
An Efficient Cellular Solution
for the Partition Problem

Miguel Angel GUTIÉRREZ-NARANJO
Mario J. PÉREZ-JIMÉNEZ
Agust́ın RISCOS-NÚÑEZ

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {magutier, marper, ariscosn}@us.es

Abstract. Numerical problems are not very frequently addressed in the P sys-
tems literature. In this paper we present an effective solution to the Partition
problem via a family of deterministic P systems with active membranes using
2-division. The design of this solution is a sequel of several previous works on
other problems, mainly the Subset-Sum and the Knapsack problems but also
the VALIDITY and SAT. Several improvements are introduced and explained.

1 Introduction

Cellular Computing is a recent branch of Natural Computing initiated in [4]. Its goal is
to abstract computing models from the structure and the functioning of living cells.

The present paper is focused in the design of a family of P systems that solves a
numerical NP-complete problem, and in the formal verification of this solution. Also the
similarities with the solutions presented in [6], [7], [9] and [10] will be highlighted and
some conclusions will be extracted from them.

The analysis of the solution presented here will be done from the point of view of
the complexity classes. A complexity class for a model of computation is a collection of
problems that can be solved (or languages that can be decided) by some devices of this
model with similar computational resources.

In this paper we present a polynomial complexity class in cellular computing with
membranes inspired in some ideas of Gh. Păun ([3], section 7.1) discussed with some
members of the Research Group on Natural Computing from the University of Seville.
This class allows us to detect some intrinsic difficulties of the resolution of a problem in
the model above mentioned.

The paper is organized as follows: first a formal definition of recognizer P systems is
given in the next section; then, in section 3 the polynomial complexity class PMCAM is
introduced; in sections 4 and 5 a cellular solution for the Partition problem is presented,
together with some comments; and finally some final remarks are given in section 6.

237

2 Preliminaries

Recall that a decision problem, X, is a pair (IX , θX) such that IX is a language over a
finite alphabet (whose elements are called instances) and θX is a total boolean function
over IX .

Definition 1 A P system with input is a tuple (Π, Σ, iΠ), where:

• Π is a P system, with working alphabet Γ, with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them.

• Σ is an (input) alphabet strictly contained in Γ.

• The initial multisets are over Γ− Σ.

• iΠ is the label of a distinguished (input) membrane.

Definition 2 Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working alphabet of Π,
µ the membrane structure, and M1, . . . ,Mp the initial multisets of Π. Let m be a multiset
over Σ. The initial configuration of (Π, Σ, iΠ) with input m is (µ0,M0), where µ0 = µ,
M0(j) = Mj, for each j 6= iΠ, and M0(iΠ) = MiΠ ∪m.

Remark. 1 We denote by IΠ the set of all inputs of the P system Π. That is, IΠ is a
collection of multisets over Σ.

The computations of a P system with input m ∈ M(Σ), a multiset over Σ, are defined
in a natural way. The only novelty is that the initial configuration must be the initial
configuration of the system associated with the input multiset m ∈ M(Σ).

In the case of P systems with input and with external output, the concept of computa-
tion is introduced in a similar way but with a small change. In the configurations, we will
not work directly with the membrane structure µ but with another structure associated
with it including, in some sense, the environment.

Definition 3 Let µ = (V (µ), E(µ)) be a membrane structure. The membrane structure
with environment associated with µ is the rooted tree Ext(µ) such that: (a) the root of
the tree is a new node that we will denote env; (b) the set of nodes is V (µ) ∪ {

env
}
; and

(c) the set of edges is E(µ) ∪ {{env, skin}}. The node env is called environment of the
structure µ.

Note that we have only included a new node representing the environment which is only
connected with the skin, while the original membrane structure remains unchanged. In
this way, every configuration of the system informs about the contents of the environment.

Definition 4 A language accepting P system is a P system with input,
(Π,Σ, iΠ), and with external output, such that the output alphabet contains only
two elements: Y es and No.

This definition is stated in a general way, but in this paper P systems within the active
membrane model will be used. We refer to [3] (see chapter 7) for a detailed definition of
evolution rules, transition steps, and configurations in this model.

Now let us define the Output function for our P systems. Given a computation C =
{Ci}i<r, we will denote by M j

env the content of the environment in the configuration Cj .

238

Definition 5 The output of a computation C = {Ci}i<r is:

Output(C) =

Y es, if C is halting, Y es ∈ M r−1
env and No /∈ M r−1

env ,
No, if C is halting, No ∈ M r−1

env and Y es /∈ M r−1
env ,

not defined, otherwise.

If C satisfies any of the two first conditions, then we say that it is a successful compu-
tation.

Definition 6 A language accepting P system is said to be valid if for every halting com-
putation, and only for them, one symbol Y es or one symbol No (but not both) is sent out
(in the last step of the computation).

Definition 7 We say that C is an accepting computation (respectively, rejecting compu-
tation) if the object Y es (respectively, No) appears in the environment associated with
the corresponding halting configuration of C; that is, if Y es = Output(C) (respectively,
No = Output(C)).

Definition 8 A language recognizer P system is a valid language accepting P system such
that all its computations halt.

This recognizer systems are specially suitable when trying to solve decision problems.

3 The Complexity Class PMCAM

Roughly speaking, a computational complexity study of a solution for a problem is an
estimation of the resources (time, space, ...) that are required through all the processes
that take place in the way from the bare instance of the problem up to the final answer.

The first results about “solvability” of NP–complete problems in polynomial time
(even linear) by cellular computing systems with membranes were obtained using variants
of P systems that lack an input membrane. Thus, the constructive proofs of such results
need to design one system for each instance of the problem.

If we wanted to perform such a solution of some decision problem in a laboratory, we
will find a drawback on this approach: a system constructed to solve a concrete instance is
useless when trying to solve another instance. This handicap can be easily overtaken if we
consider a P system with input. Then, the same system could solve different instances of
the problem, provided that the corresponding input multisets are introduced in the input
membrane.

Instead of looking for a single system that solves a problem, we prefer designing a
family of P systems such that each element decides all the instances of “equivalent size”,
in certain sense.

Before introducing the definition of the complexity class we deal with, we need some
preliminary notions.

Let us denote byAM the class of language recognizer P systems with active membranes
using 2-division (see [3], section 7.2).

Definition 9 Let L be a language and Π = (Π(t))t∈N a family of P systems with ac-
tive membranes using 2-division. A polynomial encoding of L in Π is a pair (cod, s) of
polynomial-time computable functions, cod : L → ⋃

t∈N IΠ(t), and s : L → N such that for
every u ∈ L we have cod(u) ∈ IΠ(s(u)).

239

That is, for each word u of the language L, we have a multiset cod(u) and a number
s(u) associated with it such that cod(u) is a multiset of input for the P system Π(s(u)).

Lemma 3.1 Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages. Let Π = (Π(t))t∈N a family of
P systems with active membranes using 2-division. If r : Σ∗1 → Σ∗2 is a polynomial-time
reduction from L1 to L2, and (cod, s) is a polynomial encoding of L2 in Π, then (g◦r, h◦r)
is a polynomial encoding of L1 in Π.

Proof. This result follows directly from the previous definition. For a detailed proof, we
refer the reader to [9]. 2

Considering all the definitions already presented, we are now ready to give the definition
of the complexity class PMCAM, which is based on the one given in [9].

Definition 10 We will say that a decision problem, X = (IX , θX), is solvable in poly-
nomial time by a family of language recognizer P systems with active membranes using
2-division, and we denote this by X ∈ PMCAM, if there exists a family of P systems,
Π =

(
Π(t)

)
t∈N

, with the following properties:

1. The family Π is consistent, with regard to the class AM; that is, ∀t ∈ N (Π(t) ∈
AM).

2. The family Π is polynomially uniform, by Turing machines; that is, there exists a
deterministic Turing machine constructing Π(t) from t in polynomial time.

3. There exist two functions, cod : IX → ⋃
t∈N IΠ(t) and s : IX → N+, computable in

polynomial time, such that:

• For every u ∈ IX , cod(u) ∈ IΠ(s(u)).

• The family Π is polynomially bounded, with regard to (X, cod, s); that is, there
exists a polynomial function, p, such that for each u ∈ IX every computation
of the system Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps.

• The family Π is sound, with regard to (X, cod, s); that is, for each u ∈ IX it
is verified that if there exists an accepting computation of the system Π(s(u))
with input cod(u), then θX(u) = 1.

• The family Π is complete, with regard to (X, cod, s); that is, for each u ∈ IX

it is verified that if θX(u) = 1, then every computation of the system Π(s(u))
with input cod(u) is an accepting one.

Remark. 2 Note that, as a consequence of the above definition, the complexity class
PMCAM is closed under complement (because we use recognizer P systems).

Proposition 1 Let X and Y be decision problems such that X is reducible to Y in poly-
nomial time. If Y ∈ PMCAM, then X ∈ PMCAM.

That is, the complexity class PMCAM is stable under polynomial-time reduction. The
proof of this result can also be found in [9].

240

4 Solving the Partition Problem in Linear Time

The Partition problem can be stated as follows:

Given a set A of n elements, where each element has a “weight” wi ∈ N,
decide whether or not there exists a partition of A into two subsets such that
they have the same weight.

We will represent the instances of the problem using tuples of the kind (n, (w1, . . . , wn)),
where n is the size of the set A and (w1, . . . , wn) is the list of weights of the elements from
A. We can define in a natural way an additive function w that corresponds to the data in
the instance.

We will address the resolution of the problem via a brute force algorithm, in the frame-
work of language recognizer P systems with active membranes using 2-division, without
cooperation nor priority among rules. Our strategy will consist in:

• Generation stage: membrane division is used until a specific membrane for each pair
(B,Bc) is obtained, where B is a subset of A that contains the element a1 (this
condition is stated to avoid considering twice the same pair).

• Calculation stage: in each membrane the weight of the associated subset and of its
complementary are calculated.

• Checking stage: in each membrane it is checked whether or not these two weights
coincide.

• Output stage: the answer is delivered according to the results of the checkings.

The family presented here is

Π = {(Π(n), Σ(n), i(n)) : n ∈ N}.
For each element of the family, the input alphabet is Σ(n) = {x1, . . . , xn}, the input

membrane is i(n) = e, and the P system Π(n) = (Γ(n), {e, r, s}, µ,Me,Mr,Ms, R) is
defined as follows:

• Working alphabet:

Γ(n) = {a0, a, b0, b, c, d0, d1, d2, e1, . . . , en, g, ḡ, ĝ, h0, h1, i1, i2, i4, i5, p, p̄, q, x1, . . . , xn,
Y es, No,No0, z1, . . . , z2n+1, #}.

• Membrane structure: µ = [[]e []r]s.

• Initial multisets: Me = e1g; Mr = b0h0 and Ms = z1.

• The set of evolution rules, R, consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 1, . . . , n,
[ei]+e → [ei+1]0e[ei+1]+e , for i = 1, . . . , n− 1.

The goal of these rules is to generate one membrane for each subset of A that contains
a1. In each step (according to the index of ei), we consider an element of A and either we
add it to the subset associated with the membrane, B, or we put it in the complementary
subset, Bc.

241

(b) [x1 → a0]0e; [x1 → p̄]+e ,
[xi → xi−1]+e , for i = 2, . . . , n,
[xi → p̄]−e , for i = 2, . . . , n.

In the beginning, the multiplicities of the objects xj (with 1 ≤ j ≤ n) encode the
weights of the corresponding elements of A. They are not present in the definition of the
system, but they are inserted as input in the membrane labelled by e before starting the
computation: for each aj ∈ A, wj copies of xj have to be added to the input membrane.
During the computation, at the same time as elements are added to the subset associated
with a membrane, objects a0 and p̄ are generated to store the weight of such subset and
of its complementary.

(b2) [en]+e → #,
[a0 → #]0s; [p̄ → #]0s, [g → #]0s.

This rules perform a “cleaning” task dissolving the membranes that are not meaningful
and erasing the contents that these dissolutions spill in the skin membrane. This is not
essential in the design, but it is helpful.

(c) [q → i1]−e , [p̄ → p]−e , [a0 → a]−e ,
[g]−e → []−e ḡ.

When a membrane gets negatively charged, the two first stages (i.e. generation and
calculation stages) end, and then some transition rules are applied. Objects a0 and p̄,
whose multiplicities encode the weights of the associated subset and of its complementary,
are renamed for the next stage, when their multiplicities are compared. Also an object g
is sent out and the total weight of all the elements that have not been considered in the
generation stage is added to the complementary.

(d) [a]−e → []0e#, [p]0e → []−e #.

These rules implement the comparison above mentioned (that is, they check whether
w(B) = w(Bc) holds or not). They work as a loop that erases objects a and p one by one
alternatively, changing the charge of the membrane in each step.

(e) [i1 → i2]−e , [i2 → i1]0e.

A marker that controls the previous loop is described here. The index of ij and the
electric charge of the membrane give enough information to point out if the number of
objects a is greater than (less than or equal to) the number of objects p.

(f) [i1]0e → []+e No.

If a subset B ⊆ A verifies that w(B) > w(Bc), then inside the relevant membrane
that encodes it (this will be defined later) there will be less objects p than a. This forces
the loop described in (e) to halt: the moment will come when there are no objects p left,
and then the rule [i2 → i1]−e will be applied but it will not be possible to apply the rule
[p]0e → []−e # at the same time. Thus, an object i1 will be present in the membrane and
the latter will be neutrally charged, so the rule (f) will be applied ending the checking
stage with negative result.

(g) [i2 → i4c]−e ,
[c]−e → []0e#, [i4 → i5]0e,
[i5]0e → []+e Y es, [i5]−e → []+e No.

242

If, on the contrary, w(B) ≤ w(Bc) holds, then the objects a will be exhausted before
the objects p. It is important to distinguish between the cases where the multiplicity
of p is strictly greater than the multiplicity of a and the cases where both multiplicities
coincide. This is why object c gives again neutral charge to the membrane and then
object i5 checks if a rule [p]0e → [e]−e # is applied or not.

(h) [p → #]+e , [a → #]+e #.

If after the checking loop of rules in (d) has finished there are still some objects p or
a in the membrane, they can be erased (again, just for “cleaning” purposes).

(i) [ḡ → ĝ]+s ,
ĝ[]+e → [ĝ]0e.

Before the answer is sent out, the system has to make sure that all the relevant
membranes have finished their checking stages. This is done using the objects g that are
present in the skin and the auxiliary membrane labelled by r (see the next set of rules).
There must be 2n−1 copies of g, because each relevant membrane sends one, and there is
one relevant membrane for each B ⊆ A such that a1 ∈ B, that is 2n−1 in all.

(j) d0[]−r → [d0]0r,
[h0 → h1]0r, [h1 → h0]+r ,
[b0]0r → []+r b, ĝ[]+r → [ĝ]0r,
b[]0r → [b0]+r , [ĝ]+r → []0r ĝ,
[h0]1r → []+r d2, [d2]+s → []−s d2.

The membrane labelled by r is present in the initial configuration, but remains
inactive until an object d0 “wakes it up”. The purpose of the membrane is to perform
a loop where the objects ĝ are involved, and thus we can detect if there are no objects
ĝ present in the skin region. This fact will mean that all the relevant membranes have
finished their checking stage, and that the system is ready to send out the answer (Y es
or No).

(k) [No → No0]−s ,
[Y es]−s → []0sY es,
[No0]−s → []0sNo.

Finally, the output process is activated. The skin membrane needs to be negatively
charged before the answer is sent out. Object d2 takes care of this (see the previous set of
rules) and then, if the answer is affirmative, an object Y es will be sent out recovering the
neutral charge for the skin. Note that the answer Y es has some priority over the negative
answer, in the sense that we first check if there is any object Y es and then, if it is not the
case, the answer No will be sent out.

5 Improving the Design

If one studies how the generation stage works, one can notice that the number of spare
membranes that are generated and immediately dissolved (the ones with positive charge
and containing the object en) is actually 2n−1, the same amount that of relevant mem-
branes. In the formal model we do not worry about this, because this space is created
during the computation, and thus it is not needed a priori. But if we try to run a simula-
tion of the design in a computer, then the space complexity becomes much more important.

243

Even if we use the trick of dissolving the membranes immediately after being generated,
the resources used are too much.

A possible solution is to avoid the generation of such useless membranes. This can be
done for example using a division strategy that follows a complete binary tree structure.
We are not using this strategy because we have the intention to get some of the relevant
membranes before the generation stage ends, instead of getting all the membranes together
after a linear number of steps. This is motivated because we are looking for better efficiency
in the best or average case.

Here is a proposal:

Generation stage

[ei]0e → [q]0e[ei]+e , for i = 1, . . . , n− 1,

[en → q]e
0,

[ei]+e → [ei+1]0e[ei+1]+e , for i = 1, . . . , n− 2,

[en−1]+e → []0e#,

[e′i → e′i+1]e
+, [e′′i → e′i+1]e

+, for i = 1, . . . , n− 2,

[e′i → e′′i]e
0, [e′′i → λ]e

0, for i = 1, . . . , n− 1,

[e′n−1 → en]e
+, [e′′n−1 → en]e

+.

In this new approach, we do not produce any useless membrane, so the dissolving rules
are no longer needed. Furthermore, only two electrical charges are used. Although the
sequence of electrical charges of a membrane is still meaningful, the end of the stage is not
marked anymore now by getting negative charge, but by having neutral charge for two
consecutive evolution steps (see [1] for an example of using active membranes with only
two charges). This condition is controlled by the “witness-objects” e′i and e′′i , that show
whether in the previous step the charge was 0 (e′′i) or + (e′i).

If we want to use these rules instead of the rules in (a), then the checking stage needs
also to be adapted, and this could be done as follows:

Weight calculation stage

[x1 → a0]0e, [x1 → p̄]+e ,

[x′1 → a0]0e, [x′1 → p̄]+e ,

[xi → xi−1]+e , for i = 2, . . . , n,

[x′i → xi−1]+e , for i = 2, . . . , n,

[xi → x′i]
0
e, for i = 2, . . . , n,

[x′i → p̄]0e, for i = 2, . . . , n.

This stage is almost the same as it was in the former designs, but again it is necessary
to introduce “witness-objects” to detect when the generation stage finishes, because in
this moment the calculation stage must also conclude.

244

6 Final Remarks

The designs proposed here try to be as general as possible, and at the same time we try
to be uniform, in the sense that the design of a family of P systems that solves a problem
is not made thinking on one P system for each instance of the problem. Instead, each
P system of the family can deal with a set of instances of the same size (in this case,
with the same value of n, independently of the values of the weight function), receiving at
the beginning of the computation an input that encodes the concrete instance. It is also
important that the number of steps of the computations is polynomial (preferably linear)
with respect to the input given; in the case of Partition the number of steps is of a linear
order.

Several numerical problems have already been solved with similar techniques: the
Subset-Sum problem ([6]), the Knapsack problem ([7]) and the Partition problem (in
this paper), among others. This fact gives rise to the following question: is it possible
to formalize a procedure of “reusing rules”? This question is addressed in [11], in this
volume.

Some first attempts in this direction have already been made, in the framework of the
P systems simulator in Prolog (see [2]). Several files have been created, containing the
instructions to generate the evolution rules that deal with the different problems (following
the schemes given in the corresponding designs), and now we are working to put these
files together and reuse somehow the information.

Another research topic related with these ideas is trying to formalize what means poly-
nomial reduction performed by P systems. It will be nice to have a definition of a complex-
ity class that only depends on P systems parameters, without including a polynomial-time
precomputing process (which is somehow unnatural).

Finally, the omnipresent burden of membrane computing: still not implemented in
labs (neither in other physical means). Chemical processes in nature are often cyclic,
or reversible. Maybe instead of trying to bridge the definition of the P systems model
with biology, a more reachable goal is to bridge the “subroutines language” of membrane
computing with cellular biochemistry.

Acknowledgements. The support of this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds, is gratefully acknowledged.

References

[1] Alhazov, A., Freund, R., Păun, Gh.: P systems with active membranes and two
polarizations, in the present volume.

[2] Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. Sancho-Caparrini,
F.: A Prolog simulator for deterministic P systems with active membranes, New
Generation Computing, to appear.

[3] Păun, Gh.: Membrane Computing. An introduction, Springer-Verlag, Berlin, 2002.

[4] Păun, Gh.: Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

245

[5] Păun, Gh., Rozenberg, G.: A guide to membrane computing, Theoretical Computer
Sciences, 287 (2002), 73–100.

[6] Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active
membranes,New Generation Computing, to appear.

[7] Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear solution for the Knapsack problem
using active membranes, in C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg and
A. Salomaa (eds.), Membrane Computing. Lecture Notes in Computer Science, vol.
2933, 2004, 250–268.

[8] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Teoŕıa de la Com-
plejidad en modelos de computation celular con membranes, Editorial Kronos, Sevilla,
2002.

[9] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division,Proceedings of the 5th Workshop
on Descriptional Complexity of Formal Systems, Budapest, Hungary.

[10] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Solving VALIDITY
problem by active membranes with input, Proceedings of the Brainstorming Week
on Membrane Computing, M. Cavaliere, C. Mart́ın-Vide, Gh. Păun (eds.), Report
GRLMC 26/03, 2003, 279–290.

[11] Riscos-Núñez, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Towards a pro-
gramming language in cellular computing, in the present volume.

246

