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Abstract. The evolution of a P system generates a tree of computation po-
tentially infinite where it is very difficult to set the degree of closeness between
two configurations. The problem is specially hard if we want to quantify that
proximity in order to make useful comparisons. In this paper we propose some
weak metrics on configurations of a P system with a fixed structure of mem-
branes and briefly discuss their advantages and drawbacks.

1 Introduction

In [2], a new model of computation within the framework of Natural Computing was
introduced, called P Systems1. It starts from the assumption that the processes taking
place in the compartmental structure of a living cell can be interpreted as computations.

Roughly speaking, a P system consists of a cell-like membrane structure, in the com-
partments of which one places multisets of objects which evolve according to given rules
in a synchronous, parallel, and non-deterministic manner.

The membrane structure of a P system is a hierarchical arrangement of membranes
embedded in a skin membrane, the one which separates the system from its environment.
A membrane without any membrane inside is called elementary. Each membrane defines
a region (the closed space delimited by a membrane and by the membranes immediately
inside it).

The membrane structure of a P system is used to enclose computing cells in order to
make them independent computing units. Also, a membrane serves as a communication
channel between a given cell and other cells adjacent to it. The objects can pass through
membranes and the membranes can be dissolved, divided, or created.

A configuration is the instantaneous description of the current membrane structure and
the multisets of objects associated with the membranes. In each time unit a transformation
of a configuration of the system takes place by applying the rules of each region in a non-
deterministic and maximally parallel manner. In this way, one gets transitions between
the configurations of the system and a sequence of transitions is called a computation.

In certain circumstances, we need to know how different two configurations of a P
system are. They can be different in many senses and the problem turns extremely hard

1A layman-oriented introduction can be found in [3] and further bibliography at [5].
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when the configurations do not correspond to the same P system. If we have three con-
figurations C1, C2 and C3, is C1 more different from C2 than from C3? Is it possible to
quantify this degree of similarity and give it an algebraic treatment? In this paper we
study the differences among configurations and we propose a way to quantify the degree
of difference.

We offer some solutions to the problem of finding appropriate metrics for P systems.
We focus our attention only on finding metrics on the configurations of a P system with a
fixed membrane structure. This involves a fixed alphabet and a fixed set of rules. In this
case, two configurations may only differ in the multisets associated with the membranes.
This difference can be measured between configurations not necessarily in the same branch
of a computation or in the same step.

We propose two models of defining metrics. The first one is based on the distance
between regions. This gives us a very natural way of defining the distance according to
the difference between multisets, but it does not consider the set of rules of the P system.
The second model is based on the dependency graph associated with the rules of a P
system and is based on the shortest paths in this directed graph.

The paper is organized as follows. Section 2 recalls some ideas about metrics and weak
metrics in a general setup. In Section 3 two metrics on configurations of P systems based
on the different multisets of regions are presented. In Section 4 a new concept in P system
theory is defined: the dependency graph of a P system. This dependency graph is used
in Section 5 to define a weak metric on configurations. The paper finish with an example
(Section 6) and some final remarks.

2 Metrics

Sometimes it is necessary to reduce the relation between two objects to a number in order
to make comparisons and also perform algebraic operations with them. This number is
used to be called a distance and it allows us to differentiate between pairs of objects in a
simple way. So, for instance, we say that two towns A and B are closer than the towns C
and D if the length of the shortest path from A to B (i.e., the distance which separates
them) is less than the length of the shortest path from C to D.

Analogously, that distance can measure the time elapsed between two events, the
amount of necessary combustible to cover a route, or the number of pieces which are left
to complete a puzzle.

In this way, if the distance from A to B is less than the distance from A to C, we think
that the relation between A and B is narrower than the relation between A and C.

Given a set X, if we associate to every pair of elements (x, y) ∈ X ×X its distance,
we get a mapping d : X ×X → R. But, obviously, not every mapping d : X ×X → R is
a distance. What properties does a mapping d : X ×X → R have to satisfy in order to
be a distance? It is clear that the criterion has to be weak enough to be common to the
different distances of geometric intuition and strong enough to settle a solid theory which
allows us to deal with the concept of distance in abstract situations.

It was M. Fréchet in his Ph.D. dissertation [1] who stated that it was sufficient that
the mapping satisfied

• (∀x, y ∈ X) d(x, y) = 0 ⇔ x = y,

• (∀x, y ∈ X) d(x, y) = d(y, x) (the condition of symmetry),

140



◦
◦

◦
◦

◦
◦

de dm dr

©©©©

Figure 1: Several metrics

• (∀x, y, z ∈ X) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality),

to develop a theory of metric spaces and, since then, they have been considered the basic
pillars of the theory.

As examples of distances based on the geometric intuition, we can cite three well-known
distances in R2. Let A = (x1, y1) and B = (x2, y2) be two points of the plane.

• Euclidean distance (de): Given two points A and B in R2, the distance de measures
the length of the segment which joins A and B, i.e., of the shortest path from A to
B, assuming that there are no obstacles in the plane

d(A, B) =
√

(x1 − x2)2 + (y1 − y2)2.

• Manhattan distance (dm): In this case, we also measure the shortest path from A
to B, but in contrast to the Euclidean distance, in the Manhattan distance we sup-
pose that the moves can only be horizontal or vertical ones, simulating the movement
of a vehicle through streets with a grid form.

dm(A, B) = |x1 − x2|+ |y1 − y2|.

• Distance of the rainforest (dr): An example, perhaps less known, of distance in
R2 is this distance of the rainforest which also measures the length of the shortest
path between two points. It receives this name because it stands in R2 for the
situation of a tribe in a rainforest with a river in y = 0. The people of the tribe,
to reach the water, have done breaches perpendicular to the river. Due to the thick
rainforest, if someone wants to go from A to B, the only path is by the breaches or
on the bank.

dr(A,B) =
{ |y1 − y2| if x1 = x2,
|y1|+ |y2|+ |x1 − x2| if x1 6= x2.

At this point, it makes sense to wonder why it is necessary to define several distances
on the same set. The answer is clear. Every distance is adapted to an earlier structure
in the set. If we are only interested in endowing the set with a mapping which satisfies
the Fréchet’s conditions and we do not consider any other previous relation among the
members of the set, we can always consider the discrete distance

dd(A,B) =
{

0 if A = B
1 if A 6= B

141



which satisfies the Fréchet’s conditions to be a distance, but it would hardly have a prac-
tical usefulness.

A different situation is settled when the pre–existing relation between the objects is
not symmetric. The number of kilometers which separate a town A on the coast from a
another at the top of a mountain is independent of the direction of the journey. But if
our idea of distance is the number of calories spent by a cyclist from a town to the other,
then the condition of symmetry is lost in our definition of distance. A more extreme case
is the passage of time. When January 1st 2005 arrives, we will have to wait for 365 days
to January 1st 2006, but when January 1st 2005 arrives, it will not make sense to wait for
the arrival of the year 2004.

Another real life situation in which Fréchet’s conditions must be weakened occurs when
we go shopping. A good pointer to estimate the difference between two items can be the
price, but this is not exactly a distance: We can find two distinct items with the same
price.

3 Metrics on Regions

In this section we propose two metrics on configurations based on the different multiset
of the regions in each configuration. For that, we consider a P system with alphabet L
and a fixed membrane structure, i.e., dissolution or duplication of membranes are not
allowed. Since the membrane structure does not change along different configurations, we
also consider that we can identify the same membranes in different configurations2. The
metrics are based on the difference between the multisets.

Firstly, we define the distance between two regions as the cardinality of the symmetrical
difference of their associated multisets. We will use this definition to measure the distance
between two occurrences of the same membrane in two different configurations.

Definition 3.1 Let us consider a region R and L the alphabet of the P system. The
multiset associated with the region R, MR, can be characterized as the mapping MR :
L → N. The distance dR between the regions R1 and R2 is defined as

dR(R1, R2) =
∑

x∈L
|MR1(x)−MR2(x)|,

where |.| is the function absolute value.

Theorem 3.1 dR is a (weak) metric between regions.

3.1 Plain Metric

With the help of the distance dR between regions, the definition of the distance between
configurations is pretty natural. As set of regions, the difference between configurations
is the sum of the differences between their regions.

Let Π be a P system in which the structure of membranes does not change during the
computation. In this P system, two configurations C1 and C2 only differ on the multisets
associated to the regions, and therefore, if Ri

j is the region delimited by the membrane

2This can be done by considering labels, positions or some type of enumeration.
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mj in the configuration Ci (with j ∈ {1, . . . , k} and i ∈ {1, 2}), then we can consider the
additive distance based on the distance between regions

d+(C1, C2) =
∑

1≤j≤k

dR(R1
j , R

2
j ).

Theorem 3.2 d+ is a (weak) metric between configurations.

3.2 Biased Metric

The (weak) metric defined above does not consider the tree structure of the set of mem-
branes. We assume that every membrane has the same importance to measure the close-
ness between two configurations, so every element has the same weight regardless in which
membrane it occurs.

Nevertheless, sometimes we can have another point of view. Sometimes, we design
P systems where the inner membranes work as parallel devices, sending out to the skin
the output of each computation. From this point of view, the objects in the skin, i.e.,
the result of the parallel computation, are more important than the objects in each inner
membrane, since these objects only have a local function.

The (weak) metric defined below follows this idea. Firstly we define a recursive distance
dB among regions: If {mj1, . . . , mjsj} are the children of the membrane mj , then we define

dB(R1
j , R

2
j ) = dR(R1

j , R
2
j ) + Cj ·

sj∑

i=1

dR(R1
ji, R

2
ji),

where Cj is a constant of bias associated with the membrane mj . As a particular case of
this definition, we have the situation in which mj is a leave, i.e., mj has no children; then

dB(R1
j , R

2
j ) = d+(R1

j , R
2
j ).

Finally, to define a mapping in order to quantify the closeness between configurations,
we only have to consider the distance between their skins3. If ms is the skin membrane,
then

dB(C1, C2) = dB(R1
s, R

2
s).

Note that if all the constants of bias are equal to 1, then dr(C1, C2) = d+(C1, C2).

Theorem 3.3 dB is a (weak) metric between configurations.

4 Dependency Graphs

In this section we explore a new variant of metrics between configurations based on the
dependence among elements of the alphabet with respect to the set of rules of the P system.
To this aim, we consider the rules of a P system with a new representation and we define
the concept of confluence of computations in a more general way than the standard one.

The rules of a non-cooperative P system, without dissolution nor division fit into the
following schema

(e0, µ1) → (e1, µ2), (e2, µ2), . . . , (en, µ2)
3For the sake of simplicity, we keep the same notation dB also for configurations.
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which can be interpreted as follows: The occurrence of the element e0 in the membrane µ1

triggers the rule and provokes the apparition of the multiset e1e2 . . . en into the membrane
µ2. Obviously, if µ1 = µ2, then we have an evolution rule, if n = 1 and µ1 is a father of
µ2, then we have a send-in communication rule, and if µ1 is a child of µ2, then we have a
send-out communication rule. The pair (e0, µ1) is the left side of the rule and the multiset
of pairs (e1, µ2), (e2, µ2), . . . , (en, µ2) is the right side of the rule.

Next, we define the graph of dependence of a P system based on this new representation
of the rules.

Definition 4.1 The dependency graph of a P system Π is a pair GΠ = 〈VΠ, EΠ〉 such
that VΠ is the set of all the pairs (e, µ) where e is an element of the language and µ is a
membrane and EΠ is the set of all the ordered pairs of elements of VΠ, 〈(e1, µ1), (e2, µ2)〉
such that (e1, µ1) is the left side of a rule and (e2, µ2) belongs to the right side of a rule.

We illustrate this definition with an example. Let us consider the next toy P system Π,
with alphabet Γ = {a, b, c, d, z}, membrane structure [s[e]e]s and set of rules:

Rule 1: [ea]e → a[e]e
Rule 2: [sa]s → a[s]s
Rule 3: [ea]e → [ebz]e
Rule 4: [eb]e → c[e]e
Rule 5: [sc]s → [sdz]s
Rule 6: [sd]s → a[s]s

In order to define the dependency graph, we have to consider the set of membranes {e, s},
and since the elements can be sent out of the system (rules 2 and 6), we will consider a
new region outside as a place where the elements can stand, so the set of regions becomes
{e, s, outside}. Finally, with the new representation, the rules can be written as follows:

Rule 1: (a, e) → (a, s)
Rule 2: (a, s) → (a, outside)
Rule 3: (a, e) → (b, e), (z, e)
Rule 4: (b, e) → (c, s)
Rule 5: (c, s) → (d, s), (z, s)
Rule 6: (d, s) → (a, outside)

Therefore, the dependency graph of Π, GΠ = 〈VΠ, EΠ〉 is defined by the following sets:

VΠ =





(a, e) (b, e) (c, e) (d, e) (z, e)
(a, s) (b, s) (c, s) (d, s) (z, s)
(a, outside) (b, outside) (c, outside) (d, outside) (z, outside)





The set of vertices VΠ has 15 elements, but 7 of them are isolated vertices: only 8 vertices
occur in some edge (see Figure 2).

EΠ =





〈(a, e), (b, e)〉, 〈(a, e), (z, e)〉, 〈(a, e), (a, s)〉,
〈(a, s), (a, outside)〉,
〈(b, e), (c, s)〉,
〈(c, s), (d, s)〉, 〈(c, s), (z, s)〉,
〈(d, s), (a, outside)〉
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Figure 2: The dependency graph

Note that the dependency graph only depends on the membrane structure and the set
of rules of the P system and not on the elements of the membranes at the initial moment.

The example will help us to introduce a new definition of confluence, more general
than the usual one. We know the structure of membranes and the set of rules of our
toy P system. At the beginning we will consider the skin empty and the inner membrane
containing only copies of the element a. The intended computation sends out of the system,
in several steps, as many copies of a as introduced at the beginning in the membrane e.
Figure 3 shows the computation tree of the P system when two copies of a are introduced
in the membrane e. The system is non-deterministic. In the first step the rules 1 and 3
can be triggered. This produces three different branches. The three branches end and the
final configuration is different in all the cases, but always in the end of the computation
the P system sends out as many copies of a as introduced in the inner membrane. As a
computational device, we can think that the P system works, as every branch returns the
correct number of a. This leads us to define a more general definition of confluence than
the classical one4: the confluence with respect to a property.

Definition 4.2 A P system is called confluent with respect to a property if all the
branches of the computation tree end, and all the final configurations satisfy the prop-
erty.

With this definition, we can say that the P system in the example (with a2 in the membrane
e at the beginning) is confluent with respect to the property: The number of objects a in
the environment in the final configuration is two.

Note that the three branches in the example end with a correct configuration, but the
number of steps is not the same in all them. This suggests us a way to compute how far
from each other two configurations are.

Before giving the definition of the weak metric on configurations, we need some previous
definitions.

Definition 4.3 Given a P system, an L-configuration of the P system is a multiset of
pairs (s,m) where s is an element of the alphabet and m is a membrane of the P system.
We will say that an L-configuration is total when for all symbol s of the alphabet and
for all membrane m, the multiplicity of s in m is the same as the multiplicity of the pair

4See, for example, [4].
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Figure 3: The computation tree

(s,m) in the configuration. Any proper submultiset of a total L-configuration is a partial
L-configuration.

The distance between two nodes of the dependency graph is defined in the natural
way:

Definition 4.4 Given a directed graph (as a dependency graph), a path from two vertices
a and b is a finite sequence v0, v1, . . . , vn of vertices such that v0 = a, vn = b and for all
i ∈ {0, . . . , n − 1}, (vi, vi+1) is an edge of the graph. The sequence of vertices with an
unique vertex is also considered a path. The length of a path is the number of vertices of
the sequence minus one.

Given a vertex v, we define the set of initial vertices of v, Iv as the set of all the vertex
a of the graph such that there exists a path from a to v. Given a set of vertices S, we
define the set of initial vertices of S, IS as the set of all the vertex a of the graph such that
there exists a vertex v in S and a path from a to v.

Definition 4.5 Given a P system Π and its dependency graph GΠ, the distance between
two nodes v1 and v2 of GΠ is the length of the shortest path that connect v1 and v2 and
infinite if there is no path from v1 to v2.
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5 Weak Metrics Based on the Dependency Graph

5.1 First Approach

In non-deterministic P systems, given a configurations there (potentially) exist several
configurations which can be reached. If the P system is confluentin the classical sense,
from the point of view of correctness, it is not important the branch we follow, because
the final result is the same, but from a computational point of view, the cost measured as
the number of steps in the computation can be different, so it can be interesting to define
some kind of measure of how far a configuration is from the final configuration.

Next, let us consider a total L-configuration C, which represents an intermediate step
of the computation, and a partial L-configuration F , which represents the property of a
possible final L-configuration. How can we measure the closeness between them? One way
is by using the minimum number of steps of computation between them in the natural
way.

Firstly, we consider an element b ∈ F . The element b has to be reachable from the
elements in C, and we are interested in the shortest path, so we consider

min
a∈C∩Ib

d(a, b),

where C ∩ IF is the intersection of the L-configuration C with the set of initial vertices of
F , in other words, is the multiset of all the elements a of C such that such that there exists
a path from a to b. If this set is empty, the minimum is infinite. Finally, to compute the
distance, we have to consider the longest of these shortest paths.

Definition 5.1 Given two L-configurations C and F , the quasi-metric from C to F is
defined as

d(C,F) = max
b∈F

{ min
a∈C∩Ib

d(a, b) }.

Theorem 5.1 d is a (weak) metric between L-configurations.

The metric dh induced by this quasi-metric,

dh(C1, C2) = max{d(C1, C2), d(C2, C1)},

is the Hausdorff metric on the L-configurations.

6 Example

In our example, in the first step of the computation three new configurations are possible
(see Figure 3). They can be represented as the following multisets

C1 = {(a, s), (a, s)},
C2 = {(b, e), (z, e), (a, s)},
C3 = {(b, e), (b, e), (z, e), (z, e)},

and the partial L-configuration which characterizes all the final configurations is

F = {(a, outside), (a, outside)};
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following the definitions, we get

I(a,outside) = {(a, e), (a, s), (b, e), (c, s), (d, s), (a, outside)}

and d(C1,F) = 1, d(C3,F) = 3 and d(C2,F) = ...

6.1 Second Approach

Unfortunately, d(C2,F) = min{1, 3} = 1, and this is not the intuitive idea that we want
to formalize. The problem arises from the fact that we are dealing with multisets, not
with sets, so we must adapt the definitions. We begin with a new definition of dependency
graph.

Definition 6.1 The dependency graph of a P system Π is a labeled graph GΠ = 〈VΠ, EΠ〉
such that VΠ is the set of all the pairs (e, µ) where e is an element of the language and µ is
a membrane and EΠ is the set of all the labeled pairs of elements of VΠ, (e1, µ1)

ni→ (ei, µ2)
such that (e1, µ1) is the left side of a rule and (ei, µ2)ni belongs to the right side of a rule.

For example, the set of rules

Rule 1: [ea]e → a[e]e
Rule 2: [sa]s → a[s]s
Rule 3: [ea]e → [ebz2]e
Rule 4: [eb]e → c[e]e
Rule 5: [sc]s → [sdz2]s
Rule 6: [sd]s → a[s]s

produces a graph whose edges are

EΠ =





(a, e) 1→ (b, e), (a, e) 2→ (z, e), (a, e) 1→ (a, s),
(a, s) 1→ (a, outside),
(b, e) 1→ (c, s),
(c, s) 1→ (d, s), (c, s) 2→ (z, s),
(d, s) 1→ (a, outside)





Figure 4 shows the labeled graph.
The problem now is to define the mapping d(C,F) among L-configurations. Given an

element b ∈ F with multiplicity m, we have to find n elements in C, {e1, . . . , en} (n ≤ m),
with multiplicities {m1, . . . ,mn}, respectively, such that for every i ∈ {1, . . . , n} there
exists a path from ei to b and

∑

1≤i≤n

ri · ci ≥ m,

where ci is the coeficient obtained by multiplying the labels of the shortest path from ei

to b; in other words, the ri occurrences of the element ei in C provoke the apparition of
ri · ci occurrences of b in F .
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Figure 4: The labeled dependence graph

The set M = {e1, . . . , er} verifying these properties is probably not unique, and for
each b ∈ F we have to consider the set

Kb =





{e1
1 . . . e1

l1
}

{e2
1 . . . e2

l2
}

. . . . . .
{esb

1 . . . esb
lsb
}





of all the sets Mi = {ei
1, . . . , e

i
li
} with i ∈ {1, . . . , sb} verifying the properties.

With the help of this set Kb we can define a mapping which quantifies the closeness
among L-configurations C and F by considering the multiplicities of the elements.

Definition 6.2 With the previous notations, the (weak) metric between the L-configura-
tions C and F is defined as

D(C,F) = max
b∈F

min
1≤i≤sb

max
1≤j≤li

d(ei
j , b).

With the L-configurations of the example

C1 = {(a, s), (a, s)},
C2 = {(b, e), (z, e), (a, s)},
C3 = {(b, e), (b, e), (z, e), (z, e), }

and
F = {(a, outside), (a, outside)},

we have the following.

• To compute D(C1,F), we only have to consider K(a,outside) = {M1} with M1 =
{(a, s)}, i.e., s(a,outside) = 1 and l1 = 1, therefore

D(C1,F) = d((a, s), (a, outside)) = 1.

• To compute D(C3,F), the case is analogous to the previous one, we only have to
consider K(a,outside) = {M1} with, in this case, M1 = {(b, e)}, i.e., s(a,outside) = 1
and l1 = 1, therefore

D(C1,F) = d((b, e), (a, outside)) = 3.
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• The most interesting case is D(C3,F), where K(a,outside) = {M1} with M1 =
{(b, e), (a, s)} and

D(C2,F) = max{d((a, s), (a, outside)), d((b, e), (a, outside)) = 3.

7 Final Remarks

P systems are computational devices typically non–deterministic. Usually, the evolution of
a P system generates a tree of computation which is potentially infinite. Even in the case
of finite trees, the amount of information is too big to be handled efficiently with present-
day computers. If we are dealing with a confluent recognizer P system, i.e., a P system
where every computation halts and all the computations output the same answer (yes or
no), then it is not important, from the correctness point of view, which computation is
actually chosen. In every choice point one branch can be chosen randomly and at the end
of the evolution we will know if the P system accepts or rejects the input.

But from a computational point of view, the situation is quite different. Even if the
answer is the same, the computational cost can be pretty different from a branch to an-
other. In order to obtain efficiently an answer, (evolution) rules need to be complemented
by another component, usually called strategy or search plan, which is responsible for the
control of the rules.

In this framework, it would be very useful to have a tool to help us in the decision
of choosing a short branch in the computation tree. In order to reach this target, we
have presented several approaches to quantify the closeness between configurations via
mappings such that they verify totally or partially Fréchet’s conditions.

The ideal situation would be to have a mapping h∗ such that it associates to every
node a number which indicates the length of the shortest path from this node to a leaf, and
of course, with a tractable computational cost when it is used as input of the algorithm
A∗.

In a more realistic situation, we look for a mapping h (heuristic function) being an
estimation of h∗, and such that it associates to every node e of the tree a number h(e)
verifying h(e) ≤ h∗(e) with a low computational cost. Then h(e) must be a lower bound
of the number of transition steps needed to reach a halting configuration from e. Such
a mapping h will guide the search, using the algorithm A∗. The additional cost of this
algorithm depends on the kindness of the estimation of the heuristic function h.

We hope to return to these topics in a forthcoming paper.
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