
Implementing Obstacle Avoidance and Follower
Behaviors on Koala Robots
Using Numerical P Systems

Cristian Ioan Vasile1, Ana Brânduşa Pavel1, Ioan Dumitrache1, and
Jozef Kelemen2

1 Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, 060042 Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro

2 Institute of Computer Science
Silesian University in Opava
kelemen@fpf.slu.cz

Summary. Membrane controllers have been developed using Numerical P Systems and
their extension, Enzymatic Numerical P Systems, for controlling mobile robots like e-
puck and Khepera III. In this paper we prove that membrane controllers can be easily
adapted for other types of robotic platforms. Therefore, obstacle avoidance and follower
behaviors were adapted for Koala robots. The membrane controllers for Koala robots
have been tested on real and simulated platforms. Experimental results and performance
analysis are presented.

1 Introduction

Numerical P systems represent a type of membrane systems introduced by Gh.
Păun in [7]. The main difference of this computational model in comparison to
other types of P systems [8] is that compartments contain numerical variables (in-
stead of symbols) which evolve by means of programs (rules). A membrane system
has a tree-like structure and computation takes place in parallel in all membranes.
Using membrane computing paradigm for modeling robot controllers is a new ap-
proach that was discussed and analysed in several papers [2], [5], [1]. Numerical
P Systems (NPS) and their extension, Enzymatic Numerical P Systems (ENPS),
were successfully applied for modeling robot behaviors like obstacle avoidance,
wall following, following another robot, localization [2], [5], [6]. The robot behav-
iors were tested on real and simulated two wheel differential robots: e-puck and
Khepera III. These two types of robots are small educational robots with diame-
ters between about 7 and 13 cm. In this paper, we propose robot controllers for
following a leader and obstacle avoidance behaviors, which were tested on Koala



216 C.I. Vasile et al.

educational robots. Koala robot is a bigger robot, about 30x30 size, with differ-
ent infrared sensor placement than e-puck and Khepera III. In this way we prove
that membrane controllers can be easily adapted to any types of robots and are
a scalable modeling tool for robotics applications. The membrane controllers for
the follower behavior are modeled based on classical control laws (proportional
controller) using membrane systems. The obstacle avoidance behavior is presented
in detail in [5]. The membrane controllers’ performance will be analyzed and pre-
sented in this paper.
In order to introduce the NPS and ENPS models and the mathematical notations,
we further present formal definitions which were adapated from other papers. For
instance numerical P systems are presented in detail in [7]. Their definition is the
following:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0))) (1)

where:

• m is the number of membranes used in the system, degree of Π; m ≥ 1;
• H is an alphabet that contains m symbols (the labels of the membranes);
• µ is a membrane structure;
• V ari is the set of variables from compartment i, and the initial values for these

variables are V ari(0);
• Pri is the set of programs (rules) from compartment i. Programs process vari-

ables and have two components, a production function and a repartition pro-
tocol.
The j-th program has the following form:

Prj,i = (Fj,i(x1,i, ..., xki,i), cj,1|v1 + ...+ cj,ni |vni) (2)

where:
– Fj,i(x1,i, ..., xki,i) is the production function;
– ki represents the number of variables in membrane i;
– cj,1|v1 + ...+ cj,ni |vni is the repartition protocol;
– ni represents the number of variables contained in membrane i, plus the

the number of variables contained in the parent membrane of i, plus the
number of variables contained in the children membranes of i.

The variables cj,1, . . . , cj,ni are natural numbers (they may be also 0, case in
which it is omitted to write “+0|x”) [7]. These coefficients specify the proportion
of the current production distributed to each variable v1, ..., vni . Let,

Cj,i =

ni∑
n=1

cj,n (3)

A program Prj,i is executed as follows. At any time t, the function Fj,i(x1,i, ..., xki,i)
is computed. The value:



Membrane Controllers on Koala Robots 217

q =
Fj,i(x1,i, ..., xki,i)

Cj,i
(4)

represents the “unitary portion” to be distributed to variables v1, . . . , vni , accord-
ing to coefficients cj,1, . . . , cj,ni in order to obtain the values of these variables at
time t + 1. Specifically, variable vs which belongs to the repartition protocol of
program j, will receive:

q ∗ cj,s, for1 ≤ s ≤ ni (5)

The variables which receive new values from a rule must be contained within
the current, the parent or a child membrane. If a variable belongs to membrane i,
it can appear in the repartition protocol of the parent membrane of i and also in
the repartition protocol of the child membranes of i. After applying all the rules, if
a variable receives such “contributions” from several neighboring compartments,
then they are added in order to produce the next value of the variable.

A production function which belongs to membrane i may depend only on some
of the variables from membrane i. Those variables which appear in the production
function become 0 after the execution of the program.

Deterministic NPS have only one rule per membrane (card(Pri) = 1) or must
have a selection mechanism that can decide which rule to apply. The NPS model
with multiple rules per membrane is a non-deterministic system. However, NPS
are well suited for applications which involve numerical variables and require a
deterministic behavior, such as control systems for mobile robots. Thus a selec-
tion mechanism for the active rules is defined in the extended model, enzymatic
numerical P systems (ENPS), proposed [3].

ENPS is defined as a NPS with special enzyme-like variables which control the
execution of the rules:

Π = (m,H, µ, (V ar1, E1, P r1, V ar1(0)), . . . , (V arm, P rm, Em, V arm(0))) (6)

where:

• Ei is a set of enzyme variables from compartment i, Ei ⊂ V ari
• Pri is the set of programs from compartment i. Programs have one of the two

following forms:
1. non-enzymatic form, which is exactly like the one from the standard NPS:

Prj,i = (Fj,i(x1,i, . . . , xki,i), cj,1|v1 + ...+ cj,ni |vni) (7)

2. enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), et,i, cj,1|v1 + ...+ cj,ni |vni) (8)

where et,i ∈ Ei



218 C.I. Vasile et al.

There can be more than one active rule in a membrane or none. A rule is active
if it is in the non-enzymatic form or if the associated enzyme has a greater value
than one of the variables involved in the production function, in absolute value. All
active rules in the membrane system are executed in parallel in one computational
step. The enzymatic mechanism and the advantages of ENPS are detailed in [5],
[1].

2 Behaviors on Koala robot

In this paper two behaviors are presented and tested on simulated and real Koala
robots: obstacle avoidance and following a leader. The obstacle avoidance behavior
is simple to define: the robot has to be able to maintain a minimum distance from
all other objects in the environment. Although simple in principle, a lot of problems
can arise by taking into account the physical constraints of the robot, such as the
limited perception (sensors’ detection range, precision, accuracy, sampling time,
etc.) and limited effector action (speed, acceleration, torque, force-stress, etc.).
These factors together with the nature and structure of the environment play a very
important role in the design of an effective control strategy not only for obstacle
avoidance, but also for any other behavior (simple or complex). The control law
of the obstacle avoidance behavior uses the infrared sensor’s readings to compute
appropriate speeds for the two motors of the Koala robot (figure 3). This data is
sufficient to ensure that the robot will not come in contact with any object in the
environment. If no obstacle are in sight, the robot just cruises forward at a given
constant speed.

The behavior of following a leader robot is more difficult to perform just from
infrared sensors’ readings (figure 3), because objects from the environment cannot
be distinguished from the leader just from this data. On the other hand the control
program that uses only the infrared sensors is much more simple and easier to
implement.

In this paper, experiments are carried out to show that membrane controllers
are viable control strategies for robots operating in a semi-structured office-like
environment.

In previous work, a proportional controller for the follower behavior was de-
signed using Numerical P Systems, for Khepera III and e-puck robots [2]. The
membrane structure is illustrated in figure 1.

The control law implemented by the membrane structure in figure 1 is the
following:

lw = CruiseSpeedLeft− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

+kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (9)

rw = CruiseSpeedRight− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

−kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (10)



Membrane Controllers on Koala Robots 219

Fig. 1. A proportional controller for the follower behavior, implemented with NPS, for
Koala III and e-puck robots

The follower controller was adapted to work with Koala robots, taking into
account the sensors’ placement on this type of robots. Therefore, we can prove that
membrane controllers can be adapted to work on any type of robotic platforms
(figure 2).

The control law for the follower behavior of Koala robot is:

lw = CruiseSpeedLeft− kDist ∗ (refDist −
1

6

6∑
i=1

sDisti)

+kHeading ∗ (refHeading − (
6∑

i=1

sRi −
6∑

i=1

sLi)) (11)

rw = CruiseSpeedRight− kDist ∗ (refDist −
1

6

6∑
i=1

sDisti)

−kHeading ∗ (refHeading − (

6∑
i=1

sRi −
6∑

i=1

sLi)) (12)

The NPS structure tested on Koala was computed using SimP simulator pro-
posed in [4]. The follower robot behavior was simulated using Webots simulator
and then tested on real Koala robots (figure 3).



220 C.I. Vasile et al.

Fig. 2. A proportional controller for the follower behavior, implemented with NPS, for
Koala robot

Fig. 3. Koala robot

An equivalent membrane controller using ENPS model has been created as
well and is shown in figure 4. The structure of the ENPS controller is simpler and
easier to understand and use. It also has less rules and membranes.



Membrane Controllers on Koala Robots 221

Fig. 4. A proportional controller for the follower behavior, implemented with ENPS, for
Koala robot

In the experiments the leader Koala robot performs different predefined mo-
tions and also obstacle avoidance behavior. The membrane controller for obstacle
avoidance was adapted from the one in [5] and is shown in figure 5. It is based
on the ENPS model and the only thing that needed to be changed was to add
more membranes for the extra infrared sensors of the Koala robot and the weight
of each sensor, which has a different placement than on the other robots. In [5] it
is presented how the membrane controller for obstacle avoidance works and what
all variables are used for.

Fig. 5. A controller for the obstacle avoidance behavior, implemented with ENPS, for
Koala robot



222 C.I. Vasile et al.

3 Experiment setup and performance analysis

As stated above, experiments were performed in the WeBots robotic simulator and
in a real world setting. In both cases, the environment is a semi-structured office-
like environment with or without obstacles. Both obstacle avoidance and follow
a leader behaviors were tested, first separately and then together (the leader was
performing obstacle avoidance).

All experiments used the SimP membrane simulator to execute the membrane
controller that drive the robots. SimP3 is described in [4] and can be used stan-
dalone or as a library. For the experiments on the real Koala robots, a server
version was developed in order to respond to the robots’ queries. In this setup, a
TCP/IP connection is established from each robot to a host machine (in this case
a laptop) through a wireless router. The robots run a program that queries the
SimP server for the current motor commands based on the sensors’ readings. This
is done, because SimP is implemented in Java and the robots do not posses the
necessary computational capabilities in order to run a Java Virtual Machine.

The performance of the controllers is analyzed based on the speed profiles
of the leader and follower robots and also based on the duration of a cycle, the
execution time of a membrane controller. The two behaviors were tested separately
and together in different scenarios as follows.

Figures 6, 7, 8, 9 show the speed profiles of the leader and follower robots in
simulated experiments. These figures are the result of three experiments for the
following the leader behavior.

In the first experiment, the leader robot has a forward constant motion with a
cruising speed (15) different then that of the follower robot (12). It is clear from
figure 6 that the follower matched the speed of the leader and thus maintaining
the desired distance to the leader.

In the second experiment, the leader robot has a forward variable motion.
The speed of the leader oscillates around the cruising speed of 15 with amplitude
A = 10 and frequency of about f = 1.6e − 4 (equation 13) . Figure 7 shows that
the follower is able to match the speed of the leader in this experiment as well.
However, a slight phase shift and amplitude difference can be observed in the graph
and this is due to the reaction time of the follower, which is at least as long as the
duration of a controller cycle. The cruising speed of the follower is also 12 in this
experiment.

SpeedLeft = CruiseSpeed+A · sin(2π · f · t) (13)

SpeedRight = CruiseSpeed+A · sin(2π · f · t) (14)

In the third experiment, the leader has a variable sine motion. The speed is
computed as composition of the constant forward cruising speed and a variable

3 For the Java binary program (.jar) please contact A.B. Pavel at anabran-
dusa@gmail.com



Membrane Controllers on Koala Robots 223

turning speed (equation 15). The speed of the left motor is phase shifted by π from
the right one. In this case, the follower is still able to follow the leader. However,
there is a big difference in the speed profiles of the two robots. These are due to the
fact that the Koala robots are square; when the leader turns, its back gets closer to
the follower even though the leader is moving away. This is why the follower has to
slow down when the leader changes direction and this can be seen in figures 8, 9.

SpeedLeft = CruiseSpeed+A · sin(2π · f · t) (15)

SpeedRight = CruiseSpeed−A · sin(2π · f · t) (16)

0 50 100 150 200
12

12.5

13

13.5

14

14.5

15

15.5

16

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

 

 
follower
leader

Fig. 6. Speeds of the leader and follower during the forward constant motion

0 100 200 300 400 500
0

5

10

15

20

25

30

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

 

 
follower
leader

Fig. 7. Speeds of the leader and follower during the forward variable motion

The next figures were obtained from experiments in a real world experiments.
Figure 10 shows the speed profile for obstacle avoidance controller. It can be noted
that the peaks in the graph correspond to the reaction of the robot when obstacles
are detected. The Koala robot was able to avoid all obstacles in the environment.



224 C.I. Vasile et al.

0 100 200 300 400 500 600
0

5

10

15

20

25

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

 

 follower
leader

Fig. 8. Speeds of the leader and follower during the sine motion on the left wheels

0 100 200 300 400 500 600
0

5

10

15

20

25

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

 

 
follower
leader

Fig. 9. Speeds of the leader and follower during the sine motion on the right wheels

In figure 11, the speed profiles of a follower robot is shown. The leader has a
variable sine motion (equation refeq:leader-sine). It can be seen that the follower
robot is able to match the movement of the leader and to follow it.

In the last experiment, the two behavior are used together: the leader performs
obstacle avoidance while the other robot follows it. The speed profiles of both
robots are presented in figures 12 and 13. The follower is able to keep track of the
leader. It is important to note, that the follower must not get to close to other
objects in the environment, because it can not distinguish them from the leader
robot, only based on the infrared sensors’ readings.

In the last figure (figure 14) the execution time of the two membrane controllers
in each cycle is shown. It can be seen that the execution time is very stable and
small. The first cycles take more time, however, due to initialization of the Java
environment. After that, there are no significant peaks in the execution time for
the proposed membrane systems.



Membrane Controllers on Koala Robots 225

100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

50

cycle

S
pe

ed
 p

ro
fil

es

 

 
Left Speed
Right Speed
Cruise Speed

Fig. 10. avoid speed profiles

20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

cycle

S
pe

ed
 p

ro
fil

es

 

 
Left Speed
Right Speed

Fig. 11. follow sine speed profiles

50 100 150 200 250 300
−10

−5

0

5

10

15

20

cycle

S
pe

ed
 p

ro
fil

es

 

 
Left Speed
Right Speed
Cruise Speed

Fig. 12. follow avoid speed profiles

4 Conclusions

In this paper, we have proven that NPS and their extension, ENPS, are a flexible
and scalabale modeling tool which can be succesfully used to design robot con-
trollers. Among the advantages of using this computational paradigm in robotics



226 C.I. Vasile et al.

100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

cycle

S
pe

ed
 p

ro
fil

es

 

 
Left Speed
Right Speed
Cruise Speed

Fig. 13. leader avoid speed profiles

50 100 150 200 250 300
0

50

100

150

200

250

300

cycle

du
ra

tio
n 

[m
s]

 

 
Avoid Membrane Controller
Follower Membrane Controller

Fig. 14. Avoid/Follow cycle duration

we mention the parallel nature of the model and the possibility of encapsulating
behaviors and functionalities as modules which can be executed in parallel. The
membranes are independent from the control program of the robotic system and
can be easily adapted to other types of robots or applications by only modifying
some parameters in the xml files which store the membrane structures.

Future work includes extending the current membrane controllers to other
robots, but also to implement other behaviors and functionalities using ENPS
model.

References

1. Buiu, C., Pavel, A., Vasile, C., Dumitrache, I.: Perspectives of using membrane com-
puting in the control of mobile robots. In: In Proc. of the Beyond AI - Interdisciplinary
Aspect of Artificial Inteligence Conference, Pilsen, Czech Republic. pp. 21–26 (Decem-
ber 2011)

2. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences 187, 22–51 (March 2012), doi: 10.1016/j.ins.2011.10.007



Membrane Controllers on Koala Robots 227

3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of
membrane computing systems. In: The IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010) Liverpool. pp. 1331–
1336 (September 2010)

4. Pavel, A.B.: Membrane controllers for cognitive robots. Master’s thesis, Department
of Automatic Control and System Engineering, Politehnica University of Bucharest,
Romania (February 2011)

5. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile robot
controllers. Natural Computing (in press), doi: 10.1007/s11047-011-9286-5

6. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot localization implemented with enzy-
matic numerical P systems (submitted)

7. Păun, G., Paun, A.: Membrane Computing and Economics: Numerical P Systems.
Fundamenta Informaticae pp. 213–227 (2004)

8. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)




