermodynamics equilibrium between adjacent
regions of a membrane system. The passage of objects from one region to a neighboring
one through protein channels depends not only on the presence of several objects in the
region but on the number of objects in the neighboring regions in order to preserve some
thermodynamic-like equilibrium between regions. Here, we propose a modification of
covering rules that take into account the objects of adjacent regions to maintain the
equilibrium of the system. So, we go beyond the kind of equilibrium described in the
previous section.

Definition 4.1 Let Π be a P system of degree m. We say that rule r from region k is an
inter-region covering rule if r : Lu → Lv or r : Lu → Lvδ, where Lu ⊆ (V × {1, · · · ,m})∗
and Lv ⊆ (V × tar)∗, and δ denotes the membrane dissolving.

Example 4.3 Let the inter-region covering rule r be (aj)+(bk)+ → (bhere)+. Now, let
us suppose that r belongs to the region k that has a neighboring region j. Then, if more
than one object a is presented in region j and more than one object b is presented in
region k then an undefined number of objects b are produced in region k depending on the
conservative or extremely conservative functioning choice. On the other hand, the objects
in region j are not modified by this rule (i.e., object transformations are only permitted
for the rules of every region in which the objects are presented).

Obviously, inter-region covering rules also admit the indexed version in which every
object is replaced by a predefined one by using the adequate indexes.

4.4 Towards a Speed-up Result

Inspired by the classic result from complexity theory, which establishes that a constant
speed-up time factor can always be applied to recognize any formal language (provided
some initial conditions), we can propose a similar idea for P systems.

Given a P system Π, the computing sequence of the system, after n steps, is denoted
by C0 ⇒ C1 ⇒ · · · ⇒ Cn, where Ci is the description of the system at instant i. The
description of the system at any given moment is defined by the membrane structure and
the set of objects and rules at every region. We can collect the set of objects in every
region for every instant, so we have a language Lr

n that denotes the set of objects in region
r presented during n steps. In the same sense, we can denote by Lr

f the set of objects
of the region r in the nth step. So, the covering rule Lr

n → Lr
f summarizes in one step

all the history of the region r during n steps. In this sense, we are speeding-up the time
consumed by the system by a constant factor in a way similar to the classical result for
Turing machines [1].

5 Introducing Formal Language Characterizations

Finally, we would like to introduce another topic related to covering rules. In the examples
that we have presented in the previous sections we have used different languages Lu and
Lv. Most of them are just regular languages described by regular expressions. We have
not restricted in any sense the use of other language classes for defining Lu and Lv.

454



A natural question that arises from covering rules is the relationship between the
language classes used to define the rules and the acceptance or generation power of P
systems. We will take Chomsky’s hierarchy [1] as our framework to introduce this topic.
So, we will denote by SING, FIN , CF , CS, REC and RE the classes of singleton3,
finite, context-free, context sensitive, recursive and recursively enumerable languages. The
relationship between those classes is the following

SING ⊂ FIN ⊂ REG ⊂ CF ⊂ CS ⊂ REC ⊂ RE.

We denote by Ncr(class) the family of sets of numbers computed by P systems with
covering rules defined by languages that belong to the language family class. In the same
sense Lcr(class) will refer to the family of languages instead of the family of sets of number.

A first result that is obvious from the definitions is that Ncr(SING) defines the same
family as general P systems without covering rules, given that the rules of general P
systems can be defined as covering rules with singleton languages.

We can introduce the working modes defined in section 3 to refer to classes of lan-
guages or of sets of numbers. We denote by Ncr(class, mode) (or Lcr(class, mode))
the family of sets of numbers (or of languages) computed by P systems with covering
rules that belongs to class working in the specified mode. We denote by ce, cne, nce,
ncne ence encne the working modes conservative and exclusive, conservative and non-
exclusive, non-conservative and exclusive, non-conservative and non-exclusive, extremely
non-conservative and exclusive, and extremely non-conservative and non-exclusive, respec-
tively. For example, Ncr(SING, ce) can be viewed as the family of sets of numbers where
all the rules have priorities (that is, whenever a rule is selected then it covers as much
objects as possible in a way similar to working in the exclusive mode).

Last, we wonder about Ncr(RE, ∗). In this case, we can use covering rules such as
L → 1out where L is a recursively enumerable language. Observe that a region containing
such kind of rules can act as an oracle in classical recursion theory [5]. This opens a new
problem which has been maintained hidden up to this moment: the membership problem
associated to the rules. Whenever we have a covering rule in any region, the problem
of whether or not the rule can be applied over the objects of the region is established in
terms of the membership problem. This problem did not appear in general P systems
due to the fact that membership problem for singleton languages has a constant (or at
most linear) complexity. Nevertheless, if we avoid this aspect to measure the complexity
and decidability of the system we can characterize nonrecursively enumerable languages in
Ncr(RE, ∗). In the opposite case, we should include the membership complexity in order
to define the precise complexity of the system.

6 Conclusions and Future Research

In this work we have defined a new kind of rules associated to P systems. There are a lot
of new topics related to covering rules which will be studied in the next future: the rela-
tionship between working modes, the application of covering rules to simulate other topics
of P systems such as the use of inhibitors/promoters and catalysts, the thermodynamic
equilibria between regions, etc. The language characterization of the rules will probably
define a hierarchy of P systems which will go beyond nonrecursively enumerable languages.
In addition, language characterization will include the membership problem associated to

3Singleton languages have the cardinality equal to one.

455



the rules in order to measure the time complexity of the system. These aspects will be
explored in future works.

References

[1] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison Wesley Publishing Co., 1979.

[2] C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg, A. Salomaa (Eds.). Membrane
Computing. International Workshop WMC-2003. LNCS, Vol. 2933. Springer, 2004.

[3] G. Păun. Membrane Computing. An Introduction. Springer, 2002.

[4] G. Păun, G. Rozenberg, A. Salomaa, and C. Zandron (Eds.). Membrane Computing.
International Workshop WMC-CdeA 2002. LNCS, Vol. 2597. Springer, 2003.

[5] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
1987.

[6] G. Rozenberg, A. Salomaa (Eds.). Handbook of Formal Languages Vol. 1. Springer,
1997.

[7] J.M. Sempere. P systems with external input and learning strategies. Proceedings of the
Workshop on Membrane Computing WMC03. LNCS Vol. 2933, pp 341–356. Springer,
2004.

456


