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Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract. P systems are parallel molecular computing models based on pro-
cessing multisets of objects in cell-like membrane structures. In this paper we
give a membrane algorithm to multidimensional 0–1 knapsack problem in lin-
ear time by recognizer P systems with input and with active membranes using
2-division. This algorithm can also be modified to solve general 0–1 integer
programming problem.

1 Introduction

The P systems are a class of distributed parallel computing devices of a biochemical type,
introduced in [4], which can be seen as a general computing architecture where various
types of objects can be processed by various operations. It comes from the observation
that certain processes which take place in the complex structure of living organisms can
be considered as computations. Since Gh. Păun introduced it, computer scientists and
biologists, et al. have contributed enriching the field with their different points of view.
For a motivation and detailed description of various P system models, please refer to [4, 6].

Membrane division – inspired from cell division well-known in biology – is the most
investigated way for obtaining an exponential working space in a linear time, and solving
on this basis hard problems, typically NP-complete problems, in polynomial (often, linear)
time. Details can be found in [5, 6, 11]. Recently, PSPACE-complete problems were also
attacked in this way (see [13, 1]).

In [8] Pérez-Jiménez et al. solve satisfiability problem in linear time with respect
to the number of variables and clauses of propositional formula by recognizer P systems
with input and with active membranes using 2-division. Thus the multidimensional 0–1
knapsack problem belonging to the class of NP-complete problems can also be solved in a
polynomial time by P systems with input and with active membranes using 2-division. One
can get this kind of solution by the reduction of multidimensional 0–1 knapsack problem to
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satisfiability problem in order to apply those P systems which solve satisfiability problem
in a linear time. But the process of reduction is usually cumbersome and time consuming
(polynomial time). On the other hand, it still remains open that how one can reduce
an NP problem to another NP-complete problem by P systems. So, in this paper, we
directly give a membrane algorithm to solve multidimensional 0–1 knapsack problem in
linear time by recognizer P systems with input and with active membranes using 2-division.
Here, we focus in the design of a family of P systems that solves multidimensional 0–1
knapsack problem, not in the formal verification of the membrane algorithm. As discussed
in section 4, this algorithm is not difficult to be modified to solve the general 0–1 integer
programming problem.

The paper is organized as follows: in section 2 the notion of recognizer P system is
introduced, which is the model of computation to solve multidimensional 0–1 knapsack
problem, and the polynomial complexity class in computing with membranes is recalled;
section 3 gives a membrane algorithm to solve multidimensional 0–1 knapsack problem in
linear time by recognizer P systems with active membranes using 2-division; in section 4
some discussion is presented.

2 P Systems

We start by introducing P systems with active membranes due to [5], where more details
can also be found.

Figure 1: A membrane structure and its associated tree
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A membrane structure is represented by a Venn diagram and is identified by a string of
correctly matching parentheses, with a unique external pair of parentheses; this external
pair of parentheses corresponds to the external membrane, called the skin. A membrane
without any other membrane inside is said to be elementary. For instance, the structure
in Figure 1 contains 8 membranes; membranes 3, 5, 6 and 8 are elementary. The string of
parentheses identifying this structure is

µ = [1[2[5 ]5[6 ]6]2[3 ]3[4[7[8 ]8]7]4]1.

All membranes are labeled; here we have used the numbers from 1 to 8. We say that the
number of membranes is the degree of the membrane structure, while the height of the
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tree associated in the usual way with the structure is its depth. In the example above we
have a membrane structure of degree 8 and of depth 4.

In what follows, the membranes can be marked with + or −, and this is interpreted
as an “electrical charge”, or with 0, and this means “neutral charge”. We will write
[ i ]+i , [ i ]−i , [ i ]0i in the three cases, respectively.

The membranes delimit regions, precisely identified by the membranes (the region of a
membrane is delimited by the membrane and all membranes placed immediately inside it,
if any such a membrane exists). In these regions we place objects, which are represented
by symbols of an alphabet. Several copies of the same object can be present in a region,
so we work with multisets of objects. A multiset over an alphabet V is represented by a
string over V : the number of occurrences of a symbol a ∈ V in a string x ∈ V ∗ (V ∗ is
the set of all strings over V ; the empty string is denoted by λ) is denoted by |x|a and it
represents the multiplicity of the object a in the multiset represented by x.

A P system with active membranes and 2-division is a construct

Π = (O, H, µ, w1, . . . , wm, R),

where:

(i) m ≥ 1 (the initial degree of the system);

(ii) O is the alphabet of objects;

(iii) H is a finite set of labels for membranes;

(iv) µ is a membrane structure, consisting of m membranes, labelled (not necessarily in
a one-to-one manner) with elements of H;

(v) w1, . . . , wm are strings over O, describing the multisets of objects placed in the m
regions of µ;

(vi) R is a finite set of developmental rules, of the following forms:

(a) [ha → v]αh ,
for h ∈ H, α ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[h ]α1

h → [hb]α2

h ,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is introduced in the membrane, possibly modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(c) [ha ]α1

h → [h ]α2

h b,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly modified
during this process; also the polarization of the membrane can be modified, but
not its label);
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(d) [ha ]αh → b,
for h ∈ H, α ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [ha ]α1

h → [hb ]α2

h [hc ]α3

h ,
for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label, possibly of different
polarizations; the object specified in the rule is replaced in the two new mem-
branes by possibly new objects);

(f) [h0
[h1

]α1

h1
. . . [hk

]α1

hk
[hk+1

]α2

hk+1
. . . [hn

]α2

hn
]α0

h0

→ [h0
[h1

]α3

h1
. . . [hk

]α3

hk
]α5

h0
[h0

[hk+1
]α4

hk+1
. . . [hn

]α4

hn
]α6

h0
,

for k ≥ 1, n > k, hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with
{α1, α2} = {+,−}; if the membrane with the label h0 contains other mem-
branes than those with the labels h1, . . . , hn specified above, then they must
have neutral charges in order to make this rule applicable; these membranes are
duplicated and then are part of the contents of both new copies of the mem-
brane h0

(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and −;
the membranes of opposite polarizations are separated in the two new mem-
branes, but their polarization can change; always, all membranes of opposite
polarizations are separated by applying this rule).

For a detailed description of using these rules we refer to [5, 6]. Here we only mention
that the rules are used in the non-deterministic maximally parallel manner customary
in membrane computing in the bottom-up manner: in any given step, one uses first the
evolution rules of type (a), then the other rules which also involve a membrane; moreover,
one uses first the rules of types (b), (c), (d), (e), and then those of type (f). It is important
to note that at one step a membrane h can be subject of only one rule of types (b)-(f). In
this way, we get transition from a configuration of the system to the next configuration.
A sequence of transitions is a computation. A computation is halting if no other rules can
be applied in its last configuration.

To understand what it means that a problem can be solved in polynomial time by P
systems, it is necessary to recall some complexity measure for P systems as described in
[9].

Consider a decision problem A and denote by A(n) an instance of A of size n. Given
a class X of membrane systems and a total function f : N → N (for example, linear and
polynomial functions), we say that problem A belongs to MCX(f) if a family of membrane
systems ΠA = (ΠA(1), ΠA(2), . . .) of type X exists such that:

1. ΠA is a uniform family: there is a Turing machine which constructs ΠA(n) in poly-
nomial time starting from n.

2. Each ΠA(n) is confluent: there is a distinguished object yes such that either in every
computation of ΠA(n) the object yes is send out from the system, or this happens
in no computation.

345



3. ΠA(n) is sound: that is, ΠA(n) sends out the object yes if and only if the answer to
ΠA(n) is “yes”.

4. ΠA is f-efficient: that is, ΠA always halts in at most f(n) steps.

The polynomial complexity classes associated with a family of membrane systems, X,
are defined as follows:

PMCX =
⋃

f polynomial
MCX(f).

In [6], the definition of these complexity classes is based on a semi-uniform construction
of P systems solving a problem A: one starts not from n, but from an instance A(n). For
a clearer description of the difference between uniform P systems and semi-uniform P
systems, please refer to [7].

In what follows, we use recognizer P systems. First of all, following [7, 9] we consider
P systems with input. Such a device is a tuple (Π,Σ, i0), where:

– Π is a P system, with the alphabet of objects Γ and initial multisets w1, · · · , wm

(associated with membranes labelled by 1, · · · ,m, respectively).

– Σ is an (input) alphabet strictly contained in Γ and such that w1, · · · , wm are mul-
tisets over Γ− Σ.

– i0 is the label of a distinguished membrane (of input).

If w is a multiset over Σ, then the initial configuration of (Π, Σ, i0) with input w is
(µ,w′1, · · · , w′m), where w′i = wi for i 6= i0, and w′i0 = wi0 ∪ w.

The computations of a P system with input are defined in a natural way. Note that
the initial configuration is obtained by adding the input multiset w over Σ to the initial
configuration of the system Π.

Now, a recognizer P system is a P system with input, (Π,Σ, i0), such that:

1. The alphabet of objects contains two distinguished elements yes, no.

2. All computations of the system halt.

3. If C is a computation of Π, then either the object yes or the object no (but not both)
have to be sent out to the environment, and only in the last step of the computation.

We say that C is an accepting (respectively, rejecting) computation if the object yes
(respectively, no appears in the environment in the halting configuration of C.

3 Solving Multidimensional 0–1 Knapsack Problem
by Recognizer P Systems with Active Membranes

3.1 Problem Formulation

The 0–1 Multidimensional Knapsack Problem (MKP) is a well known NP-complete com-
binatorial problem [2]. The decision MKP can be formulated as follows: given an integer

k, an objective function f(x1, · · · , xn) =
n∑

j=1
cjxj , and constraints

n∑
j=1

wijxj ≤ bi, for

i = 1, · · · ,m, xj ∈ {0, 1}, for j = 1, · · · , n, where cj , wi,j and bi are nonnegative integers,
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decide whether or not there exists an assignment of variables xj such that it satisfies the
constraints and the objective function is greater than or equal to k.

MKP is an important combinatorial optimization problem both from a theoretic and
practical point of view, which can formulate many practical problems such as capital
budgeting where project j has profit cj and consume (wij) units of resource i. The goal
is to determine a subset of the n projects such that the total profit is maximized and all
resource constrains are satisfied. Other important applications include cargo loading [12]
cutting stock problems, and processor allocation in distributed systems [3].

The special case of MKP with m = 1 is the classical knapsack problem (KP). It is well
known that the KP is not strongly NP-hard because there are polynomial approximation
algorithms to solve it. This is not the case for the general MKP. In the framework of
cellular computing, a membrane algorithm to solve KP is developed [10]. In the next
subsection, we will give membrane algorithm for the general MKP.

3.2 Membrane Algorithm for Multidimensional 0–1 Knapsack Problem

We present a solution of MKP via a brute force algorithm, in the framework of recognizer
P systems with active membranes using 2-division.

Given an instance u of MKP as shown in the above subsection, for convenience, we call
n∑

j=1
wijxj ≤ bi (1 ≤ i ≤ m) the ith constraint inequality, and

n∑
j=1

cjxj ≥ k the (m + 1)th

inequality.
Let us consider a polynomial bijection, 〈 〉, between N∗l (l ≥ 2) and N∗, defined

as follows: 〈y1, y2〉 = (y1 + y2)(y1 + y2 + 1)/2 + y1, 〈y1, y2, y3〉 = 〈〈y1, y2〉, y3〉, and
〈y1, · · · , yl−1, yl〉 = 〈〈y1, · · · , yl−1〉, yl〉, where N∗ denotes the set of nonnegative integers.

We define the size function h(u) = 〈n, k, b1, · · · , bm〉, and the input function g(u) =
xw11

1,1 xw21
2,1 · · ·xwm1

m,1 xc1
m+1,1 · · ·xw1n

1,n xw2n
2,n · · ·xwmn

m,n xcn
m+1,n, where the first subscript i of xi,j de-

notes the ith inequality, the second subscript j of xi,j corresponds to the variable xj .
For each 〈n, k, b1, · · · , bm〉, we consider the recognizer P system (Π(〈n, k, b1, · · · ,

bm〉), Σ(〈n, k, b1, · · · , bm〉), i0), where Σ(〈n, k, b1, · · · , bm〉) = {xi,j | 1 ≤ i ≤ m +
1, 1 ≤ j ≤ n}, i(〈n, k, b1, · · · , bm〉) = 2 and Π(〈n, k, b1, · · · , bm〉) = (Γ(n, k, b1, · · · ,
bm), {1, 2}, [1[2 ]2]1, w1, w2, R), Γ(n, k, b1, · · · , bm) is defined as follows:

Γ(m,n) = Σ(〈n, k, b1, · · · , bm〉) ∪ {di | 1 ≤ i ≤ 3n + 2
m∑

i=1

bi + 3m + 2k + 1}

∪ {ri,j , si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2n} ∪ {ai,j , ti,j | 1 ≤ i ≤ m, 0 ≤ j ≤ 2n}
∪ {qi,j | 0 ≤ i ≤ 2max{b1, · · · , bm}+ 1, 1 ≤ j ≤ m}
∪ {qi,m+1 | 0 ≤ i ≤ 2k + 1} ∪ {d+, d−, e0, λ, yes, no}.

The initial content of each membrane is: w1 = ∅ and w2 = d1a
b1
1,0a

b2
2,0 · · · abm

m,0t
k
m+1,0. The

set of rules, R, is given by (we also give explanation about the use of these rules during
the computations):

1. [2di]
0
2 → [2di]

+
2 [2di]

−
2 , 1 ≤ i ≤ n.

By using a rule of (1), a membrane with label 2 is divided into two membranes
with the same label, but with different polarizations. These rules allow us to have
exponential workspace in linear time.
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2. [2xi,1 → ri,1]
+
2 , 1 ≤ i ≤ m.

[2xm+1,1 → sm+1,1]
+
2 .

[2xi,1 → λ]−2 , 1 ≤ i ≤ m + 1.
The rules of (2) try to implement a process allowing membranes with label 2 to
encode the assignment of the variable x1, in such a way that if the variable x1

takes value 1, then the objects xi,1 (1 ≤ i ≤ m) evolve to objects ri,1, and the
objects xm+1,1 evolve to objects sm+1,1, in the corresponding membranes with label
2 and positive charge; otherwise, the objects xi,1 will disappear in the corresponding
membranes with label 2 and negative charge.

3. [2xi,j → xi,j−1]
+
2 , 1 ≤ i ≤ m + 1, 2 ≤ j ≤ n.

[2xi,j → xi,j−1]
−
2 , 1 ≤ i ≤ m + 1, 2 ≤ j ≤ n.

The evolving process described previously is always made with respect to the variable
x1. Hence, the rules of (3) take charge of making a cyclic path through all the
variables to get that, initially, the first variable is x1, then x2, and so on.

4. [2di]
+
2 → [2 ]02di, 1 ≤ i ≤ n.

[2di]
−
2 → [2 ]02di, 1 ≤ i ≤ n.

di[2 ]02 → [2di+1]
0
2, 1 ≤ i ≤ n− 1.

The rules of (4) are used as controllers of the generating process of the assignments
of all variables and the encoding of the coefficients: the objects di are sent to the
membrane with label 1 at the same time the assignments are made, and they come
back to the membranes with label 2 to start the division of these membranes.

5. [2ri,j → ri,j+1]
0
2, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n− 1.

[2sm+1,j → sm+1,j+1]
0
2, 1 ≤ j ≤ 2n− 1.

[2ai,j → ai,j+1]
0
2, 1 ≤ i ≤ m, 0 ≤ j ≤ 2n− 1.

[2tm+1,j → tm+1,j+1]
0
2, 0 ≤ j ≤ 2n− 1.

The use of objects r1,2n, a1,2n, sm+1,2n, tm+1,2n in the rules (8), (11) and (14) makes
necessary to perform a rotation of these objects. This is the mission of the rules of
(5).

6. [1di → di+1]
0
1, n ≤ i ≤ 3n− 3.

[1d3n−2 → d3n−1e0]
0
1.

Through the counter-objects di, the rules of (6) control the rotation of the objects
ri,j , sm+1,j , ai,j and tm+1,j in the membranes with label 2, so that their second
subscripts are unified to 2n.

7. e0[2]
0
2 → [2q0,1]

−
2 .

[1d3n−1 → d3n]01.
The application of the rules of (7) will show that the system is ready to check whether
the constraint inequalities are satisfied by the assignment of variables encoded by an
internal membrane.

8. [2r1,2n]−2 → [2 ]02λ.
[2a1,2n]02 → [2 ]−2 λ.
These rules implement the comparison (that is, they check whether the constraint
inequality holds or not). They work as a loop that erases objects r1,2n and a1,2n

one by one alternatively, changing the charge of the membrane in each step. We
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will see that if the checking had an affirmative result, then the membrane would get
positively charged, and the checking of the next inequality will be activated.

9. [2q2j,i → q2j+1,i]
−
2 , for j = 0, · · · ,max{b1, · · · , bm}, 1 ≤ i ≤ m.

[2q2j+1,i → q2j+2,i]
0
2, for j = 0, · · · , max{b1, · · · , bm} − 1, 1 ≤ i ≤ m.

A counter that controls the previous loop is described here. The subscript of qj,i

and the electric charge of the membrane give enough information to point out if the
number of objects ri,2n is not greater than (less than or equal to) the number of
objects ai,2n.

10. [2q2j+1,i]
−
2 → [2 ]+2 q0,i+1, for j = 0, · · · , max{b1, · · · , bm}, 1 ≤ i ≤ m.

If an assignment verifies the ith constraint inequality, then inside the corresponding
membrane that encodes it there will not be more objects ri,2n than ai,2n. This forces
the loop described in (9) to stop: the moment will come when there are no objects
ri,2n left, and then the rule [2q2j,i → q2j+1,i]

−
2 will be applied but it will not be

possible to apply the rule [2r1,2n]−2 → [2 ]02# at the same time. Thus, an object

q2w(i)+1 will be present in the membrane with negative charge, where w(i) =
n∑

j=1
wij ,

so the rule (10) will be applied.

11. [2ri,2n → ri−1,2n]+2 , for 2 ≤ i ≤ m.
[2ai,2n → ai−1,2n]+2 , for 2 ≤ i ≤ m.
[2si,2n → si−1,2n]+2 , for 2 ≤ i ≤ m + 1.
[2ti,2n → ti−1,2n]+2 , for 2 ≤ i ≤ m + 1.
The comparison process described in the rules of (8) is always made with respect to
the first constraint inequality. Hence the rules of (11) take charge of making a cyclic
path through all the constraint inequality. (for the objective function inequality, we
have different comparison process, as shown later in rules of (14), (15) and (16).)

12. q0,i+1[2 ]+2 → [2q0,i+1]
−
2 , for 1 ≤ i ≤ m− 1.

The membranes with positive charge mean that the assignments encoded by them
have verify the first i constraint inequality. The objects q0,i+1 enter the membranes
with the label 2 and positive charge, changing the charge to negative to allow the
checking for next inequality to begin (using rules of types (8), (9), (10)).

13. q0,m+1[2 ]+2 → [2q0,m+1]
+
2 .

If there is at least one assignment which verify all the constraint inequalities, then
objects q0,m+1 appear in the skin membrane. In the next step, by the rule of (13),
these objects enter the membranes with label 2 and positive charge. At the same
time, the objects s1,2n and t1,2n appear in the membranes encoding assignments
which verify all the constraint inequalities (using rules of (11)). Now the system is
ready for checking the objective function inequality.

14. [2s1,2n]+2 → [2 ]02λ.
[2t1,2n]02 → [2 ]+2 λ.
The checking loop is designed for objective function as rules of (8) for constraint
inequalities, but the electric charges involved are now neutral and positive.

15. [2q2j,m+1 → q2j+1,m+1]
+
2 , for j = 0, · · · , k.

[2q2j+1,m+1 → q2j+2,m+1]
0
2, for j = 0, · · · , k − 1.

The counter qj,m+1 controls the previous loop described in the rules of (14).
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16. [2q2k+1,m+1]
+
2 → [2 ]02yes.

[2q2k+1,m+1]
0
2 → [2 ]02yes.

If an assignment verifies the objective function inequality, then in the membrane
encoding this assignment there are not less objects s1,2n than objects t1,2n. This
causes the rules from (15) to apply k times each, and after that the first subscript of
qj,2n will be j = 2k. Then the rule [2q2j,m+1 → q2j+1,m+1]

+
2 will be applied (possibly

together with [2s1,2n]+2 → [2 ]02λ) and one of the rules from (16) will produce the
object yes reporting that this assignment verifies the objective function inequality.

17. [1di → di+1]
0
1, for i = 3n, · · · , 3n + 2

m∑
i=1

bi + 3m + 2k + 1.

[1dl → d+d−]01, where l = 3n + 2
m∑

i=1
bi + 3m + 2k + 1.

Before the answer is sent out to the environment, all of the membrane should have
either ended their checking stage successfully (checking the constraint inequalities
and objective function inequality) or got to a blocking state otherwise. The counter
dj gives enough time to deal with the worst case. The condition for worst case
(i.e. the case that the checking stage will last longer) is that the assignment with
all variables taking value 1 is a solution (i.e. it verifies the constraint inequalities
and the objective function inequality). The number of computational steps will be

maximum if
n∑

j=1
wij = bi, for i = 1, · · · , n.

18. [1d+]01 → [1 ]+1 d+.
[1d− → no]+1 .
[1yes]

+
1 → [1 ]01yes.

[1no]
+
1 → [1 ]01no.

The output process is activated. The skin membrane needs to be positively charged
before the answer is send out to the environment. Object d+ takes charge of this,
and, then, if the answer is affirmative, an object yes will be sent out changing the
charge of the skin to neutral. Otherwise, an object no will be sent out changing the
charge of the skin to neutral.

From the previous explanation of the use of rules, one can easily see how this P system
works. It is easy to prove that the designed P system is deterministic, confluent, and
sound.

The family is polynomially uniform by Turing machines. It can be observed that the
above description of the evolution rules is computable in an uniform way, in particular
from the constants n, m, k, and bi, i = 1, · · · ,m.

Now, we prove that the family Π = (Π(t))t∈N solves the MKP in linear time.
The computational process of the designed P system with input g(u) can be structured

in four stages: a stage of generation of all assignments of variables; a stage of synchro-
nization; a stage of checking whether there is an assignment which satisfies the constraint
inequalities and the objective function inequality; and a stage of output.

The generation is controlled by the objects di, with 1 ≤ i ≤ n.

– The presence in the skin of one object di, with 1 ≤ i ≤ n, will show that all possible
partial assignments associated with {x1, · · · , xi} have been generated.
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– In this stage, we simultaneously encode in every internal membrane the coefficient
from the constraint inequalities and the objective function inequality (through the
objects ri,j and λ)

– The object d1 appears in the skin after 2 steps of the computation. From the
appearance of di in the skin to the appearance of di+1, with 1 ≤ i ≤ n − 1, 3 steps
have been executed.

– This stage ends when the object dn appears in the skin.

Hence, the total number of steps in the generation stage is 3n− 1.
The synchronization stage has the goal of unifying the second subscripts of the objects

ri,j , to make them equal to 2n.

– This stage starts with the evolution of the object dn in the skin.

– In every step of this stage the object di, with n ≤ i ≤ 3n− 1, in the skin evolves to
di+1.

– In every step of this stage, the second subscripts of objects ri,j will increase.

– This stage ends as soon as the object d3n appears in the skin, that is the moment
when each membrane with label 2 has negative charge and contains one object q0,1

(by using the first rule of (7)).

Therefore, the synchronization stage needs a total of 2n steps.
The checking stage has the goal to determine whether there is an assignment which

satisfy the constraint inequalities and the objective function inequality. This stage is

controlled by the objects di, where 3n ≤ i ≤ 2
m∑

j=1
bj + 3m + 2k + 1.

– The presence of an object q0,j with 1 ≤ j ≤ m + 1 in a membrane with label 2
shows that the first j − 1 inequalities are satisfied by the assignment represented by
such membrane. The presence of object yes in the skin membrane shows that all
inequalities are satisfied by an assignment.

– From every q0,j with 1 ≤ i ≤ m, the object q0,j+1 is obtained in some membranes
after at most 2bj + 3 steps. From every q0,m+1, the object yes is obtained in skin
membrane after at most 2k + 2 steps.

– The checking stage ends as soon as the objects d+, d− appear in the skin. The
checking of inequalities finishes before or at this moment.

Therefore, the total number of steps of this stage is 2
m∑

j=1
bj + 3m + 2k + 2.

The output stage starts immediately after the appearance of the objects d+, d− in the
skin.

– If there is an assignment which satisfies the constraint inequalities and objective
function inequality, then after 2 steps the system sends yes to the environment.

– If there is no assignment which satisfies the constraint inequalities and objective
function inequality, then after 3 steps the system sends no to the environment.
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Therefore, the total number of steps in the output stage is at most 3.
Let us see that the family Π is linearly bounded. For that, it is enough to note that the

time of the stages of the execution of Π(h(G)) with input g(u) is: (a) generation stage,

3n−1 steps; (b) synchronization stage, 2n steps; (c) checking stage, 2
m∑

j=1
bj +3m+2k +2

steps; and (d) output stage, at most 3 steps. Hence, the total execution time of Π(h(G))

with input g(u) is 5n + 2
m∑

j=1
bj + 3m + 2k + 4 ∈ O(n,m, k, b1, · · · , bm).

From all the above we have the following result.

Theorem 3.1 The MKP can be solved in linear time by uniform recognizer P systems
with active membranes using 2-division.

4 Conclusions

We have shown that MKP can be solved in linear time by uniform recognizer P systems
with active membranes using 2-division, in this sense: all instance of the problem that
have the same size are processed by the same P system (on which an appropriate input,
that depends on the concrete instance, is supplied). In our algorithm, the definition of
the size function contains d1, d2, · · · , dm. It is a natural question to define a size function
without d1, d2, · · · , dm (i.e., the size function does not depend on d1, d2, · · · , dm, in this
sense the P systems will be “more uniform”.) Under this definition of size function, it is
open how to design P systems to solve MKP.

The general 0–1 integer programming problem has the same form with the MKP shown
in subsection 3.1, the only difference is that the constraint inequalities of general 0–1
integer programming problem involve both positive and negative integer coefficients. The
MKP can be considered as a general 0–1 integer programming problem with nonnegative
coefficients. It is not difficult to modify our algorithm (design similar comparison process)
to solve the general 0–1 integer programming problem, because we can write this problem

in the following form: given an integer k, an objective function f(x1, · · · , xn) =
n∑

j=1
cjxj ,

and constraints
n∑

j=1
wijxj ≤

n∑
j=1

uijxj , for i = 1, · · · ,m, xj ∈ {0, 1}, for j = 1, · · · , n, where

cj , wi,j and ui,j are nonnegative integers, decide whether or not there exists an assignment
of variables xj such that it satisfies the constraints and the objective function is greater
than or equal to k.

Let us denote by AM the class of recognizer P systems with active membranes using 2-
division. Then from Theorem 3.1, we have MKP ∈ PMCAM. Because the class PMCAM
is stable under polynomial time reduction, we have NP ⊆ PMCAM. It remains open
whether or not the inclusion is strict or not.
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[6] Gh. Păun, Membrane Computing: An Introduction, Springer, Berlin, 2002.
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