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Summary. Classical tissue P systems with cell division have a special alphabet whose
elements appear at the initial configuration of the system in an arbitrary large number
of copies. These objects are shared in a distinguished place of the system, called the en-
vironment. Besides, the ability of these computing devices to have infinite copies of some
objects has been widely exploited in the design of efficient solutions to computationally
hard problems.

This paper deals with computational aspects of tissue P systems with cell division
where there is not an environment having the property mentioned above. Specifically,
we establish the relationships between the polynomial complexity class associated with
tissue P systems with cell division and with or without environment. As a consequence,
we prove that it is not necessary to have infinite copies of some objects at the initial
configuration in order to solve NP–complete problems in an efficient way.
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1 Preliminaries

An alphabet, Γ , is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Γ , then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by
λ. The set of all strings over an alphabet Γ is denoted by Γ ∗. In algebraic terms, Γ ∗
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is the free monoid generated by Γ under the operation of concatenation. Subsets,
finite or infinite, of Γ ∗ are referred to as languages over Γ .

The set of symbols occurring in a string u ∈ Γ ∗ is denoted by alph(u).
The Parikh vector associated with a string u ∈ Γ ∗ with respect to the alphabet

Σ = {a1, . . . , ar} ⊆ Γ is ΨΣ(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes the number
of ocurrences of symbol ai in string u. This is called the Parikh mapping associated
with Σ. Notice that, in this definition, the ordering of the symbols from Σ is
relevant. If Σ1 = {ai1 , . . . , air} ⊆ Γ , then we define ΨΣ1(u) = (|u|ai1

, . . . , |u|air
),

for each u ∈ Γ ∗.
A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If

m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. Throughout this paper, we speak
about “the finite multiset m” where m is a string, meaning “the finite multiset
represented by the string m”. If m1 = (A, f1), m2 = (A, f2) are multisets over A,
then we define the union of m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2,
that is, g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows: A \B = {x ∈ A | x /∈ B}.

Finally, for any set A we denote |A| the cardinal (number of elements) of A, as
usual.

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [4].

2 Tissue P Systems with communication rules

Definition 2.1 A tissue P system with communication rules of degree q ≥ 1 is a
tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ ;
3. M1, . . . ,Mq are strings over Γ , representing finite multisets of objects;
4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈

{0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗, |u|+ |v| > 0;
5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system without environment is a tissue P system such that E = ∅. In
this case, alphabet E can be removed from the tuple.
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A tissue P system with communication rules Π = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labelled by 1, . . . , q, with an
environment labelled by 0 such that: (a) M1, . . . ,Mq represent the finite multisets
of objects initially placed in the q cells of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; and (c) iout ∈ {0, 1, 2, . . . , q} represents a distinguished
cell or the environment which will encode the output of the system. We use the
term region i (0 ≤ i ≤ q) to refer cell i in the case 1 ≤ i ≤ q and to refer the
environment in the case i = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of the communication rule (i, u/v, j)
is defined as |u|+ |v|.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P system has an
underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that its connections are defined by
communication rules of the form (i, u/v, j), with i = 0 or j = 0.

The rules of a system like the one above are used in a non-deterministic max-
imally parallel manner as it is customary in membrane computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further applicable rule can be
added).

An instantaneous description or a configuration at any instant of a tissue P
system with communication rules is described by all multisets of objects over Γ
associated with all the cells present in the system, and the multiset of objects over
Γ − E associated with the environment at that moment. Bearing in mind that
the objects from E have infinite copies in the environment, they are not properly
changed along the computation. The initial configuration is (M1, · · · ,Mq; ∅). A
configuration is a halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with communication rules Π. We say that con-
figuration C1 yields configuration C2 in one transition step, denoted C1 ⇒Π C2, if
we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying the rules of the system in a maximally parallel man-
ner with the restrictions previously mentioned; and
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3. if the sequence is finite (called halting computation), then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region iout in the halting configuration.

We denote by Comp(Π) the set of computations of the tissue P system Π.
If C = {Ci}i<r+1 of Π (r ∈ N) is a halting computation, then the length of C
is r, that is, the number of non-initial configurations which appear in the finite
sequence C. We denote it by |C|. We also denote by Ci(j) the contents of cell j at
configuration Ci.

3 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based on
the cell-like model of P systems with membranes division [3]. In these models, the
cells are not polarized; the cells obtained by division have the same labels as the
original cell, and if a cell is divided, its interaction with other cells or with the
environment is locked during the division process. In some sense, this means that
while a cell is dividing it closes its communication channels.

Definition 3.1 A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ ;
3. M1, . . . ,Mq are strings over Γ , representing finite multisets of objects;
4. R is a finite set of rules of the following forms:

(a)Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

(b)Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i ̸= iout and a, b, c ∈
Γ ;

5. iout ∈ {0, 1, 2, . . . , q}.
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A tissue P system with cell division is a tissue P system with communication rules
where also division rules are allowed. When applying a division rule [a]i → [b]i[c]i,
under the influence of object a, the cell with label i is divided into two cells with
the same label; in the first copy, object a is replaced by object b, in the second
one, object a is replaced by object c; all the other objects residing in cell i are
replicated and copies of them are placed in the two new cells. The output cell iout
cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane comput-
ing. At each step, all cells which can evolve must evolve in a maximally parallel
way (at each step we apply a multiset of rules which is maximal, no further ap-
plicable rule can be added), with the following important remark: if a cell divides,
then the division rule is the only one which is applied for that cell at that step; the
objects inside that cell do not evolve by means of communication rules. In other
words, before division a cell interrupts all its communication channels with the
other cells and with the environment. The new cells resulting from division will
interact with other cells or with the environment only at the next step – providing
that they do not divide once again. The label of a cell precisely identifies the rules
which can be applied to it.

4 Recognizer Tissue P Systems

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Many abstract problems are not decision problems. For example,
in combinatorial optimization problems some value must be optimized (minimized
or maximized). In order to deal with such problems, they can be transformed into
roughly equivalent decision problems by supplying a target/threshold value for the
quantity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages can be
established as follows. Given a decision problem X = (IX , θX), its associated
language is LX = {w ∈ IX : θX(w) = 1}. Conversely, given a language L, over an
alphabet Γ , its associated decision problem is XL = (IXL , θXL), where IXL = Γ ∗,
and θXL

= {(x, 1) : x ∈ L}∪{(x, 0) : x /∈ L}. The solvability of decision problems
is defined through the recognition of the languages associated with them.

In order to study the computing efficiency, the notions from classical computa-
tional complexity theory are adapted for membrane computing, and a special class
of cell-like P systems is introduced in [7]: recognizer P systems (called accepting
P systems in a previous paper [6]). For tissue P systems, with the same idea as
recognizer cell-like P systems, recognizer tissue P systems is introduced in [5].

Definition 4.1 A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:
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• (Γ, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell division of degree
q ≥ 1, as defined in the previous section.

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisets M1, . . . , Mq, but none of them
is present in E.

• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
• M1, . . . ,Mq are strings over Γ \Σ.
• iin ∈ {1, . . . , q} is the input cell.
• The output region iout is the environment. In the case of tissue without envi-

ronment, iout is a distinguished cell, that is iout ∈ {1, . . . , q}.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each multiset m over Σ, the computation of the system Π with input m starts
from the configuration of the form (M1,M2, . . . ,Miin + m, . . . ,Mq; ∅), that is,
the input multiset m has been added to the contents of the input cell iin, and we
denote it by Π + m. Therefore, we have an initial configuration associated with
each input multiset m (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division, and a halting computation
C = {Ci}i<r+1 of Π (r ∈ N), we define the result of C as follows:

Output(C) =


yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧

Ψ{yes,no}(Mi,iout) = (0, 0) for i = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧

Ψ{yes,no}(Mi,iout) = (0, 0) for i = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mi,iout is the multiset over Γ \ E associated
with the output region at the configuration Ci, in particular, Mr,iout

is the multiset
over Γ \ E associated with the output region at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (respectively, Output(C) = no), that is, if
object yes (respectively, object no) appears in the output region associated with
the corresponding halting configuration of C, and neither object yes nor no appears
in the output region associated with any non–halting configuration of C.

Let us notice that if a recognizer tissue P system

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

has a rule of the type (i, λ/u, 0) then alph(u)∩(Γ \E) ̸= ∅, because on the contrary
all computations of Π would be non halting.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and with communication rules of length at most

k. In the case of tissue P systems without environment, we denote by T̂DC(k)
the class of recognizer tissue P systems with cell division and with communication
rules of length at most k.
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5 Polynomial Complexity Classes of Tissue P systems

Next, we define what solving a decision problem in the framework of tissue P
systems in a uniform and efficient way means. Bearing in mind that they provide
devices with a finite description, a numerable family of tissue P systems will be
necessary in order to solve a decision problem.

Definition 5.1 We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recog-
nizer tissue P systems (with symport/antiport rules, with cell division or with cell
separation) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input

multiset of the system Π(s(u));
− for each n ∈ IN, s−1(n) is a finite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the
set of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [6].

Next, we prove a technical result concerning recognizer tissue P systems.

Lemma 5.2 Let Π = {Π(n) | n ∈ IN} a family of recognizer tissue P systems
solving a decision problem X = (IX , θX) in polynomial time according to the pre-
vious definition. Let (cod, s) a polynomial encoding associated with that solution.
Let r(n) be a polynomial function such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most r(|u|) steps. Then, there
exists a polynomial function p(n) such that for each instance u ∈ IX , 2p(|u|) is an
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upper bound of the number of objects from E which are moved from the environ-
ment to all cells of the system Π(s(u))+ cod(u) by communication rules along any
computation.

Proof: Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

Let k ∈ IN be such that Π(s(u)) + cod(u) ∈TDC(k). Let M = |M1 + · · ·+Mq|.
Then, any computation of Π(s(u)) + cod(u) performs, at most, r(|u|) transition
steps. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ r(|u|), be a computation of Π. For each
t, 0 ≤ t ≤ m and i, 1 ≤ i ≤ q, we denote by Ct(i) the multiset of objects over Γ
in cell i at time t. We also denote Ct(0) the multiset of objects over Γ \ E in the
environment at time t.

Let us suppose that we apply only communication rules at m consecutive tran-
sition steps. At this situation, for each t (0 ≤ t ≤ m) we compute an upper bound
of |Ct(0)+ Ct(1)+ . . .+ Ct(q)|. Then, for each i, j (0 ≤ i, j ≤ q, i ̸= j) we denote by
At(i, j) the multiset of objects being moved from region j to region i by applying
rules of the type (i, u/v, j) at time t.

Let us construct αt, 0 ≤ t ≤ m, an upper bound of the number of objects
which appear in the whole system (taking all cells into account) at time t. That
is,

αt ≥ |Ct(0) + Ct(1) + . . .+ Ct(q)|
The construction is made by induction on t. For t = 0 we consider α0 = M . Let
t be such that 0 ≤ t < m and for each t′ (0 ≤ t′ ≤ t) let us assume that we have
constructed αt′ such that

αt′ ≥
q∑

i=0

|Ct′(i)|

The number of objects moved into cell i (1 ≤ i ≤ q) at instant t+ 1 is

At(i, 0) +

q∑
j=1,j ̸=i

At(i, j)

The number of objects sent to the environment at instant t+ 1 is

q∑
j=1

At(0, j).

Notice that objects coming to region i from some other cell j were already
present in the previous configuration. Besides, in order to trigger a communication
rule bringing objects from the environment into region i, at least one object in
region i is required, or else one symbol from Γ \ E in the environment. Finally,
recall that the length of communication rules is bounded by k.

From these considerations, we deduce:

q∑
i=1

q∑
j=1,j ̸=i

|At(i, j)| ≤ αt and

q∑
i=1

|At(i, 0)| ≤ αt · k
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Besides,
q∑

j=1

|At(0, j)| ≤ αt · k

Then, we can consider αt+1 = αt + αt · k + αt · k = αt · (1 + 2k). Thus, for each
t (0 ≤ t ≤ m) we define αt = M · (1 + 2k)t. Hence, if we applied in a consecutive
way the maximum possible number of communication rules (without applying any
division rules) to the system Π(s(u)) + cod(u), in any instant of any computation
of the system, M · (1+ 2k)r(|u|) is an upper bound of the number of objects in the
whole system.

Now, let us consider the effects of applying in a consecutive way the maximum
possible number of division rules (without applying any communication rules) to
the system Π(s(u)) + cod(u) when the initial configuration has M · (1 + 2k)r(|u|)

objects. After that, an upper bound of the number of objects in the whole system
by any computation is M · (1 + 2k)r(|u|) · 2r(|u|) · r(|u|). Hence, for each instance
u ∈ IX the number of objects from E which are moved from the environment to the
whole cells of the systemΠ(s(u))+cod(u) is, at most,M ·(1+2k)r(|u|) ·2r(|u|) ·r(|u|).

Then, we consider a polynomial function p(n) such that

p(|u|) ≥ log(M) + r(|u|) · log(1 + 2k) + r(|u|) + log(r(|u|))

for each instance u ∈ IX . The polynomial function p(n) fulfills the property re-
quired at the Lemma.

�

6 Simulating tissue P systems with cell division by means of
tissue P systems with cell division and without environment

The goal of this section is to show that any tissue P system with cell division can
be simulated by a tissue P system with cell division and without environment in
an efficient way.

First of all, we define the meaning of efficient simulations in the framework of
recognizer tissue P systems.

Definition 6.1 Let Π and Π ′ be recognizer tissue P systems. We say that Π ′

simulates Π in an efficient way if the following holds:

1. Π ′ can be constructed from Π by a deterministic Turing machine working in
polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of computations
of Π onto the set Comp(Π ′) of computations of Π ′ such that:
⋆ There exists a deterministic Turing machine that constructs computation

f(C) from computation C in polynomial time.
⋆ A computation C ∈ Comp(Π) is an accepting computation if and only if

f(C) ∈ Comp(Π ′) is an accepting one.
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⋆ There exists a polynomial function p(n) such that for each C ∈ Comp(Π)
we have |f(C)| ≤ p(|C|).

Now, for every family of recognizer tissue P system with cell division solving
a decision problem, we design a family of recognizer tissue P systems with cell
division and without environment efficiently simulating it, according to Definition
6.1.

In what follows throghout this Section, let Π = {Π(n) | n ∈ IN} a family of
recognizer tissue P systems solving a decision problem X = (IX , θX) in polynomial
time according to Definition 5.1, and let p(n) be a polynomial function such that
for each instance u ∈ IX , 2p(|u|) is an upper bound of the number of objects
from E which are moved from the environment to all cells of the system by any
computation of Π(s(u)) + cod(u).

Definition 6.2 For each n ∈ IN, let Π(n) = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)
an element of the previous family of degree q and for the sake of simplicity we
denote p instead of p(n). Let us consider the recognizer tissue P system of degree
q1 = 1 + q · (p+ 2) + |E| with cell division and without environment

S(Π(n)) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
q1 ,R

′, i′in, i
′
out)

defined as follows:

• Γ ′ = Γ ∪ {αi : 0 ≤ i ≤ p− 1}.
• Σ′ = Σ.
• Each cell i ∈ {1, . . . , q} of Π provides a cell of S(Π(n)) with the same label.

In addition, S(Π(n)) has:
– p + 1 new cells, labelled by (i, 0), (i, 1), . . . , (i, p), respectively, for each i ∈

{1, . . . , q}.
– A distinguished cell labelled by 0.
– A new cell, labelled by lb, for each b ∈ E.

• Initial multisets: M′
lb
= {α0}, for each b ∈ E, and

M′
(i,0) = Mi

M′
(i,1) = ∅

. . . . . . . . .
M′

(i,p) = ∅
M′

i = ∅

 (1 ≤ i ≤ q)

• Set of rules:

R′ = R ∪ {[αj ]lb → [αj+1]lb [αj+1]lb : b ∈ E ∧ 0 ≤ j ≤ p− 2}
∪ {[αp−1]lb → [b]lb [b]lb : b ∈ E}
∪ {(lb, b/λ , 0) : b ∈ E}
∪ {

(
(i, j), a/λ , (i, j + 1)

)
: a ∈ Γ ∧ 1 ≤ i ≤ q ∧ 0 ≤ j ≤ p− 1}

∪ {
(
(i, p), a/λ , i

)
: a ∈ Γ ∧ 1 ≤ i ≤ q}
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• i′in = (iin, 0), and i′out = 0.

Let us notice that S(Π(n)) can be considered as an extension of Π(n) without
environment, in the following sense:

⋆ Γ ⊆ Γ ′, Σ ⊆ Σ′ and E = ∅.
⋆ Each cell in Π is also a cell in S(Π(n)).
⋆ There is a distinguished cell in S(Π(n)) labelled by 0 which plays the role of

environment of Π(n).
⋆ R ⊆ R′, and now 0 is the label of a “normal cell” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and we
compare them with the computations of Π(n).

Lemma 6.3 Let C′ = (C′
0, C′

1, . . . ) be a computation of S(Π(n)). For each t (1 ≤
t ≤ p) the following holds:

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ p we have:

C′
t(i, j) =

{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E, there exist 2t cells labelled by lb whose content is:

C′
t(lb) =

{
αt, if 1 ≤ t ≤ p− 1
b, if t = p

Proof: By induction on t.
Let us start with the basic case t = 1. The initial configuration of system

S(Π(n)) is the following:

• C′
0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q we have C′
0(i, 0) = Mi, and C′

0(i, j) = ∅, for 1 ≤ j ≤ p.
• For each b ∈ E , there exists only one cell labelled by lb whose contents is {α0}.

At configuration C′
0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
•

(
(i, 0), a/λ , (i, 1)

)
, for each a ∈ supp(Mi).

Thus,

• For each i (1 ≤ i ≤ q) we have:
C′
1(i) = ∅

C′
1(0) = ∅

C′
1(i, 0) = ∅

C′
1(i, 1) = Mi

C′
1(i, j) = ∅, for 2 ≤ j ≤ p
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• For each b ∈ E , there are 2 cells labelled by lb whose content is {α1}.

Hence, the result holds for t = 1.
By induction hypothesis, let t be such that 1 ≤ t < p, and let us suppose the

result holds for t, that is,

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ p we have:

C′
t(i, j) =

{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E , there exist 2t cells labelled by lb whose contents is C′
t(lb) = {αt}

(because t ≤ p− 1).

Then, at configuration C′
t only the following rules are applicable:

(1) If t ≤ p− 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = p− 1, the rules [αp−1]lb → [b]lb [b]lb , for each b ∈ E .
(3)

(
(i, t), a/λ , (i, t+ 1)

)
, for each a ∈ Γ .

From the application of rules of types (1) or (2) at configuration C′
t we deduce that

there are 2t+1 cells labelled by lb in C′
t+1, for each b ∈ E , whose content is {αt+1},

if t ≤ p− 2, or {b}, if t = p− 1.
¿From the application of rules of type (3) at configuration C′

t, we deduce that

C′
t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ p ∧ j ̸= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce
that C′

t+1(i) = ∅, for 0 ≤ i ≤ q.
This completes the proof of this Lemma.

�

Lemma 6.4 Let C′ = (C′
0, C′

1, . . . ) be a computation of the tissue P system
S(Π(n)). Configuration C′

p+1 is the following:

(1) C′
p+1(0) = b2

p

1 . . . b2
p

m , where E = {b1, . . . , bm}.
(2) C′

p+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
(3) C′

p+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ p.
(4) There exist 2p cells labelled by lb whose content is empty, for b ∈ E.

Proof: From Lemma 6.3, the configuration C′
p is the following:

• C′
p(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C′
p(i, j) =

{
Mi, if j = p
∅, if j ̸= p
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• For each b ∈ E , there exist 2p cells labelled by lb whose content is {b}.

At configuration C′
p only the following rules are applicables:

•
(
(i, p), a/λ , i

)
, for each a ∈ Γ ∩ supp(Mi).

•
(
lb, b/λ , 0

)
, for each b ∈ E .

Thus,

• C′
p+1(0) = b2

p

1 . . . b2
p

m , where E = {b1, . . . , bm}.
• C′

p+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
• C′

p+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ p.
• There exist 2p cells labelled by lb whose content is empty, for each b ∈ E .

�

Definition 6.5 Let C = (C0, C1, . . . , Cr) be a halting computation of Π(n). Then
we define the computation S(C) = (C′

0, C′
1, . . . , C′

p, C′
p+1, . . . , C′

p+1+r) of S(Π(n)) as
follows:

(1) The initial configuration is:
C′
0(i) = ∅, for 0 ≤ i ≤ q

C′
0(i, 0) = C0(i), for 1 ≤ i ≤ q

C′
0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ p

C′
0(lb) = α0, for each b ∈ E

(2) The configuration C′
t, for 1 ≤ t ≤ p, is described by Lemma 6.3.

(3) The configuration C′
p+1 is described by Lemma 6.4.

(4) The configuration C′
p+1+s, for 0 ≤ s ≤ r, coincides with the configuration Cs of

Π, that is, Cs(i) = C′
p+1+s(i), for 1 ≤ i ≤ q. The content of the remaining cells

(excluding cell 0) at configuration C′
p+1+s is equal to the content of that cell at

configuration C′
p+1, that is, these cells do not evolve after step p+ 1.

That is, every computation C of Π(n) can be “reproduced” by a computation S(C)
of S(Π(n)) with a delay: from step p+ 1 to step p+ 1 + r the computation S(C)
restricted to cells 1, . . . , q provides the computation C of Π(n).

¿From Lemma 6.3 and Lemma 6.4 we deduce that: (a) S(C) is a compu-
tation of S(Π(n)), and (b) S is an injective function from Comp(Π(n)) onto
Comp(S(Π(n))). Moreover, if p is a polynomial function on the size of Π(n),
then we have the following:

Proposition 6.6 The tissue P system S(Π(n)) defined in 6.2 simulates Π(n) in
an efficient way.

Proof. In order to show that S(Π(n)) can be constructed from Π(n) by a deter-
ministic Turing machine working in polynomial time, it is enough to note that the
amount of resources needed to construct S(Π(n)) from Π(n) is polynomial in the
size of the initial resources of Π(n). Indeed,

1. The size of the alphabet of S(Π(n)) is |Γ ′| = |Γ |+ p.
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2. The initial number of cells of S(Π(n)) is 1 + q · (p+ 2) + |E|.
3. The initial number of objects of S(Π(n)) is the initial number of objects of

Π(n) plus |E|.
4. The number of rules of S(Π(n)) is |R′| = |R|+ (p+ 1) · |E|+ |Γ | · q · (p+ 1).
5. The maximal length of a communication rule of S(Π(n)) is equal to the max-

imal length of a communication rule of Π(n).

¿From Lemma 6.3 and Lemma 6.4 we deduce that: (a) every computation C′ of
S(Π(n)) has associated a computation C of Π(n) such that S(C) = C′ in a natural
way, (b) the function S is injective, and (c) a computation C of Π is an accepting
computation if and only if S(C) is an accepting computation of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length r, then
S(C) is a computation of S(Π(n)) with length p+ 1 + r.

7 Computational Complexity classes of Tissue P Systems
with Cell Division and without environment

In this Section, we analyze the role of the environment in the efficiency of tissue
P systems with cell division. That is, we study the ability of these P systems with
respect to the computational efficiency when the alphabet of the environment is
an empty set.

Theorem 7.1 For each k ∈ IN we have PMCTDC(k+1) = PMC
T̂DC(k+1)

.

Proof: Obviously, P ⊆ PMC
T̂DC(1)

⊆ PMCTDC(1) = P.

Let k ≥ 1. Since T̂DC(k + 1) ⊆ TDC(k + 1) it suffices to show that
PMCTDC(k+1) ⊆ PMC

T̂DC(k+1)
. For that, let X ∈ PMCTDC(k+1). Let us show

that X ∈ PMC
T̂DC(k+1)

.

Let {Π(n) : n ∈ N} be a family of tissue P systems from TDC(k+1) solving
X according to Definition 5.1. Let (cod, s) be a polinomial encoding associated
with that solution. Let u ∈ IX be an instance of the problem X and s(u) = n.
Then, that instance will be processed by the system Π(s(u)) + cod(u). According
to Lemma 5.2, let p(n) be a polynomial function such that 2p(|u|) is an upper
bound of the number of objects from E which are moved from the environment to
all cells of the system by any computation of Π(s(u)) + cod(u), for each instance
u ∈ IX .

If Π(s(u))+ cod(u) = (Γ,Σ,M1, . . . ,Miin + cod(u), . . .Mq, E ,R, iin, iout), we
consider the tissue P system without environment

S(Π(s(u))) + cod(u) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
iin + cod(u), . . .M′

q1 ,R
′, i′in, i

′
out)

according to Definition 6.2, where q1 = 1 + q · (p(|u|) + 2) + |E|.
Therefore, S(Π(s(u)))+ cod(u) ∈ T̂DC(k+1) and in the system S(Π(s(u)))+

cod(u) the following holds:
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• A new distinguished cell labelled by 0 has been considered, which will play the
role of the environment at the system Π(s(u)) + cod(u).

• We must guarantiee that system S(Π(s(u))) + cod(u) has initially enough ob-
jects in cell 0 to simulate the behaviour of the environment of Π(n).

• New objects, new rules and new cells will be introduced in S(Π(s(u)))+cod(u).
• After p(n) + 1 step, computations of S(Π(s(u))) + cod(u) reproduce the com-

putations of Π(s(u)) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bm}. In order to simulate Π(s(u)) + cod(u) by a
tissue P system without environment in an efficient way, we need to have enough
objects in the cell of S(Π(s(u))) + cod(u) labelled by 0 available. That is, 2p(n)

objects in that cell are enough.
In order to start the simulation of any computation C of Π(s(u)) + cod(u),

it would be enough to have 2p(n) copies of each object bj ∈ E in the cell of
S(Π(s(u))) + cod(u) labelled by 0. For this purpose

• For each b ∈ E we consider a cell in S(Π(s(u))) + cod(u) labelled by lb which
only contains object α0 initially. We also consider the following rules:
– [αj ]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ p(n)− 2.
– [αp(n)−1]lb → [b]lb [b]lb .
– (lb, b/λ, 0).

• By applying the previous rules, after p(n) transition steps we get 2p(n) cells
labelled by lb, for each b ∈ E in such a way that each of them contains only
object b. Finally, by applying the third rule we get 2p(n) copies of objects b in
cell 0, for each b ∈ E .

Therefore, after the execution of p(n) + 1 transition steps in each computation of
S(Π(s(u))) + cod(u) in cell 0 of the corresponding configuration, we have 2p(n)

copies of each object b1, . . . , bm ∈ E . This number of copies is enough to simulate
any computation C of Π(s(u)) + cod(u) through the system S(Π(s(u)) + cod(u)).

¿From Proposition 6.6 we deduce that the family {S(Π(n))| n ∈ N} solves X
in polynomial time according to Definition 5.1. Hence, X ∈ PMC

T̂DC(k+1)
.

�

8 Conclusions and Further Works

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The space-time tradeoff method is used to efficiently solve NP-
complete problems in the framework ofMembrane Computing. Membrane division,
membrane creation, and membrane separation are three efficient ways to obtain
exponential workspace in polynomial time. Cell division were introduced [5] into
tissue–like P systems, and a linear time solution for SAT problem by tissue P
systems with cell division was given [5].

In the framework of tissue P systems, there is an additional advantage when
cell division is used to generate exponential workspace in polynomial time: all the
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other objects in the cell are duplicated except the object that activate the cell
division operation.

In this paper, the computational efficiency of tissue P systems with cell division
and without environment has been studied. We conclude that the environment of
tissue P systems can be removed without a loss of efficiency.

For future work, we plan to do further research in the study of tissue P systems
with cell separation. Let us recall that, in this kind of systems, the application of
separation rules only duplicates the cell while the objects are not replicated. They
are simply distributed according to a prefixed criterion.
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