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Summary. Population Dynamics P systems refer to a formal framework for ecological
modelling. The semantics of the model associates probabilities to rules, but at the
same time, the model is based on P systems, so the rules are applied in a maximally
parallel way. Since the success of the first model using this framework [5], initially
called multienvironment probabilistic P systems, several simulation algorithms have been
defined in order to better reproduce the behaviour of the ecosystems with the models.

BBB and DNDP are previous attempts, which define blocks of rules having the
same left-hand side, but do not define a deterministic behaviour when different rules are
competing for the same resources. That is, different blocks of rules present in their left-
hand side common objects, being applicable at the same time. In this paper, we introduce
a new simulation algorithm, called DCBA, which performs a proportional distribution of
resources.

Keywords: Membrane Computing, Population Dynamics, Simulation Algorithm,
Probabilistic P systems, DCBA, P-Lingua, pLinguaCore

1 Introduction

Membrane Computing has a far–reaching background on the modelling of bio-
chemical phenomena, within the framework of Computational Systems Biology
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[2, 7, 17, 19], being complementary and an alternative to more classical approaches
(i.e. ODEs, Petri Nets, etc). However, in 2011 a Membrane Computing modelling
framework for ecosystem dynamics was introduced [3]. Based on this framework,
several ecosystem models have already been presented. Some examples are the
population dynamics of Gypaetus barbatus [4] and Rupicapra p. pyrenaica [8] in
the Catalan Pyrenees, as well as the population density of Dreissena polymorpha
in Ribarroja reservoir [3]. Some of the assets of this framework are the ability to
analyse the simultaneous evolution of a high number of species, as well as the
management of a large number of auxiliary objects. These objects could represent,
for instance, grass, biomass or animal bones.

The results obtained from the application of the framework on different ecosys-
tems prove its versatility and adaptability. Thus, a straightforward interpretation
of the results of the simulations of its models can be easily obtained by checking
the states and multisets associated to each one of the membranes.

Although this framework allows a direct interpretation of the simulations of
its models, the simulation itself is a complicated problem to solve from a practical
point of view. Therefore, algorithms capable of capturing the semantics described
by the framework are necessary. These algorithms should be able to select rules in
the models according to their associated probabilities while keeping the maximal
semantics of P systems. In this scenario, the concept of rule block takes form. A
rule block is a set of rules whose left hand side (that is, the necessary and sufficient
condition for them to be applied) is exactly the same. That is, given a P system
configuration, either all or none of the rules in the block can be applied. According
to the semantics associated to the modelling framework, one or more blocks are
selected on each step of computation. The probability for a block to be selected
is calculated out of the probabilities of its rules. Once a rule block is selected, its
rules are applied a number of times in a probabilistic manner according to their
associated probabilities, also known as local probabilities. Henceforth, the condi-
tion of the sum of the probabilities associated to all rules in each block being equal
to 1 is imposed.

The way in which the blocks and rules in the model are selected depends on
the specific simulation algorithm employed. These algorithms should be able to
deal with issues such as the possible overlapping of left hand sides from differ-
ent blocks, which might result on the competition of blocks and rules for objects.
So far, several algorithms have been developed in order to capture the semantics
defined by the modelling framework. Some of these algorithms are the Binomial
Block Based algorithm (BBB) and the Direct Non Deterministic algorithm with
Probabilities (DNDP). A comparison on the performance of these algorithms can
be found on [9].
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The algorithms mentioned above share a common drawback. This drawback
involves the distortion of the way in which blocks and rules are selected. That
is, instead of blocks and rules being selected according to its probabilities in a
uniform manner, this selection process is biased towards those with the highest
probabilities. This paper introduces a new algorithm, known as Direct distribution
based on Consistent Blocks Algorithm (DCBA). This algorithm is introduced to
solve the aforementioned distortion, thus not biasing the selection process towards
the most likely blocks and rules.

The rest of the paper is structured as follows: Section 2 introduces preliminary
concepts, such as the formal modelling framework of PDP systems and the DNDP
algorithm. Section 3 describes the DCBA algorithm, together with a test example
to show the differences with DNDP, and some details on the implementation in the
PlinguaCore software framework. Section 4 shows the behaviour of DCBA when
simulating a real ecosystem model. The simulated model has been adapted and
improved from the original version. The paper ends with some conclusions and
ideas for future work in Section 5.

2 Preliminaries

2.1 The P system based framework

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, taking T time units, T ≥ 1, is a tuple

(G,Γ,Σ, T,RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})
where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are called
environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet representing the objects
that can be present in the environments;

• T is a natural number that represents the simulation time of the system;
• RE is a finite set of communication rules between environments of the form

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈ [0, 1],
for each t = 1, . . . , T . If p(x,j,j1,...,jh)(t) = 1, for each t, then we omit the
probabilistic function. These rules verify the following:

? For each environment ej and for each object x, the sum of functions
associated with the rules from RE whose left-hand side is (x)ej coincides
with the constant function equal to 1.

• µ is a membrane structure consisting of q membranes, with the membranes
injectively labeled by 0, . . . , q − 1. The skin membrane is labeled by 0. We also
associate electrical charges from the set {0,+,−} with membranes.
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• R is a finite set of evolution rules of the form r : u[ v ]αi → u′[ v′ ]α
′

i where
u, v, u′, v′ are multisets over Γ , i ∈ {0, 1, . . . , q − 1}, and α, α′ ∈ {0,+,−}.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable function whose
domain is {1, . . . , T} and its range is [0, 1], verifying the following:
? For each u, v ∈ Γ ∗, i ∈ {0, . . . , q − 1} and α, α′ ∈ {0,+,−}, if r1, . . . , rz

are the rules from R whose left-hand side is u[v]αi and the right-hand side
have polarization α′, then

∑z
j=1 frj (t) = 1, for each t, 1 ≤ t ≤ T .

? If (x)ej is the left-hand side of a rule r ∈ RE, then none of the rules of R
has a left-hand side of the form u[v]α0 , for any u, v ∈ Γ ∗ and α ∈ {0,+,−},
having x ∈ u.

• For each j (1 ≤ j ≤ m), M0j , . . . ,Mq−1,j are strings over Γ , describing the
multisets of objects initially placed in the q regions of µ, within the environment
ej.

In other words, a system as described in the previous definition can be
viewed as a set of m environments e1, . . . , em linked between them by the arcs
from the directed graph G. Each environment ej contains a P system, Πj =
(Γ, µ,R,M0j , . . .Mq−1,j), of degree q, such that M0j , . . . ,Mq−1,j describe the
initial multisets for this environment, and every rule r ∈ R has a computable
function fr,j (specific for environment j) associated with it.

The tuple of multisets of objects present at any moment in the m environments
and at each of the regions of each Πj , together with the polarizations of the
membranes in each P system, constitutes a configuration of the system at that
moment. At the initial configuration of the system we assume that all environments
are empty and all membranes have a neutral polarization.

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (both from RE and R) are
synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from R = RE∪

⋃m
j=1RΠj

as follows: at each transition step, the rules to be applied
are selected according to the probabilities assigned to them, and all applicable rules
are simultaneously applied in a maximal way.

When a communication rule between environments

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into objects
y1, . . . , yh, respectively. At any moment t, 1 ≤ t ≤ T , for each object x in
environment ej , if there exist communication rules whose left-hand side is (x)ej ,
then one of these rules will be applied. If more than one communication rule
can be applied to an object, the system selects one randomly, according to their
probability which is given by p(x,j,j1,...,jh)(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.
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2.2 DNDP simulation algorithm

In this section, the Direct Non-deterministic Distribution with probabilities
algorithm (DNDP) [14, 13] is briefly described (algorithm 1). The aim of this
algorithm is to perform a non-deterministic object distribution, so rules having
common objects in their left-hand sides (object competition) will have the same
opportunities to consume objects.

The input consists on a PDP system of degree (q,m), and a number T of time
units. The algorithm simulates T transition steps of the PDP system. Therefore,
it only simulates one computation of the PDP system, by selecting and executing
rules in a non-deterministic maximal consistent parallel way.

Algorithm 1 DNDP MAIN PROCEDURE

Require: A PDP system of degree (q,m) with q ≥ 1, m ≥ 1, taking T time units,
T ≥ 1.

1: C0 ← initial configuration of the system
2: for t = 0 to T − 1 do
3: C′t ← Ct
4: Initialization
5: First selection phase (consistency).
6: Second selection phase (maximality).
7: Execution of selected rules.
8: Ct+1 ← C′t
9: end for

Similarly to the previous algorithms [14], the transitions of the P system are
simulated in two phases, selection and execution, to synchronize the consumption
and production of objects. However, selection is divided in two micro-phases: the
first one calculates a multiset of mutually consistent applicable rules, and the
second assure maximal application by eventually increasing the multiplicity of
some rules in the previous multiset, obtaining a multiset of maximal mutually
consistent applicable rules. The algorithm is described below, but for more details
refer to [13].

First of all, in order to simplify the selection and execution phases, the
initialization process constructs two ordered set of rules, Aj and Bj , gathering
only rules from RE and RΠ applicable in environment ej , in the sense of having
the same charge in the left-hand side than the membranes in the configuration.

In the first selection phase, a multiset of consistent applicable rules, denoted
by R1

j for each environment ej , is calculated. Moreover, a multiset of possible

applicable rules, denoted by R0
j , is also created. We will say that two rules are

consistent if they are associated to the same membrane, and they update it to the
same charge. It is used in order to store rules having 0 as the number of applications
when using the random number generator function. Hence, this multiset allows to
have elements with multiplicity 0.
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First, a random order is applied to Aj ∪ Bj , and stored in an ordered set Dj .
Moreover, a copy of the configuration Ct, called C ′t, is created and it is updated
each time that a rule is selected (removing the left-hand side). Then, a rule r is
applicable if the following holds: it is consistent with the previously (according to
the order in Dj) selected rules in R1

j , and the number of possible applications M
in C ′t is greater than 0. If a rule r is applicable, a binomial distributed random
number of applications n is calculated according to the probability.

On the one hand, since C ′t has been updated by the previously selected rules,
the number n cannot exceed M to guarantee a correct object distribution. On the
other hand, if the generated number n is 0, the corresponding rule is added to the
multiset R0

j , giving another chance to be selected in the next phase (maximality).

Note that only rules from R1
j are considered for the consistency condition, since

rules from R0
j are not applied in the first selection phase.

In the second selection phase, the consistent applicable rules are checked again
in order to achieve maximality. Only consistent rules are considered, and they are
taken from Rj = R0

j ∪ R1
j . If one rule r ∈ Rj has a number of applications M

greater than 0 in C ′t, then M will be added to the multiplicity of the rule. In
order to fairly distribute the objects among the rules, they are iterated in order
with respect to the probabilities. Moreover, one rule from the multiset R0

j can be

checked, so it is possible that another rule from R1
j , inconsistent to this one, have

been previously selected. In this case, the consistent condition has to be tested
again.

An example of several executions of the DNDP algorithm is showed in section
3.3, together with a comparison with the new algorithm introduced in this paper.

3 Direct distribution based on Consistent Blocks Algorithm
(DCBA)

3.1 Definitions for blocks and consistency

The selection mechanism starts from the assumption that rules in R can be
classified into blocks of rules having the same left-hand side, following the
definitions 2, 3 and 4 below.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ RΠ of the form r : u[v]αh → u′[v′]α
′

h :
• The left-hand side of r is defined as LHS(r) = (h, α, u, v), where h ∈ L,

α ∈ {0,+,−} and u′, v′ ∈ Γ ∗. This corresponds to multiset u in the parent
membrane of h, multiset v in membrane h, and membrane h with charge
α.

• The right-hand side of r is defined as RHS(r) = (h, α′, u′, v′), where h ∈ L,
α′ ∈ {0,+,−} and u′, v′ ∈ Γ ∗. This corresponds to multiset u′ in the parent
membrane of h, multiset v′ in membrane h, and membrane h with charge
α′.
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(b) Given a rule r ∈ RE of the form r : (x)ej → (y1)ej1 . . . (yk)ejk :
• The left-hand side of r is defined as LHS(r) = (ej , x), corresponding to

the multiset with only one occurrence of object x in environment ej.
• The right-hand side of r is defined as RHS(r) = (ej1 , y1) . . . (ejk , yk),

corresponding to the k multisets with single objects y1 . . . yk, for each
environment ej1 . . . ejk respectively.

Definition 3. Rules from RΠ can be classified in blocks associated to (h, α, u, v)
as follows: Bh,α,u,v = {r ∈ RΠ : LHS(r) = (h, α, u, v)}.

Definition 4. Rules from RE can be classified in blocks associated to (ej , a) as
follows: Bej ,a = {r ∈ RE : ∃a ∈ Σ,LHS(r) ≡ (a)ej}.

Recall that, according to the semantics of the model, the sum of probabilities
of all the rules belonging to the same block is always equal to 1 – in particular,
rules with probability equal to 1 form individual blocks. Note that rules with
overlapping (but different) left-hand sides are classified into different blocks.

Definition 5. A block Bh,α,u,v is consistent if and only if ∃α′,∀r ∈ Bh,α,u,v,
charge(RHS(r)) = α′.

Definition 6. A consistent block Bh,α,α′,u,v, with h ∈ H, α, α′ ∈ {0,+,−},
u, v ∈ Γ ∗, is of the form Bh,α,α′,u,v = {r ∈ R : ∃u′, v′ ∈ Γ ∗ : r ≡ u[v]αh → u′[v′]α

′

h }.

Remark 1. Note that all the rules r ∈ Bh,α,α′,u,v are consistent, in the sense that
each membrane h with charge α goes to the same charge α′ when any rule of
Bh,α,α′,u,v is applied.

Definition 7. Two blocks Bh1,α1,β1,u1,v1 and Bh2,α2,β2,u2,v2 are mutually consis-
tent with themselves, if and only if (h1 = h2 ∧ α1 = α2)⇒ (β1 = β2).

Definition 8. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or mutually
consistent) if and only if ∀i, j(i 6= j ⇒ Bi and Bj are mutually consistent).

Remark 2. In such a context, a set of blocks has an associated set of tuples
(h, α, α′), that is, a relationship of H × C in C. Then, a set of blocks is mutually
consistent if and only if the associated relationship H × C in C is functional.

3.2 DCBA pseudocode

This new simulation algorithm for PDP systems has the same general scheme than
its predecessor, DNDP (algorithm 1). The main loop (algorithm 2) is divided into
two stages: selection and execution of rules, similarly to the DNDP algorithm.
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Algorithm 2 DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is then called C0.

1: INITIALIZATION . (Algorithm 4).
2: for t ← 0 to T − 1 do
3: C′t ← Ct
4: Calculate probability functions fr,j(t) associated to the rules.
5: SELECTION of rules. . (Algorithm 3)
6: EXECUTION of rules. . (Algorithm 8)
7: Ct+1 ← C′t
8: end for

Note that the algorithm selects and executes rules, but not blocks of rules.
Blocks are used by DCBA in order to select rules, and this is made in three
micro-stages as seen in algorithm 3. Phase 1 calculates a proportional object
distribution to the blocks. Phase 2 assures the maximality by checking the maximal
applications of each block. And finally, phase 3 passes from block applications
to rule applications by calculating random numbers following the multinomial
distribution with the corresponding probabilities.

Algorithm 3 SELECTION

1: Selection PHASE 1 : distribution . (Algorithm 5)
2: Selection PHASE 2 : maximality . (Algorithm 6)
3: Selection PHASE 3 : probabilities . (Algorithm 7)

Before starting to select and execute rules in the system, some data
initialization is required (see algorithm 4). For instance, the selection stage uses a
table in order to distribute the objects among the blocks. This table T , also called
static table, is used in each time step, so it is initialized only once, at the beginning
of the algorithm. The static table has one column per each consistent block of rules,
and one row per each pair of object and compartment (i.e. each membrane and
the environment in the skeleton). An expanded static table Tj is also constructed
for each environment, to consider also blocks from environment communication
rules. Finally, two multisets, Bj and Rjsel, are initialized for selected blocks and
rules, respectively.

Remark 3. The columns of the static table contain the information of their left-
hand side of the blocks. The rows of the static table contain the information of
the competitions for objects: each block competing for a given object will have a
value different to − in the corresponding row.
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Algorithm 4 INITIALIZATION

1: Construction of the static distribution table T :
• Columns: consistent blocks of rules from RΠ : Bh,α,α′,u,v
• Rows: pairs (obj,membr) and (obj′, e), for all object obj ∈ Γ , obj′ ∈ Σ and

membrane membr ∈ µ, being e a way to generically identify the environment of
the skeleton of the P systems in the multienvironment system.

• Values: place 1/k in the element (x, y) of the table T , if the corresponding object
to the row x is in their left-hand side of the block given by column y, with
multiplicity k. Otherwise, keep unmarked with −.

2: for j = 1 to m do . (Construct the expanded table Tj)
3: Tj ← T . . (Initialize the table with the original T )
4: Add to table Tj a column for each communication rule block from RE associated

to the environment ej , and place the value 1 in the corresponding row for (obj′, e),
being obj′ the object appearing in the left-hand side.

5: end for
6: Initialize the multisets Bj ← ∅ and Rjsel ← ∅

The distribution of objects among the blocks with overlapping left-hand sides
is performed in selection phase 1 (algorithm 5). The expanded static table Tj is
used for this purpose in each environment. Three filters are defined in order to
adapt the Tj to the current state of the system. That is, to select which rule
blocks are going to receive objects. The first filter will delete columns of the table
corresponding to non applicable rule blocks due to the charges in the left-hand side.
The second filter will delete the columns of the rule blocks with no applications in
a configuration, because of the objects in the left-hand side. The goal of the third
filter is to save space in the table, deleting rows with no correspondence with the
non-filtered columns. These three filters are applied at the beginning of phase 1,
and the result is a dynamic table T tj (for the environment j and time step t).

Filter functions for selection Phase 1

function Filter 1(table T , configuration C) . (By columns and charges)
Delete columns from table T , according to the charge of the membrane in the

left-hand side of the corresponding block and in the configuration C.
return T

end function
function Filter 2(table T , configuration C) . (By columns and multiplicity)

Delete columns from table T , such that for any row (obj,membr) or (obj′, e), the
multiplicity of that object in C multiplied by 1/k (value in the table), returns a number
κ, 0 ≤ κ < 1. If all the values for that column are −, it is also filtered.

return T
end function
function Filter 3(table T , configuration C) . (By rows and multiplicity)

Delete rows from T of pairs (obj,membr), (obj′, e) according to the multisets of C,
those having multiplicity 0.

return T
end function
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Remark that the static table T contains all consistent blocks in the columns.
The set of all consistent blocks is unlikely to be mutually consistent. However, two
non-mutually consistent blocks, Bh,α,α′1,u,v and Bh,α,α′2,w,y (assigning a different
charge to the same membrane), can be filtered as follows:

• If u 6= w or v 6= y, and if one of these multisets is not present in Ct, then one
of the blocks is not applicable, and therefore will be filtered by filter 2. This
situation is commonly handled by the model designers, in order to take control
of the model evolution.

It is very important to have a set of mutually consistent blocks before
distributing objects to the blocks. For this reason, there are two complementary
methods to detect it. First, and after applying filters 1 and 2, a loop to check the
mutually consistency is performed. If this method ends with an error, meaning
that an inconsistency was encountered, the simulation process can finish, warning
the designer with the reason. Nevertheless, it can be interesting to find a way to
continue the execution by non-deterministically constructing a subset of mutually
consistent blocks. Since this method can be exponentially expensive in time, it is
optional for the user to whether activate it or not.

Once the columns of the dynamic table represent a set of mutually consistent
blocks, the distribution process starts. This is carried out by browsing the rows
of the table, in such a way that the values of the rows, different to −, will be the
multiplication of:

• The normalized value respecting the row, that is, the value divided by the
total sum of the row. This calculates a way to proportionally distribute
the corresponding object along the blocks. Since it depends on the value k
(multiplicity in the left-hand side), the distribution actually penalize the blocks
requiring more copies of the same object, what is inspired in the amount of
energy required to join individuals from the same species.

• The value in the original dynamic table (i.e. 1
k ). This indicates the number of

possible applications of the block with the corresponding object.
• The corresponding multiplicity of the object in the current configuration C ′t.

This performs the distribution of the number of copies of the object along the
blocks.

After the object distribution process, the number of applications for each block
is calculated by selecting the minimum value in each column. This number is
then used for consuming the left-hand side from the configuration. However, this
application could be not maximal. The distribution process can eventually deliver
objects to blocks that are restricted by other objects. In view of that this situation
may occur frequently, the distribution and the configuration update process can be
A times, being A an input parameter referring to accuracy. The more the process
is repeated, the more is the distribution accurate, but the performance of the
simulation can be lower. We have experimentally see that A = 2 gives the best
accuracy/performance ratio.
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Algorithm 5 SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do . (For each environment ej)
2: Apply filters to table Tj using Ct, obtaining T tj . The filters are applied as follows:

a. T tj ← Tj
b. T tj ← Filter 1 (T tj , Ct).
c. T tj ← Filter 2 (T tj , Ct).
d. Check mutual consistency for the blocks remaining in T tj :
• Create a vector MCtj , of order q (number of membranes in Π), with

MCtj(i) = −1, 1 ≤ i ≤ q.
• for each column Bh,α,α′,u,v in T tj , do

– if MCtj(h) = −1 then MCtj(h)← α′.
– else if MCtj(h) = α′ then do nothing.
– else store all the information about the inconsistency.

• if there was at least one inconsistency then report the information about
the error, and optionally stop the execution (in case of not activating steps
2 and 3.)

e. T tj ← Filter 3 (T tj , Ct).
3: (ACTIVATE OR NOT) Generate, from T tj , sub-tables formed by sets of mutually

consistent blocks, in a maximal way in T tj (by the inclusion relationship). This will
produce a set of sub-tables T tj,i, i = 1, . . . , s.

4: (ACTIVATE OR NOT) Randomly select one table from T tj,i, i = 1, . . . , s: T tj,z
5: a← 1
6: repeat
7: Add up the values of each row in T tj,z. Filter the rows whose sum is 0.
8: Each element of the table is divided by the sum of the corresponding row.
9: For each pair (obj,membr) and (obj′, e) ∈ Cat , if the object in Cat has

multiplicity mult > 0, all the elements of the corresponding row in T tj,z are multiplied
by mult, by the corresponding value in T tj,z (calculated in the previous step), and
by the original value in Tj . That is, if in the position (x, y) of the table Tj there is
a value different than −, and the corresponding object in the row x has multiplicity
multx,a,t in Cat , then:

T tj,z(x, y) = bmultx,a,t · T tj,z(x, y) ·
T tj,z(x, y)

RowSumx,t
c = bmultx,a,t ·

(T tj,z(x, y))2

RowSumx,t
c

10: For each block b (i.e. column) appearing (i.e. not filtered) in T tj,z, calculate the
minimum number of the previously calculated values, Na

b ≥ 0. This is the number
of times the block is going to be applied. This value is accumulated to the total
calculated through the iteration of the loop over a: Bj ← Bj ∪ {< b,Na

b >}
11: Ca+1

t ← Cat − LHS(b) ·Na
b . (Delete the left-hand side of the block.)

12: T tj,z ← Filter 3 (Filter 2 (T tj,z, C
a+1
t ),Ca+1

t ), that is, apply filters 2 and 3.
13: a← a+ 1
14: until (a > A) ∨ (all the selected minimums in step 10 are 0)
15: end for

In order to efficiently repeat the loop for A, and also before going to the next
phase (maximality), it is interesting to apply again filter 2. In this way, blocks
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updating the configuration and without more applications, are deleted from the
table.

After phase 1, some objects may be left unevolved. It can come from the issue
of having a low A value, or because the rounded value calculated in the distribution
process. Due to the maximal property of P systems, after each computation step
no object can be left unevolved. In order to sort out this problem, a maximality
phase is applied. This phase consists of selecting those blocks whose rules can still
be applied. Then, a random order on these blocks is obtained. Finally, these blocks
are applied by following that order. In this phase, each rule block is applied on a
maximal manner. That is, blocks consume all objects which can be consumed. In
order to minimize the distortion towards the most probable blocks, this phase is
left after phase 1, as a residual number of objects is expected to be consumed in
this phase.

Algorithm 6 SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do . (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T tj,z in Phase

1, step 12.
3: for each block b, following the previous random order do
4: Calculate the number of applications, Nb, of b in CAt (last updated

configuration in Phase 1, step 11 ).
5: Add Nb to the total number of applications calculated for b in each loop of

phase 1, step 10 : Bj ← Bj ∪ {< b,Nb >}
6: CAt ← CAt − LHS(b) ·Nb . (delete the objects in the left-hand side of

block b, Nb times.)
7: C′t ← CAt
8: end for
9: end for

After the application of the phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks is computed. The output of the selection stage is,
in fact, a maximal multiset of selected rules. Hence, phase 3 (algorithm 7) passes
from blocks to rules, by applying the corresponding probabilities (at the local level
of blocks). The rules belonging to a block are selected according to a multinomial
distribution M(N, p1, . . . , pk), where N is the number of applications of the block,
and p1, . . . , pk are the probabilities associated with the rules within the block
r1, . . . , rk, respectively.
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Algorithm 7 SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do . (For each environment ej)
2: for all block < b,Nb >∈ Bj do
3: Calculate a random multinomial M(Nb, pr1 , . . . , prlb ) with respect to the

probabilities of the lb rules r1, . . . , rlb within the block b.
4: for i = 1 to lb do Add the randomly calculated value nri , using the

multinomial distribution for rule ri, to the multiset of selected rules Rjsel,t ←
Rjsel,t ∪ {< ri, nri >}.

5: end for
6: end for
7: Delete the multiset of selected blocks Bj ← ∅. This is useful for the next step

over time T .
8: end for

Once the rules to be applied on the current simulation step are selected, the
execution stage (algorithm 8) is applied. This stage consists on executing the
previously selected multiset of rules. As the objects present on the left hand side
of these rules have already been consumed, the only operation left is the application
of the right-hand side of the selected rules. Therefore, for each selected rule, the
objects present on the right-hand side to the corresponding membranes are added
and the indicated membrane charge is set.

Algorithm 8 EXECUTION

1: for j = 1 to m do . (For each environment ej)
2: for all Rule < r, n >∈ Rjsel do . (Apply the right-hand side of the selected

rules)
3: C′t ← C′t + n ·RHS(r)
4: Update the electrical charges of C′t from RHS(r).
5: end for
6: Delete the multiset of selected rules Rjsel ← ∅. This is useful for the next step

over time T .
7: end for

3.3 Running a test example

Let us consider a test example, without any biological meaning, in order to show
the different behaviour of the algorithms. This test PDP system is of degree (2, 1),
and of the following form:

Πtest = (G,Γ, µ,R, T, {fr : r ∈ R},Me,M1,M2)

where:

• G is an empty graph because RE = ∅.
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• Γ = {a, b, c, d, e, f, g, h}
• µ = [ [ ]2 ]1 is the membrane structure, and the corresponding initial multisets

are:

– Me = { b } (in the environment)
– M1 = { a60 } (in membrane 1)
– M2 = { a90 b72 c66 d30 } (in membrane 2)

• T = 1, only one time step.
• The rules R to apply are:

r1.1 ≡ [ a4 b4 c2 ]2
0.7−−−→ e2 [ ]2

r1.2 ≡ [ a4 b4 c2 ]2
0.2−−−→ [ e2 ]2

r1.3 ≡ [ a4 b4 c2 ]2
0.1−−−→ [ e f ]2

r2 ≡ [ a4 d ]2
1−−−→ f2[ ]2

r3 ≡ [ b5 d2 ]2
1−−−→ g2[ ]2

r4 ≡ b [ a7 ]−1
1−−−→ [ h100 ]−1

r5 ≡ a3 [ ]2
1−−−→ [ e3 ]2

r6 ≡ a b [ ]2
1−−−→ [ g3 ]−2

We can construct a set of six consistent rule blocks BΠtest
(of the form

bh,α,α′,u,v) from the set R of Πtest as follows:

• b1 ≡ b2,0,0,∅,{a4,b4,c2} = {r1.1, r1.2, r1.3}
• b2 ≡ b2,0,0,∅,{a4,d} = {r2}
• b3 ≡ b2,0,0,∅,{b5,d2} = {r3}
• b4 ≡ b1,−,−,{b},{a7} = {r4}
• b5 ≡ b2,0,0,{a3},∅ = {r5}
• b6 ≡ b2,0,−,{a,b},∅ = {r6}

It is noteworthy that the set BΠtest
is not mutually consistent. However, only

the blocks b1, b2, b3 and b5 are applicable in the initial configuration, and they, in
fact, conform a mutually consistent set of blocks. Block b4 is not applicable since
the charge of membrane 1 is neutral, and block b6 cannot be applied because there
are no b’s in membrane 1.

Table 1 shows five different runs for one time step of Πtest using the DNDP
algorithm. The values refers to the number of applications for each rule, which is
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Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 11 0 0 0 0

r1.2 4 4 3 0 0

r1.3 1 0 0 0 0

r2 6 18 6 22 2

r3 1 6 12 4 14

r4 - - - - -

r5 20 20 20 20 20

r6 - - - - -

Table 1: Simulating Πtest using the DNDP algorithm

actually the output of the selection stage (and the input of the execution stage).
Note that for simulation 1, the applications for r1.1, r1.2 and r1.3 follows the
multinomial distribution. The applications of these rules are reduced because they
are competing with rules r2 and r3, . However, this competition leads to situations
where the applications of the block b1 does not follow a multinomial distribution. It
comes from the fact of using a random order over the rules, but not over the blocks.
Rules having a probability equals to 1 are more restrictive on the competitions
because they are applied in a maximal way in their turn. This is the reason because
on simulations 4 and 5, none of the rules r1.i, 1 ≤ i ≤ 3 are applied.

This behaviour could create a distortion of the reality described in the
simulated model. But it is usually appeased running several simulations and
making a statistical study. Finally, rules not competing for objects are applied
as is, in a maximal way. For example, rule r5 is always applied 20 times because
its probability is equal to 1.

In the following, the test example is executed using the DCBA. The main
results of the different phases of the process is also detailed.

In the initialization phase, the static table is created, containing all the
consistent blocks. The static table of the Πtest P system is showed in table 2.
As shown, the values inside the cells of the table represents the inverse (1/k) of
the multiplicity of the object (in the membrane, as specified in the row) inside the
block indicated in the header of the column.

Once the static table has been initialized, the simulation main loop runs for
the stated steps. Then, for each step of computation, the selection and execution
of rules runs, as illustrated in the following paragraphs.

The selection starts with the distribution phase. The needed filters are
performed, causing some objects and blocks to be discarded, as they need not
present charges and/or objects. Then the corresponding calculus take place, getting
the minimum number of applications of each way. The result of the selection phase
1 of the step 1 is showed in table 3. The sum of the previously obtained values is
showed in the last column. Then, the possible number of applications of a block is
calculated for each object, considering its multiplicity in the current configuration
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Objects
Consistent Blocks

b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2} b1,−,−,{b},{a7} b2,0,0,{a3},∅ b2,0,−,{a,b},∅

< a,2> 1/4 1/4 - - - -

< b,2> 1/4 - 1/5 - - -

< c,2> 1/2 - - - - -

< d,2> - 1/1 1/2 - - -

< a,1> - - - 1/7 1/3 1/1

< b,1> - - - - 1/1

< b,e> - - - 1/1 - -

Table 2: Static table

and the block, and the relation with the sum of the row. This relation somehow
captures the proportion of objects to be initially assigned to each block. Then, the
minimum number of each block (given by the column) is calculated.

Objects
Consistent Blocks

Sum
b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2} b2,0,0,{a3},∅

< a,2> * 90 0.25 | 11 0.25 | 11 - - 0.5

< b,2> * 72 0.25 | 10 - 0.2 | 6 - 0.45

< c,2> * 66 0.5 | 33 - - - 0.5

< d,2> * 30 - 1.0 | 20 0.5 | 5 - 1.5

< a,1> * 60 - - - 0.33 | 20 0.33

Applications 10 11 5 20

Table 3: Selection Phase 1 - Distribution

The next phase, maximality, starts from the remaining objects, selecting new
applications of the blocks in a maximal way. The result of this phase is showed in
table 4. This table presents the remaining objects (the ones not assigned in phase
1) and the possible blocks to be selected. The blocks are chosen in a random way,
as shown in algorithm 6, and the possible applications of the block are calculated.
This process guarantees a maximal set of blocks to be selected, with a maximal
number of applications of each block. The last row, applications, shows that the
block b2,0,0,∅,{a4,b4,c2} is applying 1 time, additional to the number of applications
calculated in the distribution phase.

Then the phase 3, probability, take place. For each block selected in the previous
phases, its number of applications is divided among the rules being part of the
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Objects
Consistent Blocks

b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2}

< a,2> * 6 - - -

< b,2> * 7 - - -

< c,2> * 46 - - -

< d,2> * 9 - - -

Applications 1 - -

Table 4: Selection Phase 2 - Maximality

block, according to their probabilities. As a result, the number of applications of
each rule is obtained, as showed in table 5.

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 7 10 7 6 7

r1.2 3 0 4 1 2

r1.3 1 1 5 3 1

r2 11 11 11 12 12

r3 5 5 5 6 6

r4 - - - - -

r5 20 20 20 20 20

r6 - - - - -

Table 5: Simulating Πtest using the DCBA algorithm

It is noteworthy that the selection of rules belonging to block 1 {r1.i, 1 ≤ i ≤ 3},
in table 5, always follows a multinomial distribution respecting the 3 probabilities.
This solves the drawback we showed on table 1. Moreover, it can be seen that
the maximality sometimes can give one more application to blocks 2 and 3, in
spite of keeping the original 10 applications for block 1 from phase 1. In any case,
the number of applications is proportionally distributed, avoiding the distortion of
using a random order over the blocks (or rules), as made in the DNDP algorithm.

3.4 Implementation in pLinguaCore

In [11], a Java library called pLinguaCore was presented under GPL license. It
includes parsers to handle input files and built–in simulators to handle different P
System based models. It is not a closed product because developers with knowledge
of Java can add new components to the library. Within the scope of this paper,
pLinguaCore has been upgraded to provide an implementation of the DBCA,
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thus extending its existing probabilistic model simulation algorithms support.
Along with the inclusion of other extensions, regarding to models such as Spiking
Neural P Systems and Numerical P Systems, current version of the library, named
pLinguaCore 3.0, and featuring an implementation of the introduced DBCA can be
downloaded from [21]. In what follows, details of the implementation of the DBCA
in pLinguaCore are shown. Data structures, methods, code optimization and bug
fixes are reviewed. Going Top-down, Java classes involved in the implementation:

• DynamicMatrix. It provides an implementation for the main operations of the
DBCA.

DynamicMatrix is built as a dynamic map indexed by MatrixKey class objects.
MatrixKey objects are implemented as a pair of (MatrixRow, MatrixColumn)
class objects. Associated to each MatrixKey object within the map, multiplic-
ity k of the object specified by the MatrixRow row in the left hand side of
the rule specified by the MatrixColumn column is stored. Note that k is stored
instead of 1/k for accuracy reasons.

As different filters are applied over the DynamicMatrix object, a couple of lists
of MatrixRow and MatrixColumn objects respectively are associated to the
matrix to keep track of its valid cells. Removal of elements from these lists is
performed when filters are applied, while the DynamicMatrix object itself is
reset in every step of the main loop of selection phase. Thus, DynamicMatrix
object can be viewed as a hash table of multiplicities that allows a significant
reduction of the required amount of memory for execution of the DBCA.

Also, attributes that stores the sum of the multiplicities of the objects in the
matrix by row as well as the minimum of the columns are included in the Dy-
namicMatrix class. Inconsistent blocks are controlled by means of a list of pairs
of MatrixColumn objects.

DynamicMatrix class directly extends from StaticMatrix class. Methods in Dy-
namicMatrix implements the DBCA different phases themselves, remarkably:

– initData() initializes valid rows and columns lists in the DynamicMatrix
object, clearing up them; also application of rules data structure is
initialized.

– filterColumns1() computes valid columns and associates them to the
DynamicMatrix object; applies Filter 1 to these columns;

– filterColumns2() applies Filter 2 over valid columns associated to the
DynamicMatrix object, removing the required ones.

– checkMutualConsistency() checks mutual consistency over blocks of the
DynamicMatrix object; if any inconsistency is found, an exception is thrown
and execution of the simulator is halted; a message listing the mutual
inconsistent blocks found is shown to the user.
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– initFilterRows() computes valid rows and associates them to the Dynamic-
Matrix object; applies Filter 3 to these rows.

– filterRows() applies Filter 3 to valid rows, removing the required ones; this
method is called inside the main loop of the selection phase, while the
previous one is called outside, at the beginning of this phase.

– normalizeRowsAndCalculateMinimums() implements the main loop of
selection phase.

– maximality() implements maximality phase.
– executeRules() implements execution phase; remarkably, multinomial dis-

tribution is computed by computing binomial distributions, implemented
through the specialized CERN Java library (cern.jet.random.Binomial).

• StaticMatrix. Provides an implementation for the static matrix used by the
DBCA. Similarly to DynamicMatrix class, cells within the matrix are stored
as a map indexed by MatrixKey class objects, each one of them associated to
a multiplicity. A couple of immutable lists of MatrixRow and MatrixColumn
class objects determines the structure of the matrix. Contents of the cells are
fixed once initialized.

• MatrixRow. Provides an implementation for rows featured in DynamicMatrix,
StaticMatrix and MatrixKey objects. Implemented by a pair of String objects
representing object and membrane label respectively, it also provides a method
for computing the validity of the row, i.e. to determine if the row has to be
kept within the DynamicMatrix object with respect to a given environment.

• MatrixColumn. Provides an implementation for columns featured in Dynamic-
Matrix, StaticMatrix and MatrixKey objects. An abstract class, its extended
and implemented by a couple of classes representing the two kinds of rule
blocks:

– SkeletonRulesBlock, which implements blocks of skeleton rules.

– EnvironmentRulesBlock, which implements blocks of environment rules.

Both classes have the same structure: a single object to store the common left
hand rule side of the rule, plus a collection to store the several right hand
rule side objects that conforms the block. Also, each one provides an specific
method for computing the validity of the corresponding column within the dy-
namic matrix.

To conclude, let us note that while conducting the DBCA implementation,
several bugs have been fixed in pLinguaCore, notably some of them regarding to
the way in which rules are parsed and stored, thus applying beyond the scope of
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the DBCA an affecting to implementation of probabilistic models simulators as a
whole:

• Multisets of objects are now taken into account while checking rule blocks. In
previous versions of pLinguaCore, when checking of the consistency of proba-
bilities of a rule block was conducted (i.e. checking that sum of probabilities of
the rules must equal to one), multiplicities of objects in the left hand side of
the rules were ignored.

• Issues with “intentional duplicate rules” solved assigning an unique identifier
for every rule within the scope of probabilistic models. Issues found were:

– Instantiation of parameters in syntactically different rule schemes for some
models produced duplicated rules and caused the parser to throw an error
and halt. As this duplicity proved intentional, the parser was modified sub-
sequently to take it into account.

– Probability was not taken into account when differencing rules. This made
the parser to discard a rule syntactically identical, except for its probability,
to a previous parsed one.

4 Validation

4.1 Improved model for the scavenger bird ecosystem

In this section, it is presented a novel model for an ecosystem related to the
Bearded Vulture in the Pyrenees (NE Spain), by using PDP systems. This model
is an improved model of which is provided in [5]. The Bearded Vulture (Gypaetus
barbatus) is an endangered species in Europe that feeds almost exclusively on bone
remains of wild and domestic ungulates. In this model, the evolution of six species
is studied: The Bearded Vulture and five subfamilies of domestic and will ungulates
upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ, µ,R, T, {fr : r ∈ R},M1,M2)

where:

• G is an empty graph because RE = ∅.

• In the alphabet Γ , we represent the six species of the ecosystem (index i is
associated with the species and index j is associated with their age, and the
symbols X, Y and Z represent the same animal but in different states); it
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also contains the auxiliary symbol B, which represents 0.5 kg of bones, and C,
which allows a change in the polarization of the membrane labeled by 2 at a
specific stage.

Γ = {Xi,j , Yi,j , Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}

The species are the following:
– Bearded Vulture (i = 1)
– Pyrenean Chamois (i = 2)
– Red Deer Female (i = 3)
– Red Deer Male (i = 4)
– Fallow Deer (i = 5)
– Roe Deer (i = 6)
– Sheep (i = 7)

• µ = [ [ ]2 ]1 is the membrane structure, and the corresponding initial multisets
are:
– M1 = { Xqi,j

i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}
– M2 = { C,Bα}

where α = d
21∑
j=1

q1,j · 1.10 · 682e

Value α represents an external contribution of food which is added during
the first year of study so that the Bearded Vulture survives. In the formula,
q1,j represents the number of j years of age of Bearded Vultures, the finality
of constant factor 1.10 is to guarantee enough food for 10% population
growth. At present, the population growth is estimated an average 4%, but
this value can reach higher values. Thus, to avoid problems related with the
underestimation of this value the first year we estimated the population
growth (overestimated) at 10%. The constant value 682 represents the
amount of food needed per year for a Bearded Vulture pair to survive.

• Each year in the real ecosystem is simulated by 3 computational steps, so
T = 3 · Y ears, where Y ears is the number of years to simulate.

• The rules R to apply are:

– Reproduction rules for ungulates

Adult males

r0,i,j ≡ [Xi,j ]1
1−ki,13−−−→[Yi,j ]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j ]1
ki,5ki,13−−−→[Yi,j , Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i 6= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j ]1
k3,5k3,130.5

−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j ]1
k3,5k3,130.5

−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3
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Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j ]1
(1−ki,5)ki,13−−−→ [Yi,j ]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j ]1
ki,13−−−→[Yi,j ]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Young ungulates that do not reproduce

r6,i,j ≡ [Xi,j ]1
1−−−→[Yi,j ]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

– Growth rules for the Bearded Vulture

r7,j ≡ [X1,j ]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j ]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j ]1
1−k1,6−k1,10−−−→ [Y1,j ]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4 ]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4 ]1

r10 ≡ [X1,k1,4 ]1
1−k1,6−−−→[Y1,k1,4 ]1

– Mortality rules for ungulates

Young ungulates which survive

r11,i,j ≡ Yi,j [ ]2
1−ki,7−ki,8−−−→ [Zi,j ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j [ ]2
ki,8−−−→[Bki,11 ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j [ ]2
ki,7−−−→[ ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy

Those which survive

r14,i,j ≡ Yi,j [ ]2
1−ki,10−−−→[Zi,j ]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j [ ]2
ki,10−−−→[Bki,12 ]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy

Those which die in the ecosystem

r16,i ≡ Yi,ki,4 [ ]2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12 ]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 [ ]2
(1−ki,9)(1−ki,10)

−−−→ [ ]2 : 2 ≤ i ≤ 7

– Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j [ ]2
1−k1,10−−−→[Z1,j ]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j [ ]2
k1,10−−−→[ ]2 : k1,2 ≤ j < k1,4
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r20 ≡ Y1,k1,4 [ ]2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[ ]2
1−−−→[Z1,k1,2−1]2

– Feeding rules

r22,i,j ≡ [Zi,jB
ki,14 ]2

1−−−→Xi,j+1[ ]+2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

– Balance rules

Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[ ]2

Adult animals that die because they have not enough food

r24,i,j ≡ [Zi,j ]
+
2

1−−−→[Bki,12 ]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j ]
+
2

1−−−→[Bki,11 ]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization
r26 ≡ [C]+2

1−−−→[C]2

• The constants associated with the rules have the following meaning:

– ki,1: Age at which adult size is reached. This is the age at which the animal
consumes food as an adult does, and at which, if the animal dies, the amount
of biomass it leaves behind is similar to the total left by an adult. Moreover,
at this age it will have surpassed the critical early phase during which the
mortality rate is high.

– ki,2: Age at which it begins to be fertile.

– ki,3: Age at which it stops being fertile.

– ki,4: Average life expectancy in the ecosystem.

– ki,5: Fertility ratio (number of descendants by fertile females).

– ki,6: Population growth (this quantity is expressed in terms of 1).

– ki,7: Animals retired from the ecosystem in the first years, age < ki,1 (this
quantity is expressed in terms of 1).

– ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is
expressed in terms of 1).

– ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value is
1.

– ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is expressed
in terms of 1).

– ki,11: Amount of bones from young animals, age < ki,1.

– ki,12: Amount of bones from adult animals, age ≥ ki,1.

– ki,13: Proportion of females in the population (this quantity is expressed in
terms of 1).
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– ki,14: Amount of food necessary per year and breeding pair (1 unit is equal
to 0.5 kg of bones).

• In [5], they can be found actual values for the constants associated with the
rules as well as actual values for the initial populations qi,j for each species i
with age j. There are two sets of initial populations values, one beginning on
year 1994 and another one beginning on year 2008.

4.2 Simulation results

In [5], a simulator for the model was presented. The authors show a comparison of
the results provided by the simulator and actual data obtained from the ecosystem.
That simulator was written in C++ and the rules were implemented directly on
the source code. So, that is a simulator implemented ad hoc for the model. The
simulator does not implement any described simulation algorithm for P systems
and does not implement any generic method to define P systems. We have found
that ad hoc simulators like the one presented in [5] have a strong coupling design
and it is a problem for debugging. So, if the simulator does not reproduce the
expected behaviour of the model, what is causing the problem?. In that situation,
we could think that:

1. The model is wrong.
2. The rules are not correctly written in the source code.
3. The semantics of the model is not correctly implemented in the source code.

It is very difficult to find the cause of the problem with a strong coupling software
design. Moreover, if we think that the cause of the problem is, for instance, 2, but
it is really 1 or 3, then we can introduce new errors trying to correct it.

From a software engineering point of view it is very important to decouple
software components, that is the point of view of P-Lingua and pLinguaCore [21]:

• The model is designed on a paper.
• The rules are written on a P-Lingua file. So, the parser checks the

syntactical/semantics errors.
• The semantics of the model is implemented on the pLinguaCore library

following a good described simulation algorithm.

PLinguaCore is a simulation library that accepts the input written in P-Lingua
and provides simulations of the defined P systems. For each type of P system,
there are one or more simulation algorithms implemented in pLinguaCore. It is a
software framework, so it can be expanded with new simulation algorithms.

Thus, we have expanded the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems, the current version of pLinguaCore is 3.0
and it can be downloaded from [21].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [14] and DCBA. We also compare the
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results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data obtained from [5].
In [22] it can be found the P-Lingua file which defines the model and instructions
to reproduce the comparisons.

We have set the initial population values with the actual ecosystem values
for year 1994. For each simulation algorithm we have made 1000 simulations of
14 years, that is, 42 computational steps. The simulation workflow have been
implemented on a Java program that runs over the pLinguaCore library (this Java
program can be downloaded from [22]). For each simulated year (3 computational
steps), the Java program counts the number of animals for each species i, that is:

Xi =
ki,4∑
j=0

Xi,j . After 1000 simulations, the Java program calculates average values

for each year and species and writes the output to a text file. Finally, we have used
the GnuPlot software [20] to produce population graphics.

In figures 1, 2, 3, 4 ,5, 6 and 7 the population graphics for each species and
simulation algorithm are represented.

(a) Using DCBA

(b) Using DNDP

Fig. 1: Evolution of the Bearded Vulture birds
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Fig. 2: Evolution of the Pyrenean Chamois

Fig. 3: Evolution of the female Red Deer

Fig. 4: Evolution of the male Red Deer

Fig. 5: Evolution of the Fallow Deer

The main difference between DNDP and DCBA algorithms is the way the
algorithms distribute the objects between different rule blocks that compete for
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Fig. 6: Evolution of the Roe Deer

Fig. 7: Evolution of the Sheep

the same objects. In the model, the behavior of the ungulates are modeled by
using rule blocks that do not compete for objects. So, the simulator provides
similar results for both DCBA and DNDP algorithms. In the case of the Bearded
Vulture, there are a set of rules r22,i,j that compete for B objects because k1,14 is
not 0 (the Bearded Vulture needs to feed on bones to survive). The ki,14 constants
are 0 for ungulates, 2 ≤ i ≤ 7, because they do not need to feed on bones to
survive. The initial amount of bones and the amount of bones generated during
the simulation is enough to support the Bearded Vulture population regardless the
way the simulation algorithm distributes the bones between vultures of different
ages (rules r22,1,j). By the way, there are a small initial population of bearded
vultures (20 pairs), because of that, we can see differences between the results
with DCBA, DNDP, C++ simulator and actual ecosystem data for the Bearded
Vulture (39 bearded vultures with DCBA for year 2008, 36 with DNDP, 38 with
the C++ simulator and 37 on the actual ecosystem).

In figure 8 it is showed the comparison between the actual data for year
2008 and the simulation results by using the C++ ad hoc simulator, the DNDP
algorithm and the DCBA algorithm implemented in pLinguaCore. In the case
of the Pyrenean Chamois, there is a difference between the actual population
data on the ecosystem (12000 animals) and the results provided by the other
simulators (above 20000 animals), this is because the population of Pyrenean
Chamois was restarted on year 2004 [5]. Taking this into account, we can see
that all the simulators behave in a similar way for the above model and they can
reproduce the actual data after 14 simulated years. So, the DCBA algorithm is
able to reproduce the semantics of PDP systems and it can be used to simulate
the behavior of actual ecosystems by means of PDP systems.
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Fig. 8: Data of the year 2008 from: real measurements of the ecosystem, original
simulator in C++, simulator using DNDP and simulator using DCBA.

5 Conclusions and Future Work

In this paper we have introduced a novel algorithm for Population Dynamics P
systems (PDP systems), called Direct distribution based on Consistent Blocks
Algorithm (DCBA). This new algorithm performs an object distribution along
the rules that eventually compete for objects. The main procedure is divided into
two stages: selection and execution. Selection stage is also divided into three micro-
phases: phase 1 (distribution), where by using a table and the construction of rule
blocks, the distribution process takes place; phase 2 (maximality), where a random
order is applied to the remaining rule blocks in order to assure the maximality
condition; and phase 3 (probability), where the number of application of rule
blocks is translated to application of rules by using random numbers respecting
the probabilities.

By using a test example, it is shown how this new algorithm solves some
drawbacks in its predecessor, the DNDP algorithm. Moreover, both algorithms
are validated towards a real ecosystem model (the bearded vulture birds), showing
that they reproduce the same results than the original simulator written in C++.
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Finally, some details and updates of its implementation in the pLinguaCore
framework are provided.

The accelerators in High Performance Computing offers new approaches to
accelerate the simulation of P systems and Population Dynamics [6]. An initial
parallelization work of the DCBA by using multi-core processors is described in
[12]. The analysis of the two parallel levels (simulations and environments), and the
speedup achieved by using the different cores, make interesting the search for more
parallel architectures. For the near future work, we will use the massively parallel
architectures inside the graphics cards (GPUs) using CUDA. We will adapt and
scale the DCBA algorithm using the CUDA programming model, and develop a
parallel simulator for GPU based systems.
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Hurtado, M.J. Pérez-Jiménez. Simulation of P systems with active membranes
on CUDA, Briefings in Bioinformatics, 11, 3 (2010), 313–322
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