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Summary. In this note we propose a method that permits to describe in a uniform man-
ner variants of probabilistic/stochastic P systems. We give examples of such a description
for existing models of P systems using probabilities.

1 Introduction

The idea of enriching P systems with probabilities and using a probabilistic or
stochastic evolution appears very early in the development of the area [7, 6]. Such
kind of models (we shall call them probabilistic P systems) were shown to be
very useful for simulations of biological phenomena, we cite here only [3, 1, 10].
While some of these models are using the Gillespie stochastic simulation algorithm
(SSA) [4, 5] for the evolution step, the others are introducing different approxima-
tions of it or choose a completely different strategy. The definitions used to define
the models often use specific notions and terminology, so their comparison and
understanding quickly becomes a difficult task.

In this note we propose a systematical approach to the definition of such sys-
tems based on the association of a probability to a group of rules, which is a
natural generalization of a probability for a single rule. The used method permits
to establish a framework that can be used to compare existing definitions and
gives a possibility to extend them. As an example of the application of the method
we translate the definition of the evolution step of two variants of probabilistic P
systems into our framework and we show the equivalent strategies of computation
of individual rule probabilities leading to a corresponding group probability.
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2 Preliminaries

We do not present here standard definitions. We refer to [12] for all details. We
will denote by |M | the cardinality of a set M or the size of a multiset M . By |M |x
we will denote the number of elements x in the multiset M .

We also assume that the reader is familiar with standard notions of P systems,
which can be consulted in the books [8] and [9] or at the web page [11]. We shall
only focus on the semantics of the evolution step. We will follow the approach
given in [2], however we will not enter into deep details concerning the notation
and the definition of derivation modes given there. Consider a P system Π of
any type evolving in any derivation mode. The key point of the semantics of P
systems is that according to the type of the system and the derivation mode δ for
any configuration of the system C a set of multisets (over R) of applicable rules,
denoted by Appl(Π,C, δ), is computed. After that, one of the elements from this
set is chosen, non-deterministically, for the further evolution of the system.

We remark that from the point of view of the computer simulation of P systems
the non-deterministic choice can be considered equivalent to a probabilistic choice
where each multiset of rules has an equal probability to be chosen. Permitting
these multisets to have a different probability is the main idea of this paper. More
precisely, for each multiset of rules R ∈ Appl(Π,C, δ) we compute the probability
p(R,C) based on the propensity function f : R◦ × (N×O◦)∗ → R that associates
a real value for a multiset of rules with respect to a configuration. Hence the value
f(R,C) depends not only on the multiset of rules R, but also on the configuration
C.

The probability to choose a multiset R ∈ Appl(Π,C, δ) is defined as the nor-
malization of corresponding probabilities:

p(R,C) =
f(R,C)∑

R′∈Appl(Π,C,δ) f(R
′, C)

(1)

3 Discussion

In the previous section we didn’t discuss the propensity function f , which is the
main ingredient of the model. Below we will give examples of simple propensity
functions each leading to different execution strategies.

Constant strategy: each rule r from R has a constant contribution to f and equal
to cr:

f(R,C) =
∏
r∈R

cr (2)

Multiplicity-dependent strategy: each rule r from R has a contribution to f pro-
portional to the number of times this rule can be applied and to a stochastic
constant cr that only depends on r:
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Nr(C) = min
x∈lhs(r)

[
|C|x

|lhs(r)|x

]
(3)

f(R,C) =
∏
r∈R

crNr(C) (4)

Concentration-dependent strategy: each rule r from R has a contribution to f
proportional to hr(C), the number of distinct combinations of objects from C
that activate r, and to a stochastic constant cr that only depends on r (below
we denote by

(
a
b

)
the binomial function):

hr(C) =
∏

x∈lhs(r)

(
|C|x

|lhs(r)|x

)
(5)

hR(C) =
∏
r∈R

crhr(C) (6)

f(R,C) = hR(C) (7)

Gillespie strategy: each rule r from R has a contribution to f that depends on
the order in which it was chosen and it is equal to cr · hr(C

′), where C ′ is the
configuration obtained by applying all rules that were chosen before r.

We remark that the concentration-dependent strategy is not equal to Gillespie
strategy. More precisely, in a Gillespie run the probability to choose a new rule
depends on the objects consumed and produced by previously chosen rules. We
can consider a Gillespie run as a sequence of sequential (single-rule) applications
using concentration-dependent strategy.

We also remark that the Gillespie algorithm uses the notion of time that we
do not consider in this paper. However, the definitions can be easily adapted for
to handle this case.

4 Examples

4.1 Dynamical Probabilistic P Systems

Dynamical probabilistic P (DPP) systems were introduced in [10]. We present
below the definition of the evolution step. For the sake of the simplicity we will
consider only one compartment, however the discussion below can be easily gen-
eralized to several compartments.

Let C be the current configuration and R be the set of all rules. Then the
system evolves from C to C ′ as follows.

1. For each rule r ∈ R the propensity of ar(C) = cr ∗ hr(C) (hr being defined as
in Equation (5)) is computed.
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2. The propensities are normalized giving a probability for a rule r to be chosen:

pr(C) = ar(c)∑
r′∈R ar′ (C) .

3. The rules to be applied are chosen according to their probabilities. If a non-
applicable rule is chosen, the choice is repeated.

4. The process stops when a maximal (parallel) multiset of rules R is obtained.
5. The multiset of rules obtained at the previous step is applied and yields a new

configuration C ′.

It can be easily seen that since the probabilities to apply a rule (pr) are com-
puted only at the beginning of each step, then the maximal multiset of rules R is
composed from independent rules (the order in which the rules were chosen has
no influence). Hence the probability to choose a multiset of rules R is equal to the
product of the probabilities of each rule: pR(C) =

∏
r∈R pr. Now if we normal-

ize this value with respect to all possible maximally parallel multisets of rules we
obtain:

∏
r∈R pr(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ pz(C)

=

∏
r∈R

ar(C)∑
r′∈R ar′ (C)∑

R′∈Appl(Π,C,max)

∏
z∈R′

pz(C)∑
r′∈R ar′ (C)

=

∏
r∈R ar(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ az(C)

(8)

Since for the concentration-dependent strategy we have f(R,C) =
∏

r∈R ar(C),
it follows that (8) equals to (1). Hence we just showed that DPP systems can be
translated to probabilistic P systems with a concentration-dependent strategy.

4.2 Probabilistic Functional Extended P Systems

Probabilistic functional extended P (PFEP) systems where introduced in [1] as a
part of a framework used to model eco-systems. In order to simplify the presen-
tation we consider a flattening of the structure of the P system, hence using only
multiset rewriting rules. We also consider that the rules having the same left-hand
side form a partition of the set of rules R into n subsets R = R1 . . .Rn, where
r1, r2 ∈ Ri ⇒ lhs(r1) = lhs(r2), 1 ≤ i ≤ n.

The evolution of a PFEP system is done as follows:

1. A maximally parallel multiset of rules R is chosen.
2. R is partitioned into submultisets based on the left-hand side of rules: Ri =

{r ∈ R | r ∈ Ri}.
3. For each non-empty partition Ri, |Ri| rules from Ri are chosen according to

the given probability fr(a), where r ∈ Ri and a is a moment of time.
4. The resulting multiset of rules is applied yielding a new configuration.

From the description of the strategy it is clear that it corresponds to the
multiplicity-dependent strategy for a maximally parallel derivation mode (and
where the constant cr is replaced by fr(a)).
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5 Final Remarks

In this note we presented a new method to describe P systems working with
probabilities. The main aim of this method is to provide a common framework
permitting to describe variants of probabilistic P systems. Such a framework could
be useful for the comparison of different variants and for the extension of existing
ones.

The used method is based on the assignment of a probability to a multiset
of applicable rules (according to some derivation mode). The evolution step then
chooses a multiset of rules according to its probability and then applies it. We were
particularly interested by the cases when the probability of a multiset of rules R
can be represented as a product of individual probabilities of rules r ∈ R. We gave
example of three strategies for the computation of the individual probabilities
of a rule. The first strategy supposes that the rule probability is constant, the
second strategy supposes that the rule probability is proportional to the number
of its applications, while the third strategy corresponds to the mass action law.
We showed that the DPP systems from [10] are using the third strategy, while the
PFEP systems from [1] the second. An interesting direction for the further research
is to consider the above strategies in combination with different derivation modes.

We remark that the obtained strategies are not equivalent to the Gillespie
stochastic simulation algorithm (SSA), except if the sequential derivation mode
is used, because they do not take into account the intermediate modifications
of the configuration. In some sense they correspond to the tau-leaping method,
which is an approximation of the Gillespie SSA. An interesting topic for a fur-
ther research could be the expression of different Gillespie-based strategies in the
proposed framework. This can give rise to new variants of P systems suitable for
stochastic simulations.
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