
P Systems with Active Membranes

and Without Polarizations

Rudolf FREUND
Faculty of Informatics

Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria

E-mail: rudi@emcc.at

Andrei PĂUN
Department of Computer Science
Louisiana Tech University, Ruston

PO Box 10348, Louisiana, LA-71272 USA
E-mail: apaun@latech.edu

Abstract. P systems with active membranes but without using electrical charges
(polarizations) are shown to be complete for generating recursively enumerable string
languages when working on string objects and using only rules with membrane tran-
sitions as well as rules with membrane dissolving and elementary membrane division,
but also when using various other kinds of rules, even including a new type of rules al-
lowing for membrane generation. Especially, allowing for changing membrane labels
turns out to be a very powerful control feature.

1 Introduction

In [8] membrane systems (then called P systems) were introduced as bio-inspired computing
devices that work in a parallel and distributed way (see [11] for a comprehensive overview and
[7] for current developments in the area). P systems with active membranes were introduced
(e.g., see [11]; for variants solving NP complete problems see, e.g., [5], [10]) with rules for:

(a) rewriting multisets;
(b) introducing objects into membranes;
(c) sending objects out of membranes;
(d) dissolving membranes;
(e) dividing elementary membranes;
(f) dividing non-elementary membranes.

All these rules were associated with membranes not only having a specific label, but also
having assigned an electrical charge (also called polarization), which could be +, 0, and −. The
rules of the forms (b) to (c) involving membranes could change the polarization of the involved
membrane(s), but never changed the label(s) of the membranes.

Throughout this paper we investigate some special variants of P systems with active mem-
branes with rules especially including division of elementary membranes, but without changing

193

polarizations, which in fact means that we simply may forget the polarizations of membranes.
Moreover, we shall also introduce membrane generation rules. In contrast to the original model,
where P systems with active membranes were working on symbol objects, in this paper we
consider P systems with active membranes working on string objects. Even without using the
feature of changing membrane labels computational completeness can already be achieved with
a quite small number of active membranes for different variants of P systems with active mem-
branes using various kinds of rules. Allowing for changing membrane labels, the number of
membranes can be reduced significantly, sometimes even to one, when using only part of the
possible forms of rules.

2 Preliminaries

Before proceeding to a formal description of matrix grammars, we fix some basic notations first.
For an alphabet V , by V ∗ we denote the free monoid generated by V under the operation of
concatenation; the empty string is denoted by λ, and V ∗ \ {λ} is denoted by V +. Any subset of
V + is called a λ-free (string) language. Moreover, by N we denote the set of positive integers (or
natural numbers). The family of λ-free recursively enumerable languages is denoted by RE, the
family of sets of λ-free recursively enumerable languages over a one-letter alphabet by NRE (in
fact, this family corresponds to the set of recursively enumerable sets of natural numbers). For
more notions as well as basic results from the theory of formal languages, the reader is referred
to [1], [4], [6], and [13].

We now recall the Z-binary normal form for matrix grammars, which will be used in the
following proofs. Consider a matrix grammar with appearance checking G = (N,T, S, M,F) ,
where N and T are the sets of terminal and non-terminal symbols, respectively, S is the start
symbol, M is the set of matrices, and F is the set of productions that can be used in the
appearance checking mode. We say that G is in the Z-binary normal form if N = N1 ∪ N2 ∪
{S, Z,#}, with these three sets being mutually disjoint, and the matrices in M are in one of the
following forms:

1. (S → XA) , with X ∈ N1, A ∈ N2,

2. (X → Y, A → x) , with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗ , |x| ≤ 2,

3. (X → Y, A → #) , with X ∈ N1, Y ∈ N1 ∪ {Z} , A ∈ N2,

4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → # appearing
in matrices of type 3, and, if a sentential form generated by G contains the symbol Z, then it
is of the form Zw, for some w ∈ (T ∪ {#})∗ (i.e., the appearance of Z makes sure that, except
for Z, all symbols are either terminal or the trap symbol #); the (unique) matrix of type 4 is
used only once, in the last step of a derivation. Finally, at most three non-terminal symbols are
used in the appearance checking mode. The following proposition is a consequence of the results
elaborated in [2] and [3]:

Proposition 2.1 For each language L ∈ RE there is a matrix grammar with appearance check-
ing G in the Z-binary normal form such that L = L (G).

In several of the following proofs we will start from matrix grammars in the Z-binary normal
form. In order not to repeat the same notations, we consider the following representation

194

(notations and labelling) for such grammars: A matrix grammar with appearance checking in
the Z-binary normal form is always given as G = (N, T, S, M, F), with N = N1∪N2∪{S,Z,#},
and with n + 2 matrices in M , injectively labelled with m0,m1, . . . ,mn,mn+1; the matrix (of
type 1) m0 : (S → XinitAinit) is the initial one, with Xinit a given symbol from N1 and Ainit a
given symbol from N2; the next k matrices (of type 2) contain only rules without appearance
checking, mi : (X → Y, A → x), 1 ≤ i ≤ k, where X, Y ∈ N1, and A ∈ N2, x ∈ (N2 ∪ T)∗ ,
|x| ≤ 2; the next n− k matrices (of type 3) have rules to be applied in the appearance checking
mode, mi : (X → Y, A → #) , k + 1 ≤ i ≤ n, with X ∈ N1, Y ∈ N1 ∪ {Z} , A ∈ N2. Finally,
mn+1 : (Z → λ) is the unique terminal matrix (of type 4). Thus, when we will say “a matrix
grammar in the Z-binary normal form, with the standard notations/representation” we will mean
the notations and the conventions given here.

3 P Systems with Active Membranes and String Objects

A P system with active membranes and string objects (for sake of simplicity, we often will only
use the notion P system) is a construct

Π = (V, T, H, µ, w1, . . . , wm, R),

where: m ≥ 1; V is an alphabet (the total alphabet of the system); T ⊆ V (the terminal
alphabet); H is a finite set of labels for membranes; µ is a membrane structure, consisting of
m membranes, labelled with elements of H; w1, . . . , wm are finite multisets of words over V
(describing the initial objects in the membranes placed in the m regions of µ); R is a finite set
of rules, of the following forms:

(sa) [A]h −→ [v]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (a letter A is rewritten into v in a
membrane labelled with h thereby changing its label to h′);

(sb) A[]h −→ [v]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (a letter A is rewritten into v and then
the resulting word is sent into a membrane labelled with h thereby changing its label to
h′),

(sc) [A]h → v[]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (an object A is rewritten into v and then
the resulting string is sent out of the membrane labelled with h thereby changing its label
to h′),

(sd) [A]h → v, where A ∈ V, v ∈ V ∗, h ∈ H (an object A is rewritten into v at the same time
dissolving the surrounding membrane labelled with h),

(se) [A]h → [v]h′ [v
′]h′′ , where A ∈ V, v, v′ ∈ V ∗, h, h′, h′′ ∈ H

(2-division rule for elementary membranes; in reaction with an object, the membrane is
divided into two membranes with, maybe, different labels; the word containing the letter
A specified in the rule is replaced in the corresponding words in the two new membranes
by possibly new substrings v, v′; at the same time, all the objects except for the word
containing the letter A that started the membrane division are duplicated into the two
new membranes),

(sg) [A]h −→ [[v]h′′]h′ , where A ∈ V, v ∈ V ∗, h, h′, h′′ ∈ H (a letter A in a membrane labelled
with h by changing its label to h′ is rewritten into v and then the resulting word is sent
into a newly generated membrane labelled with h′′).

195

We refer to [10], [11], and [12] for a more precise definition of the way originally P systems
with active membranes were supposed to work; here we only informally describe the way of
passing from one configuration of the system to the next one. The difference between the
original model and our proposed model mainly lies in the fact that we work on strings rather
than with symbols (therefore, the types of rules carry the additional marking s); moreover, in
describing the membrane structure as well as the rules we only label the right-hand brackets of
the matching pairs.

The rules are applied in a maximally parallel manner, yet with the following restrictions:
The rules are applied “from bottom up”, in one step, starting with the rules of the innermost
region and, then, level by level until the region of the skin membrane is reached. In each region,
all strings which can evolve using a rule of the forms (sa), (sb), (sc), (sg) can and have to evolve
if they do not change the label of the surrounding membrane, yet (at most) only one string
(afterwards!) may take a rule changing the label of the surrounding membrane or dissolve it
or divide it. Rules of type (sa), (sb), (sc), (sg) can be used in parallel as long as they do not
change the label of the membrane they affect. At most one rule of type (se) can be applied to
one selected string after the evolution of all other strings in the membrane region not changing
the membrane label or dissolving the membrane; if a membrane with label h is divided by a rule
of type (se), which involves a word containing letter A, then all other words in membrane h are
introduced in each of the resulting membranes.

The rules associated with a membrane labelled with h are used for all copies of this membrane;
it does not matter whether the membrane is an initial one or it was obtained by membrane
division or membrane generation. The skin membrane can never divide (nor dissolve). The
result of a halting computation (no rule can be used in the last configuration) consists of all the
words over the terminal alphabet T which can be found in the region of the skin membrane in
the last configuration of a halting computation.

By L(Π) we denote language generated as described above by a P system Π. The words not
from T ∗ which remain in the region of the skin membrane at the end of a halting computation
are not contributing to the generated language; if a computation goes forever, then it provides
no output, it does not contribute to the set L(Π).

Now let D be a non-empty subset of {sa, sb, sc, sd, se, sg, sa0, sb0, sc0, sd0, se0, sg0} – the sub-
script 0 indicates that the corresponding type of rules does not change the labels of membranes.
Then, by

LPA(n1,n2,n3,n4) (D)

we denote the family of languages generated by P systems with active membranes and string
objects as defined above using only rules of types from D, with having at most n1 membranes in
the initial configuration, the maximum number of membranes in the system at any given time
being at most n2 and the number of membranes in a halting configuration being at most n3 and
with at most n4 labels in H. If one of these numbers n1, n2, n3, n4 can be arbitrarily large, then
we write ∗ instead of this number.

We now establish the main result of our paper showing that when using rules of types
sb0, sc0, sd0, se0 (i.e., only rules without changing membrane labels) we obtain computational
completeness with a bounded number of membranes and a bounded number of membrane labels:

Theorem 3.1 For all vectors (n1, n2, n3, n4) ∈ N4 with (n1, n2, n3, n4) ≥ (7, 8, 7, 7) we have

LPA(n1,n2,n3,n4) ({sb0, sc0, sd0, se0}) = RE.

196

Proof. We only prove the inclusion

RE ⊆ LPA(7,8,7,7) ({sb0, sc0, sd0, se0}) .

For that purpose, let us consider a matrix grammar with appearance checking

G = (N1 ∪N2 ∪ {S, Z,#} , T, S, M, F)

in the Z-binary normal form with the standard notations/representation; we now construct the
following P system with active membranes and with string objects:

Π = (V, T, H, µ, w0, w1, w2, w3, wA1 , wA2 , wA3 , R),

where:

V = N1 ∪N2 ∪ T ∪ {X ′, X ′′, X ′′′ | X ∈ N1} ∪ {A, A | A ∈ N2}
∪ {Xi

j , A
i
j | X ∈ N1, A ∈ N2, 1 ≤ i ≤ n, 0 ≤ j ≤ k} ∪ {Z, #} ,

H = {0, 1, 2, 3, A1, A2, A3},
µ = [[[[]3]2]1[]A1

[]A2
[]A3

]0,
w0 = XinitAinit,

w1 = w2 = w3 = wA1 = wA2 = wA3 = ∅,
R = {X[]1 → [Xi

i]1, A[]2 → [Ai
i]2, Xi

j []3 → [Xi
j−1]3,

[Ai
j]3 → []3A

i
j−1, [Xi

0]2 → Y []2, [Ai
0]1 → α1α2[]1, [Ai

0]3 → #[]3,

[Ai
j]2 → #[]2 | mi : (X → Y,A → α1α2) ∈ M, 1 ≤ i, j ≤ k}

∪ {X[]A → [Y ′]A, [Y ′]A → [Y ′′]A[Y ′′′]A, [Y ′′]A → Y []A,

[Y ′′′]A → A, A[]A → [A]A, [A]A → # | mi : (X → Y, A → #) ∈ M}
∪ {#[]1 → [#]1, [#]1 → #[]1, #[]2 → [#]2, [#]2 → #[]2,

#[]3 → [#]3, [#]3 → #[]3, Z[]1 → [Z]1, [Z]1 → λ[]1},
and A1, A2, A3 are the only non-terminal symbols used in the appearance checking mode in the
given matrix grammar G. We will prove now that L (Π) = L (G).

To prove first that all the words generated by the matrix grammar G are also in the language
generated by the P system Π we list and describe the rules in R defined specifically for each rule
in the matrix grammar:

The single matrix of type 1 in G is simulated just by the fact that the word XinitAinit is
initially present in the system in membrane 0 (i.e., the initial multiset in the skin membrane
consists of only one word in one copy, whereas the initial multisets in all other regions are
empty).

The matrices of type 2 from G are simulated by the following rules, the simulation taking
place in the membranes 1, 2, and 3:

For a rule mi : (X → Y, A → α1α2), 1 ≤ i ≤ k, we start with replacing X by Xi
i when X is

passing through membrane 1 :
X[]1 → [1X

i
i]1

and then the non-terminal symbol from N2 that appears in the matrix, A, is transformed into
Ai

i when pushing the string into membrane 2:

A[]2 → [Ai
i]2

197

The string will move back and forth between the membranes 2 and 3 thereby decreasing the
subscripts of X and A:

Xi
j []3 → [Xi

j−1]3, [Ai
j]3 → []3A

i
j−1

When the subscript of X reaches 0 we can move the string from membrane 2 to membrane 1
using the rule

[Xi
0]2 → Y []2.

At that point also the subscript of A has to be 0 (i.e., initially the subscripts were the same for
X and for A) in order to guarantee that the simulation was correct; using

[Ai
0]1 → α1α2[]1

we send out the produced string to membrane 0. One can notice that after all these steps we
have replaced X by Y and A by α1α2, hence, the matrix was simulated correctly. Another
important fact is that we are in a similar configuration of the system as before: we have the
string containing one symbol from N1 and some symbols from N2 and/or T in membrane 0, so
the process can be iterated until we reach a final configuration.

The matrices of type 3 from G are also simulated by using several rules now taking place
in the membranes labelled with A1, A2, A3 and by dividing these membranes. One should
notice that the labels of these membranes are the only symbols from N2 used in the appearance
checking mode in G.

For a rule mi : (X → Y,A → #) we perform the following steps: First we send the string into
the membrane carrying the label A corresponding to the symbol to be used in the appearance
checking mode, i.e., we use

X[]A → [Y ′]A;

then this particular membrane with label A divides, so in the next step we will have two mem-
branes with the same label A and containing each a word that differs from the other one by one
letter:

[Y ′]A → [Y ′′]A[Y ′′′]A
In fact, we here use membrane division to produce two strings: one that will continue the
simulation and the second one will check the correctness of the simulation. The word containing
Y ′′ will continue as if everything were okay,

[Y ′′]A → Y []A,

and the second word, the one containing Y ′′′, will first dissolve the second membrane labelled A
by using

[Y ′′′]A → A

and then enter the other membrane labelled with A using the rule

A[]A → [A]A.

In the next step the concrete appearance checking is simulated by

[A]A → #.

If A was present in the word when we started the simulation of the rule, then now we will produce
the trap-symbol # which will effectively kill the computation, since this string will move forever

198

between membranes 0, 1, 2, and 3, thus we will never reach a halting configuration. On the other
hand, if A was not present in the word, then this “checking” word will be stuck in membrane A,
but the “evolving” word can continue the process since it is already in membrane 0. One can
notice that the simulation also in this case is performed in such a way that at the end we will
have the string in membrane 0 and will have also at most one symbol from N1 ∪ {Z} in that
string, so again, we can iterate the process of simulating matrices from G in this case, too.

It now remains to discuss the halting process. As we know from the special features of
the Z-normal form, the non-terminal symbol Z appears only at the end of a derivation at the
same time guaranteeing that except for terminal symbols only the trap symbol may appear in
the underlying sentential form. Hence, we only have to remove Z, which is performed in the
following way:

First the string is sent to membrane 1 by the rule

Z[]1 → [Z]1.

Then the symbol Z is eliminated by sendig out the string to the skin region again:

[Z]1 → λ[]1

If the underlying string contains no trap symbol #, then the resulting string is terminal and the
computation halts yielding this string as the result of the computation in the P system Π.

After this discussion it becomes clear that L(G) ⊆ L(Π). Let us now consider the converse
inclusion L(Π) ⊆ L(G): At the end of each correct simulation, in membrane 0 we have a word
containing one symbol from N1 followed by symbols from N2 ∪ T . Let us take a closer look to
the simulation of matrices of type 2 from G: Once this simulation has been started, the string
will go from membrane 0 to membranes 1, 2 and then start oscillating between membranes 2
and 3. If the subscripts of both Xi

i and Aj
j matched the same matrix i = j then the string will

be able to return in membrane 0, but if the subscripts do not match, i 6= j, then we have two
cases:

If i > j, then at some point the subscript of A reaches 0, and the word Xi
i−j ...A

j
0... cannot

exit membrane 3 by decreasing the subscript of A, so the only rule that can be applied is

[Aj
0]3 → #[]3

thus producing the trap symbol and, therefore, this particular computation will yield no output.
If i < j, then the subscript of X will first reach 0, so next we can exit membrane 2 by

applying
[Xi

0]2 → Y []2.

In this moment we are in membrane 1 with the word Y...Aj
j−i.... Here a rule

Bk
k []2 → [Bk

k]2

can be applied, but in the next step the word does not contain a variant of X in order to be
able to enter membrane 3, so the only rule possible at this point is

[Ai
j]2 → #[]2

which produces the trap symbol. We showed that if i 6= j then we produce the trap symbol in
all cases. This was greatly helped by the fact that when moving from membrane 0 to membrane

199

3 the string was changed: membrane 1 changed X into Xi
i and membrane 2 changed A into

Ai
i. When exiting, the string was changed in the reversed order: Xi

0 was changed when exiting
from membrane 2 into Y and Ai

0 when exiting 1 into α1α2, thus ensuring that the word cannot
“start” a second simulation in the original simulation.

Let us now check the simulation of the appearance checking case: The simulation proceeds
straight-forward without any choice in the application of the rules; there is a membrane division
rule, so we will show that there are no other membranes created during the life of the second
membrane A newly created (so that our result holds in the number of maximal membranes
created during a computation). After dividing the membrane A starting from the string Xw,
in the very next step the two words Y w and Aw arrive in membrane 0, one just exiting its
surrounding membrane labelled with A, the other one dissolving it. At this moment another
simulation can start from the string Y w. If the new simulation involves a matrix of type 1 or
type 2 or Z (finishing by entering membrane 1) or an appearance checking on another symbol
from {A1, A2, A3}−A then everything is okay. If the new simulation is one for a matrix of type 3
involving the same appearance checking symbol A, then both Y w and Aw will enter membrane
A yielding

U ′w and Aw

for some U ∈ N1 in membrane A; if again U ′w takes possession of membrane A and divides it,
we obtain two membranes labelled by A, one containing (besides all other copies already stored
there) U ′′w and Aw, the other one containing U ′′′w and Aw; the worst case scenario now is
that U ′′′w takes possession of its membrane A, thus yielding Aw and Aw in the skin membrane,
whereas U ′′w leaves the other membrane A yielding Uw in the skin membrane and then - but
in the same derivation step of Π - the copy of Aw in membrane A dissolves the membrane just
in case A occurs in w, otherwise it will remain there without being able to do any harm in
succeeding derivation steps. The copy of Aw in the skin membrane gets stuck there, and for
Uw, Aw we have just the same situation as before. Hence, also the simulation of the matrices
of type 3 is performed correctly, without producing any other “unwanted” strings.

Finally, we would like to note that introducing the trap symbol # in the system will result
in an infinite computation because of the following rules:

#[]1 → [#]1, [#]1 → #[]1,
#[]2 → [#]2, [#]2 → #[]2,
#[]3 → [#]3, [#]3 → #[]3.

It is clear now that the constructed P system yields the same language as the matrix gram-
mar, i.e., L (Π) = L (G), hence, the theorem is proved. 2

For languages over a one-letter alphabet, we can reduce the number of membranes by one:

Corollary 3.1 For all vectors (n1, n2, n3, n4) ∈ N4 with (n1, n2, n3, n4) ≥ (6, 7, 6, 6) we have

LPA(n1,n2,n3,n4) ({sb0, sc0, sd0, se0}) = NRE.

Proof. According to the results proved in [3], for recursively enumerable languages over a one-
letter alphabet only two variables used in the appearance checking mode are needed for matrix
grammars generating these languages. Therefore A3 and the related rules are not necessary in
the construction given in the proof of Theorem 3.1, which already proves the corollary. 2

Allowing for membrane generating rules allows for considerably decreasing the number of
membranes:

200

Theorem 3.2 For all vectors (n1, n2, n3, n4) ∈ N4 with (n1, n2, n3, n4) ≥ (1, 4, 1, 7) we have

LPA(n1,n2,n3,n4) ({sb0, sc0, sd0, se0, sg0}) = RE.

Proof. We only prove the inclusion

RE ⊆ LPA(1,4,1,7) ({sb0, sc0, sd0, se0, sg0}) .

For that purpose, let us consider a matrix grammar with appearance checking

G = (N1 ∪N2 ∪ {S, Z,#} , T, S, M, F)

in the Z-binary normal form with the standard notations/representation; we now construct the
following P system with active membranes and with string objects:

Π = (V, T, H, µ, w0, w1, w2, w3, wA1 , wA2 , wA3 , R),

where:

V = N1 ∪N2 ∪ T ∪ {X ′, X ′′, X ′′′, X, X, X̃, X̂ | X ∈ N1} ∪ {A, A | A ∈ N2}
∪ {Xi

j , A
i
j | X ∈ N1, A ∈ N2, 1 ≤ i ≤ n, 0 ≤ j ≤ k} ∪ {Z, #} ,

H = {0, 1, 2, 3, A1, A2, A3},
µ = [[[[]3]2]1[]A1

[]A2
[]A3

]0,
w0 = XinitAinit,

w1 = w2 = w3 = wA1 = wA2 = wA3 = ∅,
R = {[X]0 → [[Xi

i]1]0, [A]1 → [[Ai
i]2]1, [Xi

i]2 → [[Xi
i−1]3]2, Xi

j []3 → [Xi
j−1]3,

[Ai
j]3 → []3A

i
j−1, [Ai

1]3 → Ai
0, [Xi

0]2 → Y, [Ai
0]1 → α1α2,

[Ai
0]3 → #, [Ai

j]2 → #, [#]1 → #, [#]0 → [[#]1]0 |
mi : (X → Y,A → α1α2) ∈ M, 1 ≤ i, j ≤ k}

∪ {[X]0 → [[Y ′]A]0, [Y ′]A → [Y ′′]A[Y ′′′]A, [Y ′′]A → Ȳ []A, [Y ′′′]A → A,

Ȳ []A → [Y]A, A[]A → [A]A, [Y]A → Ỹ []A, [A]A → #, Ỹ []A → [Ŷ]A
Ỹ []A → [Ŷ]A, [Ŷ]A → Y | mi : (X → Y, A → #) ∈ M}

∪ {[Z]0 → [[Z]1]0, [Z]1 → λ},

and A1, A2, A3 are the only non-terminal symbols used in the appearance checking mode in the
given matrix grammar G. Following the explanations given in the proof of Theorem 3.1 one can
easily prove again that L (Π) = L (G). The main difference is that the membranes 1, 2, and 3 as
well as the membranes A checking for the appearance of the non-terminal symbol A are created
dynamically and after having fulfilled their duty within the simulation of one derivation step
of G in Π are dissolved again: For the simulation of a rule of type 2 the membranes 1, 2, and
3 are created dynamically in the first three steps of the simulation and dissolved again in the
last three steps. In the same way, for simulating a matrix of type 3 checking for the appearance
of the non-terminal symbol A, the corresponding membrane A is dynamically generated in the
first step of the simulation and dissolved five steps later, in the meantime giving the checking
string the possiblity to generate the trap symbol # in case A occurs in the current sentential
form; observe that the rules

Ȳ []A → [Y]A, A[]A → [A]A

201

enter membrane A in parallel and in the next step,

[Y]A → Ỹ []A

is applied eventually followed in the same step by

[A]A → #

in case A occurs in the underlying word. If this last production is not applied, we are able to
successfully finish the simulation of this appearance checking matrix by using the rules

Ỹ []A → [Ŷ]A, [Ŷ]A → Y.

As the rest of the simulation is quite similar to the simulation already described in the proof
of Theorem 3.1, we leave the remaining details of explanation for this proof to the reader. 2

For languages over a one-letter alphabet, we can reduce the number of membrane labels by
one:

Corollary 3.2 For all vectors (n1, n2, n3, n4) ∈ N4 with (n1, n2, n3, n4) ≥ (1, 4, 1, 6) we have

LPA(n1,n2,n3,n4) ({sb0, sc0, sd0, se0, sg0}) = NRE.

Proof. As the proof of Corollary 3.1 directly followed from the proof of Theorem 3.1, the result
of this corollary directly follows from the proof of Theorem 3.2. 2

So far we have only considered types of rules not changing membrane labels; as the following
theorem shows, changing of membrane labels provides a powerful control mechanism:

Theorem 3.3 For all vectors (n1, n2, n3) ∈ N3 we have

LPA(n1,n2,n3,∗) ({sa}) = RE.

Proof. We only prove the inclusion

RE ⊆ LPA(1,1,1,∗) ({sa}) .

For that purpose, let us consider a matrix grammar with appearance checking

G = (N1 ∪N2 ∪ {S, Z,#} , T, S, M, F)

in the Z-binary normal form with the standard notations/representation; we now construct the
following P system with active membranes and with string objects:

Π = (V, T,H, µ,w0, R),

where:

V = N1 ∪N2 ∪ T ∪ {X ′, X ′′, X ′′′ | X ∈ N1} ∪ {Z, #} ,

H = {0} ∪ {i, ĩ | 1 ≤ i ≤ k} ∪ {i | k + 1 ≤ i ≤ n},
µ = []0,

w0 = {Xinit, Ainit} ,

R = {[X]0 → [Y ′]i, [A]i → [α1α2]̃i, [Y ′]̃i → [Y]0 |
mi : (X → Y, A → α1α2) ∈ M}

∪ {[X]0 → [Y ′]i, [Y ′]i → [Y ′′]i, [Y ′′]i → [Y]0, [A]i → [#]0 |
mi : (X → Y, A → #) ∈ M}

∪ {[Z]0 → []0, [#]0 → [#]0},

202

and A1, A2, A3 are the only non-terminal symbols used in the appearance checking mode in the
given matrix grammar G. One can easily prove again that L (Π) = L (G):

We start with the two words Xinit, Ainit in the skin membrane. For simulating a rule of
type 2 mi : (X → Y, A → α1α2), the corresponding membrane label i is taken for the skin
membrane by using

[X]0 → [Y ′]i.

Changing the label when applying
[A]i → [α1α2]̃i

guarantees that only one non-terminal symbol A can be replaced. Label ĩ then allows to finish
the simulation by applying

[Y ′]̃i → [Y]0.

For simulating a matrix of type 3 mi : (X → Y,A → #) checking for the appearance of the
non-terminal symbol A, the corresponding membrane label i is obtained by

[X]0 → [Y ′]i

and then we check for the appearance of A :

[A]i → [#]0

(which, whenever applied, yields an infinite computation by the rule[#]0 → [#]0) is possibly
applied in the same derivation step of Π immediately after having changed Y ′ to Y ′′ using

[Y ′]i → [Y ′′]i.

In the last step of the simulation, we reset the label of the skin membrane to 0 by applying

[Y ′′]i → [Y]0.

A successful computation in Π ends with the application of

[Z]0 → []0.

It is easy to see that the P system Π can simulate the matrix grammar G and in total we
obtain L (Π) = L (G). 2

In the preceding proof we only used one type of rules allowing for changing membrane labels;
although needing only the simplest membrane structure, we had to pay the price for that by not
being able to bound the number of membrane labels.

4 Conclusion and Future Research

For several variants of P systems with active membranes working on strings we have shown
computational completeness. As the results proved in this paper show, there is a trade-off
between using complex rules like membrane division and the powerful control feature of changing
membrane labels.

A lot of problems have remained open in this paper, especially

• concerning the minimal descriptional complexity of the systems investigated in this paper,

203

• with respect to find the borderline between computational completeness and non-
completeness,

• concerning the effect of omitting part of the possible forms of rules or replacing prt of
them by other forms.

Moreover, several variants of rule combinations should also be investigated for P systems
with active membranes working on symbol objects; especially the new type of rules allowing
for membrane generation as well as the feature of changing membrane labels deserve future
investigations.

Acknowledgements. This paper was initiated during a visit of the second author at the
Vienna University of Technology in the middle of the year 2003 and then further developped
in the friendly and inspiring atmosphere of the Brainstorming Week on Membrane Computing
taking place at Sevilla in the first week of February 2004, where the first author could take
advantage of the fruitful discussions with several participants.

References

[1] Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer-Verlag,
Berlin, 1989.

[2] Freund, R., Oswald, M.: GP systems with forbidding context. Fundamenta Informaticae,
49, 1-3 (2002), 81–102.

[3] Freund, R., Martin-Vide, C., Păun, Gh.: From regulated rewriting to computing with
membranes: collapsing hierarchies. Theoretical Computer Science, 312 (2004), 143–188.

[4] Hopcroft, J., Ulmann, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[5] Krishna, S.N., Rama, R., A variant of P systems with active membranes: solving NP-
complete problems. Romanian J. of Information Science and Technology, 2, 4 (1999), 357–
367.

[6] Martin-Vide, C., Păun, Gh.: Elements of Formal Language Theory for Membrane Comput-
ing. Technical Report 21/01 of the Research Group on Mathematical Linguistics, Rovira i
Virgili University, Tarragona (2001).

[7] The P Systems Web Page: http://psystems.disco.unimib.it/

[8] Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences, 61, 1
(2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

[9] Păun, Gh.: Computing with membranes: an introduction. Bulletin EATCS, 67 (1999),
139–152.

[10] Păun, Gh.: P systems with active membranes: Attacking NP complete problems, Journal
of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

[11] Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.

204

[12] Păun, Gh., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane division in
P systems, Proc. Conf. on Words, Languages, and Combinatorics, Kyoto, 2000.

[13] Salomaa, A., Rozenberg, G. (eds.): Handbook of Formal Languages. Springer-Verlag, Berlin,
1997.

205

