
Size and Power of Extended
Gemmating P Pystems

Daniela BESOZZI1, Erzsébet CSUHAJ-VARJÚ2,
Giancarlo MAURI3, Claudio ZANDRON3

1Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39, 20135 Milano, Italy
E-mail: besozzi@dico.unimi.it

2Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende u. 13-17, H-1111 Budapest, Hungary
E-mail: csuhaj@sztaki.hu

3Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Via Bicocca degli Arcimboldi 8, 20136 Milano, Italy
E-mail: {mauri,zandron}@disco.unimib.it

Abstract. In [2] P systems with gemmation of mobile membranes were ex-
amined. It was shown that (extended) systems with eight membranes are as
powerful as the Turing machines. Moreover, it was also proved that extended
gemmating P systems with only pre-dynamical rules are still computationally
complete: in this case nine membranes are needed to obtain this computational
power. In this paper we improve the above results concerning the size bound
of extended gemmating P systems, namely we prove that these systems with
at most five membranes (with meta-priority relations and without (in/out)
communication rules) form a class of universal computing devices, while in
the case of extended systems with only pre-dynamical rules six membranes are
enough to determine any recursively enumerable language.

1 Introduction

P systems with gemmation of mobile membranes were introduced in [3], defining a new
kind of communication between membranes which is inspired by certain biological pro-
cesses in living cells. The biological background of the new model can be briefly sum-
marized as follows: the cellular membranes are selectively permeable to small substances
as, for example, water and gases, but not to bigger substances as proteins. These bigger
substances are communicated among the cells by means of vesicles, encased on their cy-
tosolic face by a specific protein which causes their budding from the membrane. When
the vesicle fuses with its target membrane, then the carried proteins are introduced inside
it, where they can undergo different chemical reactions. The reader can easily observe

92

that this process can be modelled by so-called mobile membranes, that is, we can consider
some objects in the original membrane to be transported by means of small membranes
to a target membrane and then being fused with it.

To simulate these features, [3] introduced P systems with gemmation of mobile mem-
branes. These are variants of P systems with simple membrane structures, where the skin
membrane contains only elementary membranes with string objects which correspond to
proteins or any other structured bigger substances. These strings evolve according to op-
erations with biochemical motivations, namely mutation, replication and splitting. The
mutation in this case corresponds to the application of a context-free rule. Any membrane
is provided with a set of classical evolution rules and a set of so-called pre-dynamical rules,
which are rules defining the gemmation of the mobile membranes. There is a meta-priority
relation defined between the set of classical evolution rules and the set of pre-dynamical
rules which is needed to simulate the completion of the maturation path of an object. A
pre-dynamical rule is a particular variant of an evolution rule which also indicates the
membrane where the string must be communicated. After a pre-dynamical rule is used,
the modified string object(s) is (are) transported into the target membrane, and from then
it (they) will evolve according to the rules of this membrane. This procedure corresponds
to the gemmation and the fusion of the mobile membrane. In particular, the output of the
system is due to the fusion of a mobile membrane with the skin membrane: this process
causes the release of the objects outside the system and simulates the biological process
of exocytosis.

In [3, 2] P systems with gemmation of mobile membranes were examined. It was
shown that these systems are as powerful as the Turing machines, in the case of extended
systems even with eight membranes [2]. Moreover, it has also been proved that extended
gemmating P systems with only pre-dynamical rules are still computationally complete: in
this case nine membranes are needed to obtain this computational power [2]. For detailed
information on P systems with gemmation of mobile membranes consult also [1].

In this paper we improve the above results concerning the size bound of extended
gemmating P systems, namely we prove that these systems consisting of five membranes
(with meta-priority relations and without (in/out)-rules) form a class of computationally
complete devices, and for extended systems with only pre-dynamical rules six membranes
are enough to reach the power of the Turing machines.

2 Basic Definitions

We assume that the reader is familiar with formal language theory; for details and more
information we refer to [5]. Throughout the paper we use standard notions and notations:
we denote by V ∗ the set of all words over an alphabet V , including the empty word, λ. The
class of recursively enumerable languages is denoted by RE; this is the class of languages
accepted by the Turing machines or generated by the class of phrase-structure or 0-type
grammars.

In this paper we shall use the notion of a Geffert normal form for the phrase-structure
grammars (see [5]). According to this result, for any recursively enumerable language over
an alphabet T there exists a generating phrase-structure grammar G = (N, T, P, S), where
N = {S,A, B, C}, is the set of nonterminals, T is the set of terminals, S is the start symbol
of G, and the rules in P are of the forms S → uSv, S → x, with u, v, x ∈ (T ∪{A,B, C}∗),
and ABC → λ.

93

In the following we recall the definition of extended P systems with gemmation of
mobile membranes from [2]. For detailed information about P systems or membrane
systems consult [4].

A membrane structure µ is a construction consisting of several membranes hierarchi-
cally embedded in a unique membrane, called the skin membrane. A membrane structure
can also be identified with a string of correctly matching square parentheses, placed in a
unique pair of matching parentheses. Each pair of matching parentheses corresponds to a
membrane.

By [2], gemmating P systems use only membrane structures of depth 2, that is µ =
[0[1]1[2]2 . . . [n−1]n−1[n]n]0. The skin membrane will be always labelled with the number 0,
while the inner membranes will be labelled with the numbers 1, . . . , n.

P systems with gemmation of mobile membranes work with string-objects where the
evolution rules are able to multiply the number of the strings. Therefore, a multiset of
finite support is associated with every region of the membrane structure. This multiset is
a map that associates a multiplicity to every string present in the region, that is we define
Mi : V + → N where Mi = {(x1,Mi(x1)), . . . , (xp,Mi(xp))}, for some xk ∈ V + such that
M(xk) > 0, for all k = 1, . . . , p, i = 0, 1, . . . , n.

Gemmating P systems are defined with three types of rules with biochemical inspira-
tion: mutation, replication, and splitting of a string. In this paper we use only mutation
rules.

A mutation rule is a context free rule rm : a → u, where a ∈ V and u ∈ V ∗. For strings
w1, w2 ∈ V + we write w1 =⇒rm w2 if w1 = x1ax2 and w2 = x1ux2, for some x1, x2 ∈ V ∗.

When these operations are applied to strings in the membrane systems, target indica-
tions are added to the rules, determining the regions where the obtained strings will be
communicated at the next step.

With each region i = 0, 1, . . . , n we associate two distinct sets of rules:

• A set Ci of classical evolution rules, that is a set of mutation rules of the form a → α,
where a ∈ V and α = (u, tar), with u ∈ V ∗, and tar ∈ {here, out} for i = 1, . . . , n,
tar ∈ {here, out} ∪ {in1, . . . , inn} for i = 0.

• A set Di of pre-dynamical evolution rules, that is a set of mutation rules of the form
a → (u, here), with a ∈ V , such that given a string w1 = x1a (or w1 = ax2) we obtain
w2 = x1u (w2 = ux2, respectively), where u ∈ V ∗ · {@j} (u ∈ {@j} ·V ∗, respectively)
and x1, x2 ∈ V ∗. Letter @j is a special symbol not in V and j ∈ {0, 1, . . . , n}, j 6= i.

Notice that a pre-dynamical rule can introduce the special symbol @j only at the ends
of the string. We will always consider the set D0 as an empty set, that is no pre-dynamical
rule will ever be defined inside the skin membrane.

When a symbol @j appears in some string w present in a membrane i, for j 6= i, then
inside the P system two sequential and dynamical communication processes take place. We
say that a mobile membrane, which we write as a couple of well-matching round brackets
(i,j)i,j carries the string w from the originating membrane i to the target membrane j.

The communication steps are defined by means of the following rules.

• The gemmation of a mobile membrane is defined as follows:

[0. . . [i. . . , w@j , . . .]i . . .]0 → [0. . . [i. . .]i(i,j w)i,j . . .]0

for some i ∈ {1, . . . , n}, j ∈ {0, 1, . . . , n}, j 6= i, w ∈ V +.
During this first phase of the step the symbol @j is removed, its subscript becomes

94

the second label of the mobile membrane, then string w leaves membrane i and enters
the created mobile membrane. If there are several strings of the form w1@j , . . . , wk@j

inside membrane i, all of them with the same target membrane j, then a single
common mobile membrane will be budded off from membrane i:

[0. . . [i. . . , w1@j , . . . , wk@j , . . .]i . . .]0 →
[0. . . [i. . .]i(i,jw1, . . . , wk)i,j . . .]0.

If inside membrane i there are strings of the form w1@j1 , . . . , wh1@j1 , wh1+1@j2 , . . . ,
wh2@j2 , . . . , whk−1+1@jk

, . . . , whk
@jk

(hk ≥ k) such that j1, . . . , jk are pairwise dif-
ferent, then k different mobile membranes will be gemmated, each one containing
the strings directed to the specified membrane:

[0. . . [i. . . , w1@j1 , . . . , wh1@j1 , . . . , whk−1+1@jk
, . . . , whk

@jk
, . . .]i . . .]0 →

[0. . . [i. . .]i(i,j1w1, . . . , wh1)i,j1 . . . (i,jk
whk−1+1, . . . , whk

)i,jk
. . .]0.

The case when a membrane i, for some i ∈ {1, . . . , n}, contains one or more strings
of the form @jw, for some j ∈ {0, 1, . . . , n} can be analogously handled. Obviously,
the same holds when a membrane i contains some strings of both forms.

• The fusion of the mobile membrane is defined in the following way:

[0. . . (i,jw)i,j [j . . .]j . . .]0 → [0. . . [j . . . , w, . . .]j . . .]0,

for some i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, j 6= i, w ∈ V +.
During this second phase of the communication step the mobile membrane becomes
a part of the target membrane, leaving its contents inside it.
In particular, if j = 0 the mobile membrane fuses with the skin membrane (in this
way we simulate the biological process of exocytosis) and the objects exit the system:

[0. . . (i,0w)i,0 . . .]0 → [0. . .]0w.

To keep the construction closer to the functioning of real cells, we define a meta-priority
relation between the whole set Ci and the whole set Di, for all i = 1, . . . , n, meaning that
all applicable classical rules in Ci must be used before any applicable pre-dynamical rule
in Di. We remark that we do not define any priority relation between rules in the set Ci

neither between rules in the set Di.

Now we give the formal definition of an extended P system Π with gemmation of mobile
membranes (or an extended gemmating P system Π, in short) of degree n + 1, n ≥ 0, as
follows:

Π = (V, T, µ,M0, . . . , Mn, (C0, ∅), (C1, D1), . . . , (Cn, Dn)),

where

– V is an alphabet not containing the symbols @0, @1, . . . , @n;

– T ⊆ V is the output (terminal) alphabet;

95

– µ = [0[1]1[2]2 . . . [n−1]n−1[n]n]0 is a membrane structure of depth 2 and degree n + 1;

– M0, . . . , Mn are multisets of finite support over V +;

– (Ci, Di), for all i = 0, 1, . . . , n, are a set of classical evolution rules and a set of pre-
dynamical evolution rules, respectively. The set Ci, i = 1, . . . , n, has a meta-priority
above Di as far as the application of all of its rules is concerned. The set D0 is
empty.

An extended gemmating P system works as follows: the regions are processed simulta-
neously, that is, in every step, inside each region, all the strings which can be the subject
of an evolution rule are simultaneously rewritten. The rules to be applied can be nondeter-
ministically chosen among all the applicable rules, in accordance with the meta-priority
defined over the set of classical rules and the set of pre-dynamical rules. At each step
of a computation a string can be rewritten by one rule only. The strings resulting af-
ter the application of a rule can remain inside the membrane where they are placed, or
can be communicated by mobile membranes or by (in/out) communication to the regions
specified by the target indications.

The membrane structure at a given moment, together with all multisets of objects
associated with the regions defined by the membrane structure, form the configuration of
the system at that moment.

For two configurations σ1 = (µ,M ′
0, . . . , M

′
n) and σ2 = (µ, M ′′

0 , . . . , M ′′
n) of Π, we say

that σ2 is obtained from σ1 in one transition by applying the rules in (Ci, Di), 0 ≤ i ≤ n,
in accordance with the meta-priority relation.

A sequence of transitions forms a computation. A computation halts when there is no
rule which can be further applied in the current configuration. On the contrary, we say
that a computation is non-halting if there is at least one rule which can be applied forever.

The output of the P system Π (or the language of Π) is the set of strings over T expelled
from the system during the computation. The language generated by Π is denoted by L(Π).
Non-halting computations provide no output.

3 Size and Power of Extended Gemmating P Systems

In this section we improve the result of [2], namely, we show that extended gemmating P
systems consisting of five membranes with meta-priority relations and without the use of
(in/out)-rules are as powerful as the Turing machines, and extended systems with only
pre-dynamical rules and without any other feature need six membranes for this purpose.

We denote by EGemPm(MPri, α), for α ∈ {(in/out), n(in/out)}, the family of lan-
guages generated by extended gemmating P systems of degree at most m, for m ≥ 1,
with relation of meta-priority and with the use (if α = (in/out)) or without the use (if
α = n(in/out)) of communication rules of type (in/out). If we use ∗ instead of m, then
we refer to the whole class of languages of extended gemmating P systems with relation
of meta-priority and with the use (if α = (in/out)) or without the use (if α = n(in/out))
of communication rules of type (in/out).

Furthermore, let us denote by EGemPm(Dyn) the family of languages generated by
extended gemmating P systems of degree m, for m ≥ 1, with membranes having only
pre-dynamical rules. Analogously to the previous notations, EGemP∗(Dyn) denotes the

96

whole class of languages of extended gemmating P systems with membranes having only
pre-dynamical rules.

We start with the case of extended gemmating P systems with only pre-dynamical
rules; the proof of the other statement can easily be obtained by modifying the proof of
the following theorem.

Theorem 1 EGemP6(Dyn) = EGemP∗(Dyn) = RE.

Proof. By [2] we should prove only the inclusion RE ⊆ EGemP6(Dyn). For this
purpose, we modify the proof of the statement RE ⊆ EGemP9(Dyn) in [2], where for any
phrase-structure grammar G = (N, T, S, P), given in the Geffert normal form, a simulating
extended gemmating P system with nine membranes and with only pre-dynamical rules is
constructed. The basic idea of this proof is the so-called “rotation-and-simulation”, which
is a technique widely used in formal language theoretic models of molecular computing.
According to this method, to simulate the application of a production to a symbol A
occurring somewhere in the middle of the string, we move (we “rotate”) one symbol step
by step from the right end to the left end of the string, until the symbol A appears on
the right end. Then we apply the production to A. To guarantee the correct simulation
of a derivation in the grammar, a special symbol $ is introduced for marking the position
where the original (unrotated) string begins. Since pre-dynamical rules can be applied
only at the right end or at the left end of the string, this technique is well applicable.

Let L ⊆ T ∗ be a recursively enumerable language generated by a phrase-structure
grammar G = (N, T, S, P) given in the Geffert normal form. Let N ′ = (N \ {S}), and let
us denote the elements in (N ′∪T) by E1, . . . , En, n ≥ 1. Furthermore, let $, X, Y 6∈ (N∪T)
be auxiliary symbols. Symbol $, also denoted by En+1, is used for marking the beginning
of the string.

We construct the simulating extended gemmating P system of degree 6 as follows. Let

Π = (V, T, µ, M0, . . . , M5, ∅, D1, . . . , D5)

with:

V = N ∪ T ∪ {X, $, Y }
∪ {(Ei, j) | Ei ∈ N ′ ∪ T ∪ {$}, 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1}
∪ {(Xi, j) | 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1},

µ = [0[1]1[2]2[3]3[4]4[5]5]0,
M1 = {X$S | S is the axiom in G},
Mi = ∅, for all i = 0, 2, . . . , 5.

Let Π be given with the following sets of pre-dynamical rules:

D1 = {S → wY @2 | S → w ∈ P} ∪ {C → λ@4, $ → λ@2}
∪ {Ei → (Ei, 0)@3 | Ei ∈ N ′ ∪ T ∪ {$}, 1 ≤ i ≤ n + 1};

D2 = {Y → λ@1, A → λ@1, X → @0λ};
D3 = {X → @4(Xi, 0) | 1 ≤ i ≤ n + 1}

∪ {(Xi, j) → @4(Xi, j + 1) | 0 ≤ j < i ≤ n + 1};
D4 = {(Ei, j) → (Ei, j + 1)@3 | 0 ≤ j < i ≤ n + 1}

∪ {(Ei, i) → λ@5 | 1 ≤ i ≤ n + 1} ∪ {B → λ@2};
D5 = {(Xi, i) → @1XEi | 1 ≤ i ≤ n + 1}.

97

The system works as follows. Membranes 1, 2, 4 are used for simulating the productions
in P, and membranes 3, 4, and 5 are used for performing the rotation of the rightmost
symbol in the current string. Membrane 2 is also used to send the received strings outside
the system. Notice that membrane 4 takes part both in rotating the symbols and in
simulating the rule ABC → λ. No rules are given for the skin membrane.

Symbols (Ei, j) and (Xi, j) are used in making the rotation of Ei ∈ N ′ ∪ T ∪ {$} from
the right end to the left end of the string. Number j in (Ei, j) is used as a counter with
value j under the rotation, to guarantee that if we delete (Ei, i) from the right end of the
string, then we correctly append the same symbol, Ei, to its left end.

Let us assume now that at some moment a string of the form Xα$z can be found in
membrane 1, for α ∈ (N ′ ∪ T)∗ and z = z1Sz2 or z = z3, with z1, z2, z3 ∈ (N ′ ∪ T)∗. At
the first step of the functioning, we have α = λ and z = S.

Then the following cases are possible:
1. r = S. We have to use a rule S → wY @2, which simulates the corresponding

production S → w in P and sends the string to membrane 2. Here we can apply the rule
Y → λ@1, which sends the string back to membrane 1. Then, if the rightmost symbol
of the new string is S, the process is repeated, otherwise the rotation of a symbol or the
deletion of symbol C can follow. Note that at any time, in membrane 2, also the rule
X → @0λ can be used causing the current string to exit the skin membrane. Anyway,
since the system is extended, only the strings over the terminal alphabet T will contribute
to the generated language.

2. r = Ei, for Ei ∈ N ′ ∪ T . In this case we can obtain the string Xα$z′(Ei, 0), with z′

such that z = z′r, and we send it to membrane 3, where the rotation of Ei, the rightmost
symbol of the string will start. If r = C, then the simulation of the rule ABC → λ
can also follow, since we can use the rule C → λ@3. After the application of this rule,
the string is forwarded to membrane 4, where the only rule applicable at this moment is
B → λ@2. If this rule is successfully applied, then the string is sent to membrane 2, where
A → λ@1 can be used at this step (again, if we apply the other applicable rule X → @0λ,
then the string will not be part of the generated language). After applying this rule, the
string arrives at membrane 1. If these steps cannot be performed after each other, then
the computation halts and no terminal string is generated.

3. r = $. In this case there are two possibilities: by applying the rule En+1 →
(En+1, 0)@5 we start the move of $ from the end of the string to its beginning (a rotation),
or by using $ → λ@2 we finish the computation in two steps. In the latter case symbol $
is erased and the string is sent to membrane 2, where X is erased and the string is sent
outside the system.

Let us explain in more details how the symbols are rotated. Suppose that at some
computation step string Xα$z′(Ei, 0) can be found in membrane 3. Then only rule X →
@4(Xj , 0) can be applied at this step and after the application the string (Xj , 0)α$z′(Ei, 0)
is sent to membrane 4. In this membrane the only rule applicable at this moment is
(Ei, j) → (Ei, j + 1)@3, then the obtained string (Xj , 0)α$z′(Ei, 1) returns to membrane
3 where we increment the counter in (Xj , 0). After that, the string (Xj , 1)α$z′(Ei, 1)
returns to membrane 4. Repeating the procedure, the counter is incremented. After some
steps the following three cases can occur:

1. Case i > j. When (Xj , j)α$z′(Ei, j) is sent to membrane 3, then the computation
stops without generating a string because its rule (Xj , i) → @4(Xj , i + 1) can be applied
only if i < j.

2. Case i < j. When the string (Xj , i)α$z′(Ei, i) reaches membrane 4, then symbol

98

(Ei, i) is erased by using rule (Ei, i) → λ@5 and the string (Xj , i)α$z′ is sent to membrane
5. Here no rule can be applied because j 6= i and thus the computation aborts.

3. Case i = j. At some moment in membrane 4 a string of the form (Xi, i)α$z′(Ei, i)
can be found. Then only rule (Ei, i) → λ@5 can be applied which erases the rightmost
symbol and sends the string (Xi, i)α$z′ to membrane 5. In this membrane, by applying
the rule (Xi, i) → @1XEi, XEi is appended to the left end of the string (corresponding
to the previously erased symbol (Ei, i)) and then XEiα$z′ is sent to membrane 1. Thus,
the rotation of symbol Ei is completed.

The process can be iterated. When a string Xα, α ∈ (N ′ ∪ T)∗, is sent to membrane
2 (after using the rule $ → λ@2 on the string Xα$ in membrane 1), then X is erased and
the string exits the system. If such string is a terminal one, that is α ∈ T ∗, then it will be
a member of the generated language. Hence, L(Π) = L(G). 2

The next statement demonstrates that by using both classical evolution rules and pre-
dynamical rules, a smaller number of membranes is needed to obtain the computational
completeness.

Theorem 2 EGemP5(MPri, n(in/out)) = EGemP∗(MPri, n(in/out)) = RE.

Proof. Analogously to the previous statement, by [2] we should prove only the
inclusion RE ⊆ EGemP5(MPri, n(in/out)). To this aim, we modify the construction used
in the proof of Theorem 1, that is, for any phrase-structure grammar G = (N,T, S, P),
given in the Geffert normal form, we define a simulating extended gemmating P system
consisting of five membranes, where both classical evolution rules (with target here only)
and pre-dynamical rules can be present and also the meta-priority relation is defined.

We construct the simulating extended gemmating P system of degree 5 as follows:

Π = (V, T, µ,M0, . . . ,M4, (C0, D0), (C1, D1), . . . , (C4, D4)),

where:

V = N ∪ T ∪ {X, $}
∪ {(Ei, j) | Ei ∈ N ′ ∪ T ∪ {$}, 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1}
∪ {(Xi, j) | 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1},

µ = [0[1]1[2]2[3]3[4]4]0,
M1 = {X$S | S is the axiom in G},
Mi = ∅, for all i = 0, 2, 3, 4.

Let Π be given with the following sets of rules:

C1 = {S → (w, here) | S → w ∈ P};
Ci = ∅ for i = 0, 2, 3, 4;
D0 = ∅;
D1 = {C → λ@3, $ → λ@2}

∪ {Ei → (Ei, 0)@2 | Ei ∈ N ′ ∪ T ∪ {$}, 1 ≤ i ≤ n + 1};
D2 = {X → @3(Xi, 0) | 1 ≤ i ≤ n + 1}

∪ {(Xi, j) → @3(Xi, j + 1) | 0 ≤ j < i ≤ n + 1}

99

∪ {X → @0λ};
D3 = {(Ei, j) → (Ei, j + 1)@2 | 0 ≤ j < i ≤ n + 1}

∪ {(Ei, i) → λ@4 | 1 ≤ i ≤ n + 1} ∪ {B → λ@4};
D4 = {(Xi, i) → @1XEi | 1 ≤ i ≤ n + 1} ∪ {A → λ@1}.

Symbols X, (Xi, j), (Ei, j), and $, as in the previous proof, are auxiliary symbols used
in the rotation of the symbols, $ is the marker symbol indicating the beginning of the
simulated string of G. Analogously, let us denote the elements in ({A,B, C} ∪ T) by
E1, . . . , En, n ≥ 1, and let En+1 be a notation for $.

Now we explain how the system Π works and how the strings generated by G are
generated by Π.

It is easy to see that in the first phase of the functioning of Π, membrane 1 uses its
classical evolution rules and generates a word of the form X$α, where α ∈ (N ′ ∪ T)∗.
During these steps, no action is performed in the other membranes. Then, a second phase
of the functioning follows, with the following possibilities:

1. If the rightmost symbol of α is C, then the simulation of the rule ABC → λ ∈ P
can start in membrane 1, by applying the pre-dynamical rule C → λ@3. Then C is deleted
from the right-end of α and the string is forwarded to membrane 3. In this membrane the
only applicable rule is B → λ@4, which deletes the rightmost symbol, B, of the string.
Then, the new string is sent to membrane 4, where A → λ@1 can be applied: after
removing symbol A from its right-end, the string returns to membrane 1 and the process
can be repeated. If any of these steps fails, then the P system halts without a terminal
word as an output. Note that in membrane 2, at any time, we can also use the rule
X → @0λ which sends the string outside the skin membrane; anyway, if the string is not
consisting of terminal symbols only, then it will not contribute to the generated language.

2. Irrespectively from whether or not the rightmost symbol of α is C, a rotation of a
symbol from ({A,B, C, $}∪T) can start in membrane 1, by applying a rule Ei → (Ei, 0)@2,
for 1 ≤ i ≤ n + 1. Then, exactly in the way as in the previous proof, by the interplay
of membranes 2, 3, and 4, symbol Ei is rotated. Notice that the procedures of deleting
substring ABC, from the right-end of the string and the rotation of symbols Ei do not
interfere each other.

Combining the two procedures, that is, deleting substring ABC from the right-end
of the string and rotating the symbols, either we obtain a string of the form Xw$ with
w ∈ T ∗ in membrane 1 or the system halts without a terminal output. If the first case
holds, then the string is forwarded to membrane 2, and after then outside the system, and
the successful computation ends.

By the argumentation above, we can easily see that L(Π) = L(G) holds. 2

4 Conclusions and Open Problems

In the previous section we improved the known size bounds concerning two types of ex-
tended gemmating P systems. It is an open question whether or not these bounds are
sharp. Moreover, it would be interesting to give sharp bounds on the number of mem-
branes in extended gemmating P systems determining the class of matrix languages, the
class of ET0L languages, that is, proper subclasses of the recursively enumerable language
class. Similarly, we can ask what can we say about the size and the power of non-extended

100

gemmating P systems with a restricted number of objects (alphabet of two symbols, for
example), or what can we say about the role of splitting and replication features?

Acknowledgements. Research supported in part by Project “MolCoNet” – A the-
matic network on Molecular Computing, European Commission, Information Society Tech-
nologies Programme, IST 2001-32008, and Hungarian Scientific Research Fund “OTKA”
Grant. No T 042529.

References

[1] D. Besozzi, Computational and modelling power of P systems. PhD dissertation, Uni-
versità degli Studi di Milano, 2003.

[2] D. Besozzi, G. Mauri, Gh. Păun, C. Zandron, Gemmating P systems: collapsing hier-
archies. Theoretical Computer Science, 296, 2 (2003), 253–267.

[3] D. Besozzi, C. Zandron, G. Mauri, N. Sabadini, P systems with gemmation of mobile
membranes. In A. Restivo, S. Ronchi Della Rocca, L. Roversi, Eds., Proceedings of the
7th Italian Conference of Theoretical Computer Science 2001, volume 2202 of Lecture
Notes in Computer Science, pages 136–153, Springer, Berlin, 2001.

[4] Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.

[5] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin,
1997.

101

