
Parallel Simulation of Probabilistic P Systems
on Multicore Platforms

Miguel A. Mart́ınez-del-Amor1, Ian Karlin2, Rune E. Jensen2,
Mario J. Pérez-Jiménez1, Anne C. Elster2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, marper@us.es

2 High Performance/Heterogeneous and Parallel Computing Lab
Department of Computer and Information Science
Norwegian University of Science and Technology
Sem Sælands vei 9, NO-7491, Trondheim, Norway
E-mail: Ian.Karlin@colorado.edu, runeerle@idi.ntnu.no, elster@idi.ntnu.no

Summary. Ecologists need to model ecosystems to predict how they will evolve over
time. Since ecosystems are non-deterministic phenomena, they must express the likeli-
hood of events occurring, and measure the uncertainty of their models’ predictions. One
method well suited to these demands is Population Dynamic P systems (PDP systems, in
short), which is a formal framework based on multienvironment probabilistic P systems.
In this paper, we show how to parallelize a Population Dynamics P system simulator,
used to model biological systems, on multi-core processors, such as the Intel i5 Nehalem
and i7 Sandy Bridge. A comparison of three different techniques, discuss their strengths
and weaknesses, and evaluate their performance on two generations of Intel processors
with large memory sub-system differences is presented. We show that P systems are
memory bound computations and future performance optimization efforts should focus
on memory traffic reductions. We achieve runtime gains of up to 2.5x by using all the
cores of a single socket 4-core Intel i7 built on the Sandy Bridge architecture. From our
analysis of these results we identify further ways to improve the runtime of our simulator.

Key words: Population Dynamics, P systems, Parallel Simulation, Multicore
Computing, OpenMP

1 Introduction

Multienvironment probabilistic P systems are used to model species in real ecosys-
tems, such as the bearded vulture in the Catalan Pyrenees [4] and zebra mussels in

18 Miguel A. Mart́ınez-del-Amor et al.

the Ribarroja reservoir [3]. They conform a formal framework for ecological mod-
elling called Population Dynamics P systems. These models are first validated by
a software tool, and can reproduce actual measurements taken in a given number
of years [4]. The goal of work is to be able to use P systems simulations to adopt
a priori management strategies for the real system. However, P systems are com-
putationally and data expensive with large systems, such as the one modelling the
zebra mussel ecosystem, taking hours to run on a single set of input parameters
on a single core processor.

Due to the probabilistic behaviour of these systems, ecological experts and
model designers run many simulations on each set of input parameters to extract
statistical information of the likelihood of certain behaviours occurring [4]. This
makes the systems large. The more simulations run, the more confident they can
be in the model’s output. Also, the more input parameters they test, the greater
certainty that the real-life experiments they run will yield useful knowledge. There-
fore, the overall runtime of the simulations is critical.

This paper describes our initial parallelization work, which includes implement-
ing a C/C++ version of the DCBA algorithm [7]. We have designed an implemen-
tation which saves on memory by avoiding the creation of a static table. We also
choose C for its similarity to the common GPGPU (General Purpose computations
on Graphics Processing Units) languages of OpenCL and CUDA, and the support
of many parallel libraries. Our new implementation is parallelized in three ways: 1)
simulations, 2) environments and 3) a hybrid approach. All them are implemented
using the parallel standard library for multicore platforms, OpenMP [1]. From our
analysis of these results we identify further ways to improve the runtime of our
simulator, by minimizing memory and cache bottlenecks using data compression
and GPU computing. Ideas and references on compression and GPU computing
can be found in [2].

The rest of the paper is organized as follows: Section 2 gives an overview of the
P systems framework that includes our simulator. Section 3 discusses the three
forms of parallelism we introduced into the simulator and the advantages and
disadvantages of each. Section 4 contains experimental results from testing out
initial parallelization efforts. Finally, conclusions and future work are presented in
Section 5.

2 System overview

The simulator we are optimizing and parallelizing is included in a P systems based
modelling framework that contains four design levels. An overview of the frame-
work is shown in Figure 1 along with the domain specific knowledge needed to
implement each level. At the top level, ecological experts express living systems
as inputs based upon observed data and/or conditions they wish to test. Example
inputs include the number of organisms living in the ecosystem, temperature data
and the probabilities of events happening. These inputs are then fed into proba-

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 19

bilistic P systems with the assistance of the model designers, which provide the
rules used by the model.

Fig. 1. Framework levels and expertise needed

The probabilistic P system software level currently uses a framework called
PLinguaCore [6]. PLinguaCore is written in Java, and contains implementations
of different types of P systems, along with a standard specification language for
P systems known as P-Lingua. Both ecologists and model designers run their
simulations using this framework through a software tool called MeCoSim [9] that
provides an abstraction layer for non-experts in P system models.

The execution of the rules input by the model designer occurs in the simula-
tion algorithms, which are implemented in common programming languages. Fast
execution of the algorithms is important to ecological experts and model design-
ers. Also, ecological experts often simulate many hypotheses before deciding which
hypotheses to experimentally evaluate. The simulation algorithm and implementa-
tion levels are the most time consuming parts of the simulations, and thus, where
we focus on improving performance.

Algorithm 1 Main loop of the simulator

1: for sim← 0, . . . , simulations do
2: INITIALIZATION
3: for step← 0, . . . , time steps do
4: for env ← 0, . . . , environments do
5: SELECTION OF RULES
6: end for
7: for env ← 0, . . . , environments do
8: EXECUTION OF RULES
9: end for

10: end for
11: end for

20 Miguel A. Mart́ınez-del-Amor et al.

The last simulation algorithm for PDP systems is the DCBA algorithm [7]. A
high level algorithm representation of our simulator is shown in Algorithm 1. The
outermost loop runs the simulation multiple times as specified by the user. The
next loop performs the discrete time steps that advance the simulation. The time
steps are performed in two stages: selection and execution. During the first stage
(selection) all environments, which each represent discrete parts of an ecosystem
with different properties, have rules selected to be executed on them. All environ-
ments have the same rules, but the associated probability indicating the likelihood
of them being executed varies between environments. In the second stage (exe-
cution) of a time step, the rules are executed. During a time step, environments
evolve independently, but between time steps can communicate objects.

Rules are classified into rule blocks by their left-hand sides (consuming the
multisets of objects in the same compartments, and according to the same charge
of the active membrane) and the charge of the active membrane in the right-hand
side (consistent blocks [7]). The probabilities of the rules within a block sum 1
(they have local meaning inside the blocks).

Selection stage is split into three micro-phases (see [7] for more details): phase 1
(object distribution), phase 2 (maximality) and phase 3 (probabilities). The DCBA
algorithm uses a table for phase 1 in order to distributes the objects along the rule
blocks. This table has one column per each rule block, and one row per each pair
object and membrane (also considering the environment itself). Therefore, the size
of the table is of order O(|B| · |Γ| · (q+1)), being |B| the number of rule blocks, |Γ|
the size of the alphabet (total amount of different objects), and q + 1 the number
of membranes in the system plus the space for the environment in each one.

The implementation of this table can be inefficient in systems with a large
number of rule blocks and/or objects. Therefore, our simulator does not really
implement the table. The main baseline idea is to translate operations over the
table to operations directly to the rule blocks:

• Operations over columns: they can be transformed to operations over the rule
blocks and their left-hand sides (LHS in short).

• Operations over rows: they can be transformed to operations over the left-hand
sides of rule blocks and storing the partial result in a global variable for each
row.

Phase 1 can be implemented as shown in Algorithm 2. Phase 2, phase 3 and ex-
ecution stage can be directly implemented following the corresponding definitions
in [7].

Remark that in this implementation, instead of using a real table, we virtually
implement it by using operations over the information of the rule blocks. Actually,
two extra vectors are only used:

• Activation vector : We annotate the blocks that has not been filtered by a
boolean value.

• Addition vector : We add the values of the rows by using this global vector, one
per each pair object and membrane.

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 21

Algorithm 2 Selection Phase 1 (Distribution)

1: Apply Filter 1 : for each block, if the charge in the LHS is different to the one presented
in the configuration, then deactivate the block: activationV ector[b] = false.

2: Apply Filter 2 : for each block, if one of the objects involved in the left-hand side
does not exist in Ct, then deactivate the block: activationV ector[b] = false.

3: Check the mutually consistency of blocks.
4: repeat
5: For each active block, and for each object in the left-hand side, add the multi-

plicity k appearing in the block to a global variable for the corresponding object
(addition[object,membrane]+ = k).

6: For each active block, calculate the minimum of the object distributions in the
left-hand side: Nb = Min[ok]m∈LHS(block)(

1
k2 ∗ 1

addition[o,m]
∗ C[o,m]). This is the

number of applications for block b: NumAppBlocks[b]+ = Nb.
7: Delete objects in the configuration C, corresponding with Nb.
8: Apply Filter 2.
9: a = a + 1

10: until a == A or every Nb == 0

3 Design and parallelism

Before we introduced parallelism, we first rewrote the simulator in C/C++ which
is advantageous because OpenMP, PThreads and MPI all are supported. In this
section, we describe the implementation of the three forms of parallelism added
to our simulator. A discussion of the advantages and disadvantages of each is
included.

Simulations are parallelized by using the #pragma omp parallel for OpenMP
directive on the simulation loop from Algorithm 1. The advantage of running sim-
ulations in parallel is there are no data dependencies between simulations, and,
therefore, the problem is embarrassingly parallel. Also, the users of our simula-
tor typically run 50 to 100 simulations of each set of input parameters, so there
are enough simulations to consume all cores. However, there are disadvantages of
running simulations in parallel. Each simulation needs its own memory space in-
creasing the amount of memory used. If the number of simulations is not divisible
by the number of processors then load balancing issues can occur with the final
simulations running while some cores are idle. Also, running simulations in parallel
can result in resource conflicts as cores compete for shared resources.

Environments are parallelized by using the #pragma omp parallel to generate
a thread pool for the simulation. Then the for loops in Algorithm 1 that iterate
over environments are parallelized with #pragma omp for, which has an implicit
barrier that enforces the dependencies between the stages in each time step. Using
this design, creating new thread blocks for each for loop is avoided.

The advantage of parallelizing environments over simulations is that memory
usage does not increase. However, dependencies occur twice in each time step re-
quiring synchronization steps. Also, since most models use 5 to 30 environments,
there are cases where modern machines have more cores than environments and

22 Miguel A. Mart́ınez-del-Amor et al.

just parallelizing environments cannot take advantage of all computing resources.
In addition, as with simulations, load balancing can be an issue if the number of
environments is not divisible by the number of cores, or if the runtime of environ-
ments varies.

Hybrid parallelization is accomplished by combining parallel environments
with parallel simulations. We accomplish hybrid parallelization through command-
line flags that allow the specification of how many environments or simulations to
run in parallel. By combining both forms of parallelism, we can balance the amount
of each resource used. This will become more important as the number of cores
within a node increases. For example, the number of simulations can be increased
until available memory is used and then environments within each system can be
parallelized.

4 Experimental Evaluation

In this section, we describe a series of tests performed on our implementation and
the systems they were run on, along with the results from those experiments.

4.1 Test Environment and Methodology

The following experiments were run on the two machines shown in Table 1. The
tests used random systems with similar amounts of data to real-life examples. Mul-
tiple configurations with environments and simulations varying from 10 to 50 were
tested for the parallel environments, simulations and two hybrid combinations.
Each of these tests were run on 1 to 8 cores for the Intel i5 machine, and 1 to 4
for the Intel i7. The measurements in this section, except when noted, correspond
only to the parallelized part of the code.

Processor Speed Bus speed Cache

i5 Nehalem (2x4) 2 Ghz 3x800 Mhz 2x4 MB
i7 Sandy Bridge (1x4) 3.4 Ghz 2x1333 Mhz 8 MB

Table 1. Specifications of the test machines.

4.2 Results

The serial runtime on both of our test machines is shown in Table 2. Setup is the
cost of running the serial portion of the code. The other two columns represent
the runtime extremes of our test cases when run in serial. From the table, we can
see that in serial the setup portion is a small part of the overall runtime, and that
the Sandy Bridge processor is about 2.5 times faster than the Nehalem.

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 23

Processor Setup 10 env & sim 50 env & sim

Nehalem 0.8s 48.0s 251.0s
Sandy Bridge 0.35s 19.9s 97.8s

Table 2. Serial Runtimes

Figures 2 and 3 show the performance improvements of parallelizing our system
in various ways. The two figures are representative of the other tests we performed
with the best performance either being parallelizing by simulations or the hybrid
method (2s), which uses two simulations and then parallelizes by environments.
Another trend shown is that as the number of simulations increases, the advantage
of parallelizing by simulations increases. The same effect is observed for environ-
ments.

� � � � � � � �

�

�	�

�	�

�	�

�	�

�

�	�

�	�

����������

���������

��������

��������

�����

�
�
�
�
�
�
�

(a) Nehalem

! " # $

!

!%"

!%$

!%&

!%'

"

"%"

"%$

"%&

()*+,-)./)01

2+.3450+-)1

678,+9:"1

678,+9:"/

;-,/1

1
<
/
/
9
3
<

(b) Sandy Bridge

Fig. 2. Speedups running 50 simulations with 10 environments in the system

On the Sandy Bridge system the largest speedup of 2.5x occurs for 50 simu-
lations and 50 environments. However, the maximum speedup on Sandy Bridge

24 Miguel A. Mart́ınez-del-Amor et al.

! " # $ % & ' (

!

!)"

!)$

!)&

!)(

"

")"

")$

*+,-./+01+23

4-05672-/+3

89:.-;<"3

89:.-;<"1

=/.13

3
>
1
1
;
5
>

(a) Nehalem

� � � �

�

���

���

���

���

�

���

���

���

�	
��	��	��

��������	�

���������

���������

����

�
�
�
�
�
�
�

(b) Sandy Bridge

Fig. 3. Speedups running 10 simulations with 50 environments in the system

when going from 3 to 4 processors is only between 0.1 and 0.2, suggesting that
the calculation is memory bound for larger core counts. On the Nehalem machine,
the maximum parallel speedup was 2.3x for all tests, which is barely greater than
the added available bandwidth from using the second socket. These results, led
us to suspect we that the Nehalem system’s performance was being limited our
programming approach. In particular, we did not account for the Non Uniform
Memory Access (NUMA) memory subsystem of the two sockets.

One final test was run to see if NUMA was hurting the performance of our code
on the Nehalem machine. First one and then two instances of the code was run
with 4 threads each (affinity locked to different sockets) on the machine. With two
instances a 2x speedup was achieved over the best parallel results from running
one instance of the OpenMP version. Confirming this result is that locking all
4 threads to a single socket performance results in a 50% performance increase
when compared to locking 2 threads to each socket. For the current tests, however,
affinity is controlled by the operating system and performance is similar to when

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 25

two threads were locked to each socket. These preliminary tests also indicates that
the code is memory bound since overall speedups on 8 cores were less than 5x.

5 Conclusions and future work

In this paper, we showed how P systems simulations can take advantage of modern
multi-core architectures. Our implementation included three forms of parallelism.
Experiments ran to test the simulator indicate the simulations are memory bound
and the portion of the code we parallelized consumes over 98% of the runtime
in serial. From this initial work we conclude that parallelizing by simulations or
hybrid techniques yields the largest speedups. Also, using hardware, such as Intel’s
Sandy Bridge, that has more memory bandwidth is an easy way for scientists to
improve the speed of our simulator. It can also be concluded that performance
tuning to decrease data movement is important for P-system simulators.

Future Work

This paper leaves open many research questions that we plan to explore by building
on this work. We have experience overlapping communication and computation [8]
and compressing data [2] both of which will be especially important on GPUs.
We anticipate large speedups from using GPUs due to their increased memory
bandwidth and computational capabilities. In addition, we plan to leverage our
experience tuning shared memory systems to other optimizations for NUMA pro-
cessors [5]. Open research questions on NUMA machines include how our hybrid
parallel approach will best map to various processor configurations. A hybrid GPU
and CPU code will be able to take advantage of all compute resources on a given
system. Either an OpenCL or CUDA/C hybrid implementation will be used. While
not a high priority because the simulator is usually run on scientists workstations
an MPI version would offer large speedups due to simulations being embarrassingly
parallel.

As core counts continue to increase, exploiting parallelism within the environ-
ments may be profitable. Also, of interest is eliminating or reducing the synchro-
nization required at each time step. While dependencies exist between environ-
ments, not all environments depend on all other environments. For an environ-
ment to begin executing its next step, all environments from which organisms can
migrate into it must be finished. We believe that for simulations with few migra-
tion paths between environments, or with a large number of environments, it is
important balance workloads better.

26 Miguel A. Mart́ınez-del-Amor et al.

Acknowledgments

M.A. Mart́ınez-del-Amor and M.J. Pérez-Jiménez acknowledge the support of
“Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de
Andalućıa” under grant P08-TIC04200, and the support of the project TIN2009-
13192 of the “Ministerio de Educación y Ciencia” of Spain, both co-financed by
FEDER funds.

References

1. The OpenMP specification. ”http://www.openmp.org”.
2. A. A. Aqrawi and A. C. Elster. Bandwidth reduction through multithreaded com-

pression of seismic images. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), pages 1730 –1739, may
2011.

3. M. Cardona, M. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. Pérez-
Jiménez, and D. Sanuy. A computational modeling for real ecosystems based on
p systems. Natural Computing, 10:39–53, 2011.

4. M. A. Colomer, A. Margalida, D. Sanuy, and M. J. Pérez-Jiménez. A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological Modelling, 222(1):33 – 47, 2011.

5. A. C. Elster and J. C. Meyer. A super-efficient adaptable bit-reversal algorithm for
multithreaded architectures. In Proceedings of the 2009 IEEE International Sympo-
sium on Parallel&Distributed Processing, pages 1–8, Washington, DC, USA, 2009.

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M. J. Pérez-Jiménez,
and A. Riscos-Núñez. An overview of p-lingua 2.0. Lecture Notes in Computer Science,
5957:264–288, 2010.

7. M. Mart́ınez-del Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Maćıas-Ramos,
L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani-Dı́az, A. Riscos-Núñez,
M. Colomer, and M. Pérez-Jiménez. Dcba: Simulating population dynamics P systems
with proportional object distribution. In this volume.

8. T. Natvig and A. C. Elster. Run-time analysis and instrumentation for communication
overlap potential. In Proceedings of the 17th European MPI users’ group meeting
conference on Recent advances in the message passing interface, EuroMPI’10, pages
42–49, Berlin, Heidelberg, 2010. Springer-Verlag.

9. I. Pérez-Hurtado, L. Valencia-Cabrera, M. J. Pérez-Jiménez, M. A. Colomer, and
A. Riscos-Núñez. Mecosim: A general purpose software tool for simulating biological
phenomena by means of p systems. In IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), volume I, pages 637–
643, Changsha, China, 2010. IEEE, Inc.

