
Tenth Brainstorming Week
on Membrane Computing

Sevilla, January 30 – February 3, 2012

Volume II

Manuel Garćıa-Quismondo
Luis F. Maćıas-Ramos

Gheorghe Păun
Luis Valencia-Cabrera

Editors

Tenth Brainstorming Week
on Membrane Computing

Sevilla, January 30 – February 3, 2012

Volume II

Manuel Garćıa-Quismondo Fernández
Luis Felipe Maćıas Ramos

Gheorghe Păun
Luis Valencia Cabrera

Editors

RGNC REPORT 2/2012

Research Group on Natural Computing

Sevilla University

Fénix Editora, Sevilla, 2012

c©Autores
ISBN: ??????
Depósito Legal: SE-????–06
Edita: Fénix Editora

Avda. de Cádiz, 7 – 1C
41004 Sevilla
fenixeditora@telefonica.net
Telf. 954 41 29 91

Preface

These proceedings, consisting in two volumes, contain the papers emerged from the
Tenth Brainstorming Week on Membrane Computing (BWMC), held in Sevilla,
from January 30 to February 3, 2012, in the organization of the Research Group
on Natural Computing from the Department of Computer Science and Artificial
Intelligence of Sevilla University. The first edition of BWMC was organized at the
beginning of February 2003 in Rovira i Virgili University, Tarragona, and all the
next editions took place in Sevilla at the beginning of February, each year.

The 2012 edition of BWMC was organized in conjunction with the First Inter-
national Conference on Developments in Membrane Computing (ICDMC2012).

In the style of previous meetings in this series, the tenth BWMC was con-
ceived as a period of active interaction among the participants, with the emphasis
on exchanging ideas and cooperation. Several “provocative” talks were delivered,
mainly devoted to open problems, research topics, conjectures waiting for proofs,
followed by an intense cooperation among the 40 participants – see the list in the
end of this preface. The efficiency of this type of meetings was again proved to be
very high and the present volumes illustrate this assertion.

Slightly different from the previous meetings was the combination with the
ICDMC2012, in the sense that several talks also had the style of a conference:
more time dedicated to presenting achievements obtained by the research groups
from where the participants came from, but also converging towards the style of
the brainstorming, i.e., presenting frontier results, research topics, ongoing appli-
cations.

The papers included in these volumes, arranged in the alphabetic order of the
authors, were collected in the form available at a short time after the brainstorm-
ing; several of them are still under elaboration. The idea is that the proceedings are
a working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

vi Preface

Selections of the papers from these volumes will be considered for publication
in special issues of Theoretical Computer Science and of International Journal of
Computer Mathematics.

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-
eration Computing – volume 22, number 4, 2004;

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);

• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011.

Other papers elaborated during the tenth BWMC will be submitted to other
journals or to suitable conferences. The reader interested in the final version of
these papers is advised to check the current bibliography of membrane computing
available in the domain website http://ppage.psystems.eu.

The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Artiom Alhazov, University of Milano - Bicocca, Italy, aartiom@yahoo.com
2. Ioan Ardelean, Institute of Biology of the Romanian Academy, Bucharest,

Romania, ioan.ardelean57@yahoo.com
3. Mari Angels Colomer Cugat, University of Lleida, Spain,

colomer@matematica.udl.cat
4. Erzsébet Csuhaj-Varjú, Faculty of Informatics, Eötvös Loránd University,

Budapest, Hungary, csuhaj@inf.elte.hu
5. Rudolf Freund, Technological University of Vienna, Austria,

rudifreund@gmx.at
6. Manuel Garćıa-Quismondo Fernández, University of Seville, Spain,

mgarciaquismondo@us.es
7. Marian Gheorghe, University of Sheffield, United Kingdom,

m.gheorghe@sheffield.ac.uk
8. Carmen Graciani Dı́az, University of Seville, Spain, cgdiaz@us.es

Preface vii

9. Miguel A. Gutiérrez Naranjo, University of Seville, Spain, magutier@us.es
10. Florentin Ipate, University of Piteşti, Romania, florentin.ipate@ifsoft.ro
11. Jozef Kelemen, Silesian University, Opava, Czech Republic,

jozef.kelemen@fpf.slu.cz
12. Abhay Krishna, CABIMER, Seville, Spain, Abhay.Krishan@cabimer.es
13. Raluca Lefticaru, University of Piteşti, Romania, raluca.lefticaru@gmail.com
14. Alberto Leporati, University of Milano - Bicocca, Italy,

leporati@disco.unimib.it
15. Luis Felipe Maćıas Ramos, University of Seville, Spain, lfmaciasr@us.es
16. Vincenzo Manca, University of Verona, Italy, vincenzo.manca@univr.it
17. Luca Marchetti, University of Verona, Italy, luca.marchetti@univr.it
18. Miguel A. Mart́ınez del Amor, University of Seville, Spain, mdelamor@us.es
19. Giancarlo Mauri, University of Milano - Bicocca, Italy, mauri@disco.unimib.it
20. Adam Obtulowicz, Polish Academy of sciences, Warsaw, Poland,

A.Obtulowicz@impan.pl
21. Ana Brânduşa Pavel, Politehnica University of Bucharest, Romania,

anabrandusa@gmail.com
22. Gheorghe Păun, Romanian Academy, Bucharest, Romania, and University

of Seville, Spain, gpaun@us.es
23. Hong Peng, School of Mathematics and Computer Engineering, Xihua

University, China, ph.xhu@hotmail.com
24. Ignacio Pérez Hurtado de Mendoza, University of Seville, Spain, perezh@us.es
25. Mario de J. Pérez Jiménez, University of Seville, Spain, marper@us.es
26. Antonio Enrico Porreca, University of Milano - Bicocca, Italy,

porreca@disco.unimib.it
27. Raúl Reina Molina, University of Seville, Spain, m75@gmail.com
28. Agust́ın Riscos Núñez, University of Seville, Spain, ariscosn@us.es
29. Iurie Rogojin, Institute of Mathematics and Computer Science of the Academy

of Sciences of Moldova, Chişinău, Moldova, yrogozhin@gmail.com
30. Álvaro Romero Jiménez, University of Seville, Spain, romero.alvaro@us.es
31. Francisco José Romero Campero, University of Seville, Spain, fran@us.es
32. Jose Maŕıa Sempere Luna, Polytechnical University of Valencia, Spain,

jsempere@dsic.upv.es
33. Petr Sośık, Silesian University, Opava, Czech Republic, and Universidad

Politécnica de Madrid, Spain, petr.sosik@fpf.slu.cz
34. Cristian Ştefan, University of Piteşti, Romania, liviu.stefan@yahoo.com
35. Luis Valencia Cabrera, University of Seville, Spain, lvalencia@us.es
36. György Vaszil, Faculty of Informatics, University of Debrecen, Hungary,

vaszil.gyorgy@inf.unideb.hu
37. Serghei Verlan, University of Paris Est, France, verlan@univ-paris12.fr
38. Jun Wang, Electrical and Information Engineering, Xihua University, China,

wj.xhu@hotmail.com
39. Claudio Zandron, University of Milano - Bicocca, Italy,

zandron@disco.unimib.it

viii Preface

40. Gexiang Zhang, School of Electrical Engineering, Southwest Jiaotong
University, China, gexiangzhang@gmail.com

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all
the members of this group were enthusiastically involved in this (not always easy)
work.

The meeting was supported from various sources: (i) Proyecto de Excelencia
con investigador de reconocida vaĺıa, de la Junta de Andalućıa, grant P08 – TIC
04200, (ii) Proyecto del Ministerio de Educación y Ciencia, grant TIN2009 – 13192,
(iii) Instituto de Matemáticas de la Universidad de Sevilla (IMUS), (iv) Consejeŕıa
de Innovacion, Ciencia y Empresas de la Junta de Andalućıa, as well as by the De-
partment of Computer Science and Artificial Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, May 3, 2012)

Contents

Inverse Dynamical Problems:
An Algebraic Formulation Via MP Grammars
V. Manca, L. Marchetti . 1

Parallel Simulation of Probabilistic P Systems on Multicore Platforms
M.A. Mart́ınez-del-Amor, I. Karlin, R.E. Jensen,
M.J. Pérez-Jiménez, A.C. Elster . 17

DCBA: Simulating Population Dynamics
P Systems with Proportional Object Distribution
M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo,
L.F. Maćıas-Ramos, L. Valencia-Cabrera, A. Romero-Jiménez,
C. Graciani-Dı́az, A. Riscos-Núñez, M.A. Colomer,
M.J. Pérez-Jiménez . 27

Two Topics Ahead Membrane Computing
A Obtu lowicz . 57

Languages and P Systems: Recent Developments
Gh. Păun, M.J. Pérez-Jiménez . 61

Image Thresholding with Cell-like P Systems
H. Peng, J. Shao, B. Li, J. Wang, M.J. Pérez-Jiménez,
Y. Jiang, Y. Yang . 75

The Role of the Environment in Tissue P Systems with Cell Division
M.J. Pérez-Jiménez, A. Riscos-Núñez,
M. Rius-Font, F.J. Romero-Campero . 89

Improving the Efficiency of Tissue P Systems with Cell Separation
M.J. Pérez-Jiménez, P. Sośık . 105

An Optimal Frontier of the Efficiency of
Tissue P Systems with Cell Division
A.E. Porreca, N. Murphy, M.J. Pérez-Jiménez . 141

x Contents

Cell Complexes and Membrane Computing
for Thinning 2D and 3D Images
R. Reina-Molina, D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo 167

Asynchronous Spiking Neural P Systems with Local Synchronization
T. Song, L. Pan, Gh. Păun . 187

Improving the Universality Results of Enzymatic Numerical P Systems
C.I. Vasile, A.B. Pavel, I. Dumitrache . 207

Implementing Obstacle Avoidance and Follower Behaviors
on Koala Robots Using Numerical P Systems
C.I. Vasile, A.B. Pavel, I. Dumitrache, J. Kelemen 215

A Note on the Probabilistic Evolution for P Systems
S. Verlan . 229

Adaptive Fuzzy Spiking Neural P Systems
for Fuzzy Inference and Learning
J. Wang, H. Peng . 235

Modelling Intelligent Energy Distribution Systems
by Hyperdag P Systems
A. Zafiu, C. Ştefan . 249

A Membrane-Inspired Evolutionary Algorithm with a Population
P System and its Application to Distribution System Reconfiguration
G. Zhang, M.A. Gutiérrez-Naranjo, Y. Qin, M. Gheorghe 277

Author Index . 299

Contents of Volume I

Self-Stabilization in Membrane Systems
A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri 1

Characterizing the Computational Power of Energy-Based P Systems
A. Alhazov, M. Antoniotti, A. Leporati . 11

Asynchronous and Maximally Parallel Deterministic Controlled
Non-Cooperative P Systems Characterize NFIN ∪ coNFIN
A. Alhazov, R. Freund . 25

The Computational Power of Exponential-Space
P Systems with Active Membranes
A. Alhazov, A. Leporati, G. Mauri, A.E. Porreca, C. Zandron 35

The Power of Symport-3 with Few Extra Symbols
A. Alhazov, Y. Rogozhin . 61

Counting Cells with Tissue-like P Systems
I. Ardelean, D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo,
F. Peña-Cantillana, R. Reina-Molina, I. Sarchizian . 69

General Topologies and P Systems
E. Csuhaj-Varjú, M. Gheorghe, M. Stannett . 79

Skeletonizing Images by Using Spiking Neural P Systems
D. Dı́az-Pernil, F. Peña-Cantillana, M.A. Gutiérrez-Naranjo 91

A Formal Framework for P Systems with Dynamic Structure
R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan 111

P Systems with Minimal Left and Right Insertion and Deletion
R. Freund, Y. Rogozhin, S. Verlan . 123

Simulating Large-Scale ENPS Models by Means of GPU
M. Garćıa–Quismondo, A.B. Pavel, M.J. Pérez–Jiménez 137

xii

A Kernel P System
M. Gheorghe, F. Ipate, C. Dragomir . 153

Frontiers of Membrane Computing:
Open Problems and Research Topics
M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez – editors 171

A Formal Framework for Clock-free Networks of Cells
S. Ivanov . 251

On the Simulations of Evolution-Communication P Systems
with Energy without Antiport Rules for GPUs
R.A.B. Juayong, F.G.C. Cabarle, H.N. Adorna,
M.A. Mart́ınez-del-Amor . 267

Towards an Integrated Approach for Model Simulation,
Property Extraction and Verification of P Systems
R. Lefticaru, F. Ipate, L. Valencia Cabrera, A. Ţurcanu,
C. Tudose, M. Gheorghe, M.J. Pérez-Jiménez,
I.M. Niculescu, C. Dragomir . 291

Author Index . 319

Inverse Dynamical Problems: An Algebraic
Formulation Via MP Grammars

Vincenzo Manca and Luca Marchetti

University of Verona, Department of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
vincenzo.manca@univr.it luca.marchetti@univr.it

Summary. Metabolic P grammars are a particular class of multiset rewriting grammars
introduced in the MP systems’ theory for modelling metabolic processes. In this paper,
a new algebraic formulation of inverse dynamical problems, based on MP grammars
and Kronecker product, is given, for further motivating the correctness of the LGSS
(Log-gain Stoichiometric Stepwise) algorithm, introduced in 2010s for solving dynamical
inverse problems in the MP framework. At the end of the paper, a section is included
that introduces the problem of multicollinearity, which could arise during the execution
of LGSS, and that defines an algorithm, based on a hierarchical clustering technique,
that solves it in a suitable way.

Key words: Metabolic P systems, dynamical systems, dynamical inverse problems, Kro-
necker product, stepwise regression.

1 Introduction

Metabolic P (MP) systems are a particular class of cell-like P systems [33, 34, 36,
35] introduced by Vincenzo Manca in 2004, for modelling metabolic processes [29].
An MP system is essentially a particular type of deterministic discrete dynamical
system which inherits from the P systems’ framework a native similitude with the
functioning of a living cell.

MP systems share with P systems the multiset rewriting mechanism as their
fundament. However, while P systems are essentially unconventional computa-
tional models, MP systems are intended to generate dynamics instead of compu-
tations. Namely, their aim in modelling biological phenomena is that of finding
the multiset rewriting mechanism underlying an observed biological behaviour.

Metabolic P systems can be considered as the result of a research activity
initiated in 1990s with some initial works [15, 28, 30]. They are different, with
respect to other “P variants” applied in the context of systems biology [3, 4,
6, 38, 39]. The main difference is in their determinism. In fact, their basis are
MP grammars, where multiset transformations are regulated by functions in a

2 V. Manca, L. Marchetti

deterministic way [19]. An MP system is an MP grammar equipped with a temporal
interval τ , a conventional mole size ν, and substances masses, which specify the
time and population (discrete) granularities respectively [19].

An MP grammar G can be considered as a generator of time series, determined
by the following structure (n,m ∈ N, the set of natural numbers):

G = (M,R, I, Φ)

where:

1. M = {x1, x2, . . . , xn} is a finite set of elements called metabolites, or sub-
stances. A metabolic state is given by a list of n values, each of which is asso-
ciated to a metabolite.

2. R = {αj → βj | j = 1, . . . ,m} is a set of rules, or reactions, with αj and βj
multisets over M for j = 1, . . . ,m.

3. I are initial values of metabolites, that is, a list x1[0], x2[0], . . . , xn[0] providing
the metabolic state at step 0.

4. Φ = {ϕ1, . . . , ϕm} is a list of functions, called regulators, one for each rule,
such that, for 1 ≤ j ≤ m, and for some kj (0 ≤ kj ≤ n)

ϕj : Rkj → R.

An MP grammar G is parametric, when a set P of parameters is added to G,
and metabolic states include also elements of P (to which, the state assigns real
values), therefore regulators may include parameters as their arguments . If G
is parametric, also the time series of parameters has to be provided in order to
specify G.

An MP grammar can be easily representable by an MP graph [22]. Moreover,
the set of the rules of the system can be also represented by a stoichiometric
matrix A, which gives a sort of “matrix-like representation” of the stoichiometry
(see Figure 1).

An MP grammar G defines, for any x ∈M , a time series

(x[i] | i ∈ N, i > 0)

in the following way. Let

s[i] = (x1[i], x2[i], . . . , xn[i])

the (row) state vector of G at step i, which can be seen as a function from the set
of metabolites to R, then the flux ϕj(sj [i]) of rule rj at step i, is given by applying
the regulator ϕj to sj [i], a substate of s[i] associated to rj , and constituted by kj
components called the tuners of rj .

If we consider the rule r2 of the MP grammar given in Figure 1, for example,
then the flux at step i is calculated by:

ϕ2(s2[i]) = ϕ2(A[i], B[i])

= c2A[i]2 + c3B[i]3

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 3

r₄

A

B

C

c₁A²

c₂A²+c₃B³

c₇+c₈C

c₄B

c₅+c₆AC²

MP grammar

Rules Regulators
r₁: ∅ → A φ₁ = c₁A²
r₂: A → B φ₂ = c₂A²+c₃B³
r₃: B → ∅ φ₃ = c₄B
r₄: A → C φ₄ = c₅+c₆AC²
r₅: C → ∅ φ₅ = c₇+c₈C

c₁, c₂, ... , c₈ ∈ ℝ
A[0], B[0], C[0] ∈ ℝ

r₃

r₁

r₅

r₂

MP graph

1 -1 0 -1 0
0 1 -1 0 0
0 0 0 1 -1()𝔸 =

Stoichiometric matrix

Action of r₂ on substances A, B and C
(it consumes A and produces B)

Action of r₁, r₂, r₃, r₄ and r₅
on substance B (produced
by r₂ and consumed by r₃)

}
}

a column for each rule
r₁ r₂ r₃ r₄ r₅

A
B a row for each substance
C

#

Fig. 1. An example of MP grammar (where ∅ denotes an empty multiset and sub-
stance symbols occurring in regulators denote the corresponding substance quantities),
the stoichiometric matrix A is directly deduced by the MP grammar on the top left cor-
ner. The MP graph on the top right corner is obtained by translating the rules in the
source-target-edge notation [26].

where c2, c3 are given real constants, and A and B are said to be the tuners of the
rule r2.

The value of x[i + 1], for each x ∈ M , is given by the following equation,
where αj(x) and βj(x) denote the multiplicities of x in the multiset αj and βj ,
respectively:

x[i+ 1] = x[i] +

m∑
j=1

[(βj(x)− αj(x)) · ϕj(sj [i])].

More generally, if we denote by A the stoichiometric matrix of the system and by

Φ[i] = (ϕ1(s1[i]), ϕ2(s2[i]), . . . , ϕm(sm[i]))

the row vector of fluxes at step i, it can be proved that [16]:

(s[i+ 1]− s[i])T = A× ΦT [i] (1)

that is, by transposition:

s[i+ 1]− s[i] = Φ[i]× AT . (2)

4 V. Manca, L. Marchetti

These last two equations define equivalently the Equational Metabolic Algorithm
(EMA). In the following, the MP dynamics we will present are computed in MAT-
LAB1 by applying EMA. We refer to [19, 20, 18, 21] for a comprehensive presen-
tation of the MP theory.

The dynamics which can be modelled by MP systems can be very complicated
even by considering simple MP grammars (i.e. with few substances and linear regu-
lators). In [23] MP systems were successfully applied to the field of real periodical
function approximation. The complexity of the dynamics compared to the sim-
plicity of the MP grammar which calculates it by EMA, suggests that MP system
theory can be a suitable framework for modelling biological dynamics.

The procedure introduced in [23] to define the models has been widely extended
in [25, 26] for defining the LGSS (Log-Gain Stoichiometric Stepwise) algorithm,
which derives MP grammars generating time series of observed dynamics. LGSS
can be applied independently from any knowledge about reaction rate kinetics and
it represents the most recent solution, in terms of MP systems, of the dynamical
inverse problem, that is, of the identification of (discrete) mathematical models of
an observed dynamics and satisfying all the constraints required by the specific
knowledge about the modelled phenomenon. The LGSS algorithm combines and
extends the log-gain principles developed in the MP system theory [16, 17] with
the classical method of Stepwise Regression [7], which is a statistical regression
technique based on Least Squares Approximation and statistical F-tests [5].

LGSS has been implemented by Luca Marchetti in 2010 as a set of MATLAB
functions. We refer to [24, 31, 32, 27] for some successful applications of LGSS and
MP systems for discovering the internal regulation logic of phenomena relevant in
systems biology.

The starting point of the LGSS algorithm was the search for the right regu-
lators associated to the reactions of an MP grammar which provide the observed
time series when dynamics is computed by means of EMA. If we consider the
role of each regulator, we realize that it affects the variations of many substances.
Therefore regulators are constrained to satisfy altogether, at each step, an alge-
braic system based on the stoichiometry of the observed phenomenon. The crucial
point for regulator determination was a special kind of regression formulated as
“stoichiometric expansion” of EMA by means of an initial set of basic functions
called regressors.

In the next section we will introduce a new algebraic formulation of the sto-
ichiometric expansion, based on MP grammars and Kronecker product, which
better describes and motivates its adoption in LGSS for solving inverse dynamical
problems.

1 See http://www.mathworks.it/index.html for details on the MATLAB software.

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 5

2 Stoichiometric expansion

Given a system with n variables x1, x2, . . . , xn, let us suppose to know the time
series of these variables along time points 0, 1, . . . , t. Let

s[i] = (x1[i], x2[i], . . . , xn[i])

the (row) state vector at time i, and

xj [i+ 1]− xj [i] = ∆j [i]

for j = 1, 2, . . . , n, then

s[i+ 1]− s[i] = (∆1[i], ∆2[i], . . . ,∆n[i])

whence, from equation (2), we get

Φ[i]× AT = (∆1[i], ∆2[i], . . . ,∆n[i]). (3)

For the determination of the regulators which provide the best approximate
solution of the system (3), which has m unknowns (the m components of the flux
vector Φ[i]), LGSS applies a procedure called stoichiometric expansion. Let us
assume that the regulators we are searching for can be expressed as linear com-
binations of some basic regressors g1, g2, . . . , gd which usually include constants,
powers, and products of substances, plus some basic functions which are considered
suitable in the specific cases under investigation:

ϕ1 = c1,1g1 + c1,2g2 + . . .+ c1,dgd

ϕ2 = c2,1g1 + c2,2g2 + . . .+ c2,dgd (4)

. . . = .

ϕm = cm,1g1 + cm,2g2 + . . .+ cm,dgd.

Let us consider the t-expansion Φt
1, Φ

t
2, . . . , Φ

t
m of regulators as the vectors

constituted by the right members of equations (4) evaluated along t steps (where
the values of all the variables of the system are supposed to be known):

Φt
1 = c1,1G

t
1 + c1,2G

t
2 + . . .+ c1,dG

t
d

Φt
2 = c2,1G

t
1 + c2,2G

t
2 + . . .+ c2,dG

t
d (5)

. . . = .

Φt
m = cm,1G

t
1 + cm,2G

t
2 + . . .+ cm,dG

t
d.

Now, let Cd
1 , C

d
2 , . . . , C

d
m be the unknown column vectors, of dimension d, con-

stituted by the coefficients of the regressors providing the linear combinations of
regulators ϕ1, ϕ2, . . . , ϕm we are searching for, and

C = (Cd
1 , C

d
2 , . . . , C

d
m)

6 V. Manca, L. Marchetti

the matrix having these vectors as columns. Moreover, let ∆t
1, ∆

t
2, . . . ,∆

t
n be the

column vectors of dimension t constituted by substance variations of substances,
from step i to step i+ 1, for 0 ≤ i ≤ t− 1, and

∆ = (∆t
1, ∆

t
2, . . . ,∆

t
n)

the matrix having these vectors as columns. Let also Φt be the following matrix
constituted by m column vectors of t elements:

Φt = (Φt
1, Φ

t
2, . . . , Φ

t
m).

Finally, let
G = (Gt

1, G
t
2, . . . , G

t
d)

the matrix, of dimension t×d, having as columns the vectors obtained by evaluating
the regressors g1, g2, . . . , gd on the t observed time points. With the notation above,
the system of equations (5) becomes:

G× C = Φt. (6)

Now, it easily follows from (3) that:

Φt × AT = ∆ (7)

where the exponent T denotes the matrix transposition. Therefore, by combining
equations (6) and (7), we finally obtain the t-expansion of the system (3) as:

G× C× AT = ∆. (8)

The coefficients of C are the unknowns which needs to be estimated by LGSS.
We show now that they can be obtained by a Least Square Estimation deduced
by equation (8), by using direct product ⊗ between matrices, also called Kronecker
product [9, 10, 40, 41], which results a special case of tensor product used in linear
algebra and in mathematical physics.

Given two real matrix A,B of dimension n×m and t×d respectively, then the
direct product:

A⊗B

is the matrix, of dimension nt×md, constituted by nm blocks Bi,j , such that, if
A = (ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m), then Bi,j = ai,jB (in Bi,j all the elements of
B are multiplied by ai,j , see Figure 2).
The Kronecker product is bilinear and associative, that is, it satisfies the following
equations:

A⊗ (B + C) = (A⊗B) + (A⊗ C)

(A+B)⊗ C = (A⊗B) + (A⊗ C)

(kA)⊗B = A⊗ (kB) = k(A⊗B)

(A⊗B)⊗ C = A⊗ (B ⊗ C).

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 7

(
a b c
d e f

)
⊗
(
α β
γ δ

)
=


a

(
α β
γ δ

)
b

(
α β
γ δ

)
c

(
α β
γ δ

)

d

(
α β
γ δ

)
e

(
α β
γ δ

)
f

(
α β
γ δ

)


Fig. 2. An example of Kronecker product of two matrices.

Moreover, matrix direct product verifies also the following equations:

(A⊗B)× (C ⊗D) = (A× C)⊗ (B ⊗D)

(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

where the exponent T denotes transposition and the last equation holds only when
the involved matrices are invertible.

Let us denote by vec(W) the vectorization of the matrix W , obtained by con-
catenating in a unique column vector all the columns of W in their order. Then,
a general property of matrix direct product asserts that [10]:

A×X ×B = Y iff (BT ⊗A)× vec(X) = vec(Y). (9)

Therefore, if we apply equivalence (9) to equation (8) we obtain:

(A⊗G)× vec(C) = vec(∆) (10)

where the stoichiometric matrix is multiplied, by Kronecker product, with the re-
gressor matrix and the result is multiplied with the vectorization of the regressor
coefficient matrix, and then equated to the vectorization of the substance varia-
tion matrix, by providing nt equations with md unknown values. The system of
equations given in (10) is the stoichiometric expanded system calculated by LGSS.

According to the Least Square approximation method [43, 13], if nt ≥ md,
then the best approximation to vec(C), minimizing the difference between the two
members of equation (10), is given by the following vector:(

(A⊗G)T × (A⊗G)
)−1 × (A⊗G)T × vec(∆). (11)

Some constraints may be imposed to the fluxes provided by regulators, which
may be of general nature, or may be specific to some classes of systems (for exam-
ple, fluxes should not be negative, and the sum of fluxes of all reactions consuming
a substance x cannot exceed the quantity of x). In Figure 3 are represented the
regressor matrix G and the substance variation matrix ∆ which are used by LGSS
for least-squares approximating the coefficients c1, . . . , c8 of the MP grammar given
in Figure 1.

8 V. Manca, L. Marchetti

Regressor matrix
(A[0])²
(A[1])²

...
(A[t-1])²

A²
{

B[0]
B[1]

...
B[t-1]

{

B

C[0]
C[1]

...
C[t-1]

{

C

A[0]·(C[0])²
A[1]·(C[1])²

...
A[t-1]·(C[t-1])²

AC²

{)
(B[0])³
(B[1])³

...
(B[t-1])³

B³

{[]t []t []t []t []t

Substance variation matrix
A[1] - A[0]
A[2] - A[1]

...
A[t] - A[t-1]

∆

({[]t
A

B[1] - B[0]
B[2] - B[1]

...
B[t] - B[t-1]

∆ {[]t
B

C[1] - C[0]
C[2] - C[1]

...
C[t] - C[t-1]

∆ {)[]t
C

1
1
...
1

(
{

1[]t

Δ= 𝔾 =

Fig. 3. The regressor matrix G and the substance variation matrix ∆ used for approxi-
mating the coefficients c1, c2, . . . , c8 of the MP grammar given in Figure 1.

However, the approximation given by (11) cannot in general be considered the
best way for solving the inverse dynamical problem. In fact, apart the computa-
tional cost of considering all the d regressors at same time, several reasons suggest
to follow a gradual strategy in the determination of a subset of regressors and
their corresponding coefficient which provide the best approximation to the given
dynamics. There are two main requirements which are essential for an appropriate
application of least squares method: the linear independence among the regressor
expansions and the parsimony of the set of regressors. In other words, the best ap-
proximation is obtained by determining a parsimonious set of linearly independent
regressors ensuring an error under a given threshold.

Linear independence is a requirement of least squares method and is solved by
considering systems of equations which have been stoichiometric expanded. The
parsimony of the model, instead, avoids problems of overfitting. In fact, the more
regressors are considered in the model, the less is the degree of freedom left for
the error [1]. This implies that solution fits very well with the dynamics on the
observation points, but it is too constrained to them for behaving in a satisfactory
way outside them (i.e. the model fits well the data, but it has not predictive power,
see Figure 4 for an example).

In order to cope with the requirements explained above, LGSS integrates the
least squares approximation of stoichiometric expanded systems with a regression
strategy based on a step-wise approach as defined in [26]. Such kind of approach
permits to define the model, step by step, by inserting into the model only those
expanded regressors (among the columns of the matrix given by the direct product
A⊗G) which satisfy specific statistical tests. In this way, we can obtain MP models
which fit the dynamics and that comprehends a small set of regressors.

3 Problems related to the regression in LGSS

The stepwise approach adopted in LGSS is based on the assumptions which are
at the basis of the classical multiple regression model [1]. These assumptions con-
cern with some properties of the expanded regressors (i.e. they must be linearly

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 9

independent and, possibly, not correlated2) and with the probability distribution
of the errors associated to observations in considered time series (i.e. the errors
should be normally distributed with mean zero). When one or more of these as-
sumptions are not completely satisfied, some mistakes can occur in the definition
of the regulators. In particular, there are several problems which we need to be
aware of in the context of multiple regression. Some of them have been discussed
in [26] and can be solved by substituting the ordinary least squares with other
estimation methods based on the weighted least squares [42] or on the generalized
least squares [12].

Here we focus on solving the problem of multicollinearity, which consists in
having regressors that are highly correlated among them. This is the most common
problem occurring in LGSS and also one of the most difficult to be solved [1]. When
we develop a new MP model, we hope to have a strong correlation between each
expanded regressor and the dependent variable vec(∆), but we do not want to
have expanded regressors correlated among them. In fact, this phenomenon may
cause errors in the selection of the right set of regressors during the execution of
the stepwise regression. In the case of perfect collinearity, the regression algorithm
breaks down completely (because the matrix given by the direct product A ⊗ G
has not maximum rank). Since in LGSS usually regulators are assumed to be
linear combinations of polynomial regressors, then it is very common to meet
multicollinearity problems.

2 The correlation between regressors is intended to be calculated by means of the Pear-
son’s correlation coefficient [37], which ranges from −1 to 1 and provides a measure of
dependence between the behaviours of two magnitudes (−1: perfect anti-correlation;
0: no correlation; 1: perfect correlation).

Fig. 4. Comparison between the predictive power of two regression models: a 13-degree
polynomial Ŷ = c0 + c1X + c2X

2 + . . .+ c13X
13 (depicted by the continuous line) and a

least squares line (depicted by the dotted line). The dataset used to calculate the models
are the 14 points depicted as blue circles, the last point represented by the red star is the
value of Y we want to predict with our models. The 13-degree polynomial is a perfect
example of model which overfits the data: in fact, it provides a perfect fit for all the
points of the dataset, but it completely fails the prediction of Y in the 15th data point.

10 V. Manca, L. Marchetti

Fig. 5. Sirius’ dynamics.

As an example, let us consider the dynamics given in Figure 5 related to a
synthetic oscillator, introduced in [16] and very often considered in the MP theory,
called Sirius. The oscillator is made of three substances A, B and C and five
reactions whose regulators are supposed to depend on the set of substances given
in Table 1.

For the metabolic oscillator Sirius, we want to apply LGSS for discovering the
formulae of the regulators by assuming that they will be given by linear com-
binations of polynomial functions on substance quantities of degree less than or
equal to 3. Since we do not know the right set of regressors which will be used,
we should start LGSS by considering the set of all possible regressors given in
Table 2. If we do this, however, the problem of multicollinearity arises since there

Set of the Dependence of the
reactions corresponding regulators

r1 : ∅ → A A, B and C
r2 : A→ B A and C
r3 : A→ C A and B
r4 : B → ∅ only B
r5 : C → ∅ only C

Table 1. The reactions (and the corresponding tuners) of the Sirius oscillator.

r1 : Constant, A, B, C, A2, B2, C2, AB, AC, BC, A3, B3,
C3, A2B, A2C, B2C, AB2, AC2, BC2, ABC.

r2 : Constant, A, C, A2, C2, AC, A3, C3, A2C, AC2.
r3 : Constant, A, B, A2, B2, AB, A3, B3, A2B, AB2.
r4 : Constant, B, B2, B3.
r5 : Constant, C, C2, C3.

Table 2. The set of possible regressors for each regulator of Sirius.

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 11

are many regressors which are highly correlated with each other (for example the
two regressors A2 and A3, whose correlation coefficient is equal to 0.98).

In order to overcome the problem, LGSS computes the variance inflation factor
(VIF) for each regressor [1], which gives an idea of the degree of multicollinearity
introduced by a regressor, when some other regressors are already in the regression
equation. In LGSS the user can select a threshold value for the variance inflation
factor, in order to avoid the insertion of collinear regressors. This solution, however,
may affect the performance of the algorithm since the computing of VIF requires
many additional computations [26].

Of course, a way to overcome the problem of multicollinearity is to drop
collinear variables before launching the regression phase of LGSS. In the following
we define an algorithm, based on a hierarchical clustering technique [11], which
permits to cluster the time series of the regressors associated to the same reaction
and to select those which are less correlated and that best satisfy the log-gain
principle [16, 17], a principle developed in the MP theory based on a general crite-
rion concerning the variations of quantities involved in biological phenomena [2].
The algorithm is based on the following procedure (we refer to [25] for details
concerning the calculation of the log-gain score used in the algorithm).
For each reaction r in the MP system:

1. start by associating the time series of regressors of reaction r to different
clusters.

2. Compute distances (similarities) between clusters. We consider the distance
between one cluster and another cluster to be equal to the average distance
from any time series of one cluster to any time series of the other cluster.
The distance d(g1, g2) of two regressors g1, g2 is given by the following two
equations, where corr(Gt

1, G
t
2) denotes the value of the Pearson’s correlation

coefficient [37] between the time series obtained by evaluating the two regres-
sors on the t observed time points:

d(g1, g2) = 1− |corr(Gt
1, G

t
2)|

if we do not want to distinguish between positive and negative correlations,
and

d(g1, g2) = 1− corr(Gt
1, G

t
2)

when we need to consider this.
3. Find the closest (most similar) pair of clusters and merge them into a single

cluster (so that now we have one cluster less).
4. Repeat steps 2 and 3 until all the distances between clusters are greater than

a user defined threshold value.
5. For each cluster computed, calculate the log-gain score of each regressor in-

cluded (as defined in [25]) and select the one which have higher log-gain score.
This permits to discard those regressors whose time series express changes
which are not realistic in biology. The set of regressors for r which will be
considered during the regression phase of LGSS are those collected at this
step.

12 V. Manca, L. Marchetti

Fig. 6. On the top: the dendrogram which represents the clusters computed for the
regressors of the rule r1 of Sirius, by considering a threshold value of 0.1. On the bottom:
the chart which displays the number of the computed clusters, for each reaction of Sirius,
with respect to different threshold values of the maximum correlation distance between
clusters.

r1 : Constant, A, B, AB, AB2.
r2 : Constant, A, C, AC, AC2.
r3 : Constant, A, B, AB, AB2.
r4 : Constant, B.
r5 : Constant, C.

Table 3. The set of possible regressors for each regulator of Sirius after the execution
of the clustering algorithm. The total number of regressors is decreased of the 60% with
respect to the set considered in Table 2.

The algorithm described above was included in LGSS and permits to solve the
problem of multicollinearity without affecting the performance of the regression.
In fact, LGSS launches this algorithm before starting the regression phase. The
application of the algorithm, to the set of 48 regressors of Table 2, permits to
reduce of more than the 60% the total set of regressors, by considering a threshold
value of 0.1 (see Figure 6). The new set of regressors is given in Table 3.

The MP grammar computed by LGSS, starting from the set of regressors in
Table 3, is given in Table 4 (see also Figure 7). This MP grammar is much better
than the one given in Table 5, provided by LGSS with the initial set of possible
regressors of Table 2. In fact, the new model uses less regressors (with lower degree)
and permits a more clear comprehension of the regulative role of each substance
of the system.

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 13

r1 : ∅ → A ϕ1 = 0.047 + 0.087A
r2 : A→ B ϕ2 = 0.002A+ 0.0002AC
r3 : A→ C ϕ3 = 0.002A+ 0.0002AB
r4 : B → ∅ ϕ4 = 0.04B
r5 : C → ∅ ϕ5 = 0.04C

Table 4. The MP grammar of the Sirius oscillator, the dynamics is given in Figure 7.

Fig. 7. Sirius’ dynamics calculated by means of the MP grammar given in Table 4.

4 Conclusions

In this paper, a new algebraic formulation of inverse dynamical problems, based on
MP grammars and Kronecker product, has been given, which provides, in general
terms, the logic underlying the LGSS algorithm and proves its correctness in the
approximate solution of inverse dynamical problems.

Even if computational tools are available for evaluating unknown parameters
of ODE models [14, 8], LGSS seems to point out a more general methodology.
In fact, LGSS not only discovers unknowns parameters, but suggests also the
form of regulators as a combination of basic functions. This possibility could be
very important in the case where the knowledge about the phenomenon under
investigation is so poor that no clear idea is available about the kind of model
underlying the observed behaviour.

The LGSS algorithm introduces a new perspective in the analysis of time series
produced by the variables of a system evolving in time. This perspective can be
defined as a generative one, where phenomena observed in time are reconstructed
in terms of variable influences/transformations determined by the internal global
states of the system. This approach is of course relevant in systems biology, but has
a wide field of applications. In fact, in all the cases where some variables change
according to some mutual relationship, due to mutual and systemic logic involving
them, we are allowed to apply this general paradigm of discrete mathematical
analysis.

14 V. Manca, L. Marchetti

r1 : ∅ → A ϕ1 = 1.06 + 0.082A
r2 : A→ B ϕ2 = 3.6 · 10−6A2 + 0.0002AC
r3 : A→ C ϕ3 = 0.004B + 8.9 · 10−7A2 + 0.0001AB + 3.3 · 10−8A2B
r4 : B → ∅ ϕ4 = 0.04B
r5 : C → ∅ ϕ5 = 0.04C

Table 5. The MP grammar of the Sirius oscillator computed by LGSS starting from
the set of regressors given in Table 2. Due to the problem of the multicollinearity of
regressors, the MP grammar is more complicated than the one given in Table 4.

References

[1] A. D. Aczel and J. Sounderpandian. Complete Business Statistics. Mc Graw
Hill, International Edition, 2006.

[2] L.von Bertalanffy. General Systems Theory: Foundations, Developments, Ap-
plications. George Braziller Inc., New York, 1967.

[3] G. Ciobanu, Gh. Păun, and M.J. Pérez-Jiménez (Eds.), editors. Applications
of Membrane Computing. Springer, 2006.

[4] D.W. Corne and P. Frisco. Dynamics of HIV infection studied with cellular
automata and conformon-P systems. Biosystems, 91(3):531–544, 2008.

[5] N. Draper and H. Smith. Applied Regression Analysis, 2nd Edition. John
Wiley & Sons, New York, 1981.

[6] M. Gheorghe, N. Krasnogor, and M. Camara. P systems applications to
systems biology. Biosystems, 91(3):435–437, 2008.

[7] R.R. Hocking. The Analysis and Selection of Variables in Linear Regression.
Biometrics, 32, 1976.

[8] S. Hoops, S. Sahle, R. Gauges, C. Lee, and J. Pahle. COPASI-a COmplex
PAthway SImulator. Bioinformatics, 22(24), 2006.

[9] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge Univer-
sity Press, 1991.

[10] A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.
[11] S.C. Johnson. Hierarchical Clusterin Schemes. Psychometrika, 2:241–254,

1967.
[12] T. Karya and H. Kurata. Generalized Least Squares. Wiley, 2004.
[13] D.G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons

Inc., 1969.
[14] T. Maiwald and J. Timmer. Dynamical modeling and multi-experiment fitting

with PottersWheel. Bioinformatics, 24(18):2037–2043, 2008.
[15] V. Manca. String Rewriting and Metabolism: A logical perspective. In Com-

puting with Bio-Molecules, pages 36–60. Springer-Verlag, 1998.
[16] V. Manca. The metabolic algorithm for P systems: Principles and applica-

tions. Theoretical Computer Science, 404:142–155, 2008.

Inverse Dynamical Problems: An Algebraic Formulation Via MP Grammars 15

[17] V. Manca. Algorithmic Bioprocesses, chapter 28: Log-Gain Principles for
Metabolic P Systems, pages 585–605. Natural Computing. Springer-Verlag,
2009.

[18] V. Manca. From P to MP Systems. WMC 2009, LNCS, 5957:74–94, 2009.
[19] V. Manca. Fundamentals of Metabolic P Systems. In [36], chapter 19, pages

475–498. Oxford University Press, 2010.
[20] V. Manca. Metabolic P Dynamics. In [36], chapter 20, pages 499–528. Oxford

University Press, 2010.
[21] V. Manca. Metabolic P systems. Scholarpedia, 5(3):9273, 2010.
[22] V. Manca and L. Bianco. Biological networks in metabolic P systems. BioSys-

tems, 91(3):489–498, 2008.
[23] V. Manca and L. Marchetti. Metabolic approximation of real periodical func-

tions. The Journal of Logic and Algebraic Programming, 79:363–373, 2010.
[24] V. Manca and L. Marchetti. Goldbeter’s Mitotic Oscillator Entirely Modeled

by MP Systems. CMC 2010, LNCS 6501, pages 273–284, 2010.
[25] V. Manca and L. Marchetti. Log-Gain Stoichiometic Stepwise regression for

MP systems. Int. Journal of Foundations of Computer Science, 22(1):97–106,
2011.

[26] V. Manca and L. Marchetti. Solving Dynamical Inverse Prob-
lems by means of Metabolic P Systems. BioSystems, 2012.
DOI:10.1016/j.biosystems.2011.12.006.

[27] V. Manca and L. Marchetti. Application of the MP theory to systems
biology. In Proceedings of the International Conference on Bio-inspired
Systems and Signal Processing, pages 303–308. SciTePress, 2012. DOI:
10.5220/0003852003030308.

[28] V. Manca and M.D. Martino. From String Rewriting to Logical Metabolic
Systems. In Grammatical Models of Multiagent Systems vol. 8, pages 297–315.
Gordon and Breach Science Publishers, 1999.

[29] V. Manca, L. Bianco, and F. Fontana. Evolutions and Oscillations of P sys-
tems: Theoretical Considerations and Application to biological phenomena.
WMC5 2004, LNCS, 3365:63–84, 2005.

[30] V. Manca, G. Franco, and G. Scollo. State Transition Dynamics: basic con-
cepts and molecular computing perspectives. In Molecular Computational
Models, pages 32–55. IDEA Group INC., 2005.

[31] V. Manca, L. Marchetti, and R. Pagliarini. MP Modelling of Glucose-Insulin
Interactions in the Intravenous Glucose Tolerance Test. Int. Journal of Nat-
ural Computing Research, 2(3):13–24, 2011.

[32] L. Marchetti and V. Manca. A methodology based on MP theory for gene
expression analysis. CMC 2011, LNCS 7184, pages 300–313, 2012.

[33] Gh. Păun. Computing with membranes. J. Comput. System Sci., 61(1):
108–143, 2000.

[34] Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
[35] Gh. Păun. A quick introduction to membrane computing. Journal of Logic

and Algebraic Programming, 79(6):291–294, 2010.

16 V. Manca, L. Marchetti

[36] Gh. Păun, G. Rozenberg, and A. Salomaa, editors. Handbook of Membrane
Computing. Oxford University Press, 2010.

[37] K. Pearson. Notes on the History of Correlation. Biometrika, 13(1):25–45,
1920.

[38] F.J. Romero-Campero and M.J. Pérez-Jiménez. Modelling gene expression
control using P systems: The Lac Operon, a case study. Biosystems, 91(3):
438–457, 2008.

[39] A. Spicher, O. Michel, M. Cieslak, J.L. Giavitto, and P. Prusinkiewicz.
Stochastic P systems and the simulation of biochemical processes with dy-
namic compartments. Biosystems, 91(3):458–472, 2008.

[40] W.H. Steeb. Matrix Calculus and Kronecker Product with Applications and
C++ Programs. World Scientific Publishing, 1997.

[41] W.H. Steeb. Problems and Solutions in Introductory and Advanced Matrix
Calculus. World Scientific Publishing, 2006.

[42] T. Strutz. Data Fitting and Uncertainty. A practical introduction to weighted
least squares and beyond. Vieweg+Teubner, 2010.

[43] J. Wolberg. Data Analysis Using the Method of Least Squares: Extracting the
Most Information from Experiments. Springer, 2005.

Parallel Simulation of Probabilistic P Systems
on Multicore Platforms

Miguel A. Mart́ınez-del-Amor1, Ian Karlin2, Rune E. Jensen2,
Mario J. Pérez-Jiménez1, Anne C. Elster2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, marper@us.es

2 High Performance/Heterogeneous and Parallel Computing Lab
Department of Computer and Information Science
Norwegian University of Science and Technology
Sem Sælands vei 9, NO-7491, Trondheim, Norway
E-mail: Ian.Karlin@colorado.edu, runeerle@idi.ntnu.no, elster@idi.ntnu.no

Summary. Ecologists need to model ecosystems to predict how they will evolve over
time. Since ecosystems are non-deterministic phenomena, they must express the likeli-
hood of events occurring, and measure the uncertainty of their models’ predictions. One
method well suited to these demands is Population Dynamic P systems (PDP systems, in
short), which is a formal framework based on multienvironment probabilistic P systems.
In this paper, we show how to parallelize a Population Dynamics P system simulator,
used to model biological systems, on multi-core processors, such as the Intel i5 Nehalem
and i7 Sandy Bridge. A comparison of three different techniques, discuss their strengths
and weaknesses, and evaluate their performance on two generations of Intel processors
with large memory sub-system differences is presented. We show that P systems are
memory bound computations and future performance optimization efforts should focus
on memory traffic reductions. We achieve runtime gains of up to 2.5x by using all the
cores of a single socket 4-core Intel i7 built on the Sandy Bridge architecture. From our
analysis of these results we identify further ways to improve the runtime of our simulator.

Key words: Population Dynamics, P systems, Parallel Simulation, Multicore
Computing, OpenMP

1 Introduction

Multienvironment probabilistic P systems are used to model species in real ecosys-
tems, such as the bearded vulture in the Catalan Pyrenees [4] and zebra mussels in

18 Miguel A. Mart́ınez-del-Amor et al.

the Ribarroja reservoir [3]. They conform a formal framework for ecological mod-
elling called Population Dynamics P systems. These models are first validated by
a software tool, and can reproduce actual measurements taken in a given number
of years [4]. The goal of work is to be able to use P systems simulations to adopt
a priori management strategies for the real system. However, P systems are com-
putationally and data expensive with large systems, such as the one modelling the
zebra mussel ecosystem, taking hours to run on a single set of input parameters
on a single core processor.

Due to the probabilistic behaviour of these systems, ecological experts and
model designers run many simulations on each set of input parameters to extract
statistical information of the likelihood of certain behaviours occurring [4]. This
makes the systems large. The more simulations run, the more confident they can
be in the model’s output. Also, the more input parameters they test, the greater
certainty that the real-life experiments they run will yield useful knowledge. There-
fore, the overall runtime of the simulations is critical.

This paper describes our initial parallelization work, which includes implement-
ing a C/C++ version of the DCBA algorithm [7]. We have designed an implemen-
tation which saves on memory by avoiding the creation of a static table. We also
choose C for its similarity to the common GPGPU (General Purpose computations
on Graphics Processing Units) languages of OpenCL and CUDA, and the support
of many parallel libraries. Our new implementation is parallelized in three ways: 1)
simulations, 2) environments and 3) a hybrid approach. All them are implemented
using the parallel standard library for multicore platforms, OpenMP [1]. From our
analysis of these results we identify further ways to improve the runtime of our
simulator, by minimizing memory and cache bottlenecks using data compression
and GPU computing. Ideas and references on compression and GPU computing
can be found in [2].

The rest of the paper is organized as follows: Section 2 gives an overview of the
P systems framework that includes our simulator. Section 3 discusses the three
forms of parallelism we introduced into the simulator and the advantages and
disadvantages of each. Section 4 contains experimental results from testing out
initial parallelization efforts. Finally, conclusions and future work are presented in
Section 5.

2 System overview

The simulator we are optimizing and parallelizing is included in a P systems based
modelling framework that contains four design levels. An overview of the frame-
work is shown in Figure 1 along with the domain specific knowledge needed to
implement each level. At the top level, ecological experts express living systems
as inputs based upon observed data and/or conditions they wish to test. Example
inputs include the number of organisms living in the ecosystem, temperature data
and the probabilities of events happening. These inputs are then fed into proba-

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 19

bilistic P systems with the assistance of the model designers, which provide the
rules used by the model.

Fig. 1. Framework levels and expertise needed

The probabilistic P system software level currently uses a framework called
PLinguaCore [6]. PLinguaCore is written in Java, and contains implementations
of different types of P systems, along with a standard specification language for
P systems known as P-Lingua. Both ecologists and model designers run their
simulations using this framework through a software tool called MeCoSim [9] that
provides an abstraction layer for non-experts in P system models.

The execution of the rules input by the model designer occurs in the simula-
tion algorithms, which are implemented in common programming languages. Fast
execution of the algorithms is important to ecological experts and model design-
ers. Also, ecological experts often simulate many hypotheses before deciding which
hypotheses to experimentally evaluate. The simulation algorithm and implementa-
tion levels are the most time consuming parts of the simulations, and thus, where
we focus on improving performance.

Algorithm 1 Main loop of the simulator

1: for sim← 0, . . . , simulations do
2: INITIALIZATION
3: for step← 0, . . . , time steps do
4: for env ← 0, . . . , environments do
5: SELECTION OF RULES
6: end for
7: for env ← 0, . . . , environments do
8: EXECUTION OF RULES
9: end for

10: end for
11: end for

20 Miguel A. Mart́ınez-del-Amor et al.

The last simulation algorithm for PDP systems is the DCBA algorithm [7]. A
high level algorithm representation of our simulator is shown in Algorithm 1. The
outermost loop runs the simulation multiple times as specified by the user. The
next loop performs the discrete time steps that advance the simulation. The time
steps are performed in two stages: selection and execution. During the first stage
(selection) all environments, which each represent discrete parts of an ecosystem
with different properties, have rules selected to be executed on them. All environ-
ments have the same rules, but the associated probability indicating the likelihood
of them being executed varies between environments. In the second stage (exe-
cution) of a time step, the rules are executed. During a time step, environments
evolve independently, but between time steps can communicate objects.

Rules are classified into rule blocks by their left-hand sides (consuming the
multisets of objects in the same compartments, and according to the same charge
of the active membrane) and the charge of the active membrane in the right-hand
side (consistent blocks [7]). The probabilities of the rules within a block sum 1
(they have local meaning inside the blocks).

Selection stage is split into three micro-phases (see [7] for more details): phase 1
(object distribution), phase 2 (maximality) and phase 3 (probabilities). The DCBA
algorithm uses a table for phase 1 in order to distributes the objects along the rule
blocks. This table has one column per each rule block, and one row per each pair
object and membrane (also considering the environment itself). Therefore, the size
of the table is of order O(|B| · |Γ| · (q+1)), being |B| the number of rule blocks, |Γ|
the size of the alphabet (total amount of different objects), and q + 1 the number
of membranes in the system plus the space for the environment in each one.

The implementation of this table can be inefficient in systems with a large
number of rule blocks and/or objects. Therefore, our simulator does not really
implement the table. The main baseline idea is to translate operations over the
table to operations directly to the rule blocks:

• Operations over columns: they can be transformed to operations over the rule
blocks and their left-hand sides (LHS in short).

• Operations over rows: they can be transformed to operations over the left-hand
sides of rule blocks and storing the partial result in a global variable for each
row.

Phase 1 can be implemented as shown in Algorithm 2. Phase 2, phase 3 and ex-
ecution stage can be directly implemented following the corresponding definitions
in [7].

Remark that in this implementation, instead of using a real table, we virtually
implement it by using operations over the information of the rule blocks. Actually,
two extra vectors are only used:

• Activation vector : We annotate the blocks that has not been filtered by a
boolean value.

• Addition vector : We add the values of the rows by using this global vector, one
per each pair object and membrane.

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 21

Algorithm 2 Selection Phase 1 (Distribution)

1: Apply Filter 1 : for each block, if the charge in the LHS is different to the one presented
in the configuration, then deactivate the block: activationV ector[b] = false.

2: Apply Filter 2 : for each block, if one of the objects involved in the left-hand side
does not exist in Ct, then deactivate the block: activationV ector[b] = false.

3: Check the mutually consistency of blocks.
4: repeat
5: For each active block, and for each object in the left-hand side, add the multi-

plicity k appearing in the block to a global variable for the corresponding object
(addition[object,membrane]+ = k).

6: For each active block, calculate the minimum of the object distributions in the
left-hand side: Nb = Min[ok]m∈LHS(block)(

1
k2 ∗ 1

addition[o,m]
∗ C[o,m]). This is the

number of applications for block b: NumAppBlocks[b]+ = Nb.
7: Delete objects in the configuration C, corresponding with Nb.
8: Apply Filter 2.
9: a = a + 1

10: until a == A or every Nb == 0

3 Design and parallelism

Before we introduced parallelism, we first rewrote the simulator in C/C++ which
is advantageous because OpenMP, PThreads and MPI all are supported. In this
section, we describe the implementation of the three forms of parallelism added
to our simulator. A discussion of the advantages and disadvantages of each is
included.

Simulations are parallelized by using the #pragma omp parallel for OpenMP
directive on the simulation loop from Algorithm 1. The advantage of running sim-
ulations in parallel is there are no data dependencies between simulations, and,
therefore, the problem is embarrassingly parallel. Also, the users of our simula-
tor typically run 50 to 100 simulations of each set of input parameters, so there
are enough simulations to consume all cores. However, there are disadvantages of
running simulations in parallel. Each simulation needs its own memory space in-
creasing the amount of memory used. If the number of simulations is not divisible
by the number of processors then load balancing issues can occur with the final
simulations running while some cores are idle. Also, running simulations in parallel
can result in resource conflicts as cores compete for shared resources.

Environments are parallelized by using the #pragma omp parallel to generate
a thread pool for the simulation. Then the for loops in Algorithm 1 that iterate
over environments are parallelized with #pragma omp for, which has an implicit
barrier that enforces the dependencies between the stages in each time step. Using
this design, creating new thread blocks for each for loop is avoided.

The advantage of parallelizing environments over simulations is that memory
usage does not increase. However, dependencies occur twice in each time step re-
quiring synchronization steps. Also, since most models use 5 to 30 environments,
there are cases where modern machines have more cores than environments and

22 Miguel A. Mart́ınez-del-Amor et al.

just parallelizing environments cannot take advantage of all computing resources.
In addition, as with simulations, load balancing can be an issue if the number of
environments is not divisible by the number of cores, or if the runtime of environ-
ments varies.

Hybrid parallelization is accomplished by combining parallel environments
with parallel simulations. We accomplish hybrid parallelization through command-
line flags that allow the specification of how many environments or simulations to
run in parallel. By combining both forms of parallelism, we can balance the amount
of each resource used. This will become more important as the number of cores
within a node increases. For example, the number of simulations can be increased
until available memory is used and then environments within each system can be
parallelized.

4 Experimental Evaluation

In this section, we describe a series of tests performed on our implementation and
the systems they were run on, along with the results from those experiments.

4.1 Test Environment and Methodology

The following experiments were run on the two machines shown in Table 1. The
tests used random systems with similar amounts of data to real-life examples. Mul-
tiple configurations with environments and simulations varying from 10 to 50 were
tested for the parallel environments, simulations and two hybrid combinations.
Each of these tests were run on 1 to 8 cores for the Intel i5 machine, and 1 to 4
for the Intel i7. The measurements in this section, except when noted, correspond
only to the parallelized part of the code.

Processor Speed Bus speed Cache

i5 Nehalem (2x4) 2 Ghz 3x800 Mhz 2x4 MB
i7 Sandy Bridge (1x4) 3.4 Ghz 2x1333 Mhz 8 MB

Table 1. Specifications of the test machines.

4.2 Results

The serial runtime on both of our test machines is shown in Table 2. Setup is the
cost of running the serial portion of the code. The other two columns represent
the runtime extremes of our test cases when run in serial. From the table, we can
see that in serial the setup portion is a small part of the overall runtime, and that
the Sandy Bridge processor is about 2.5 times faster than the Nehalem.

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 23

Processor Setup 10 env & sim 50 env & sim

Nehalem 0.8s 48.0s 251.0s
Sandy Bridge 0.35s 19.9s 97.8s

Table 2. Serial Runtimes

Figures 2 and 3 show the performance improvements of parallelizing our system
in various ways. The two figures are representative of the other tests we performed
with the best performance either being parallelizing by simulations or the hybrid
method (2s), which uses two simulations and then parallelizes by environments.
Another trend shown is that as the number of simulations increases, the advantage
of parallelizing by simulations increases. The same effect is observed for environ-
ments.

� � � � � � � �

�

�	�

�	�

�	�

�	�

�

�	�

�	�

��
��������

�
�����
���

����
����

����
����

�����

�
�
�
�
�
�
�

(a) Nehalem

! " # $

!

!%"

!%$

!%&

!%'

"

"%"

"%$

"%&

()*+,-)./)01

2+.3450+-)1

678,+9:"1

678,+9:"/

;-,/1

1
<
/
/
9
3
<

(b) Sandy Bridge

Fig. 2. Speedups running 50 simulations with 10 environments in the system

On the Sandy Bridge system the largest speedup of 2.5x occurs for 50 simu-
lations and 50 environments. However, the maximum speedup on Sandy Bridge

24 Miguel A. Mart́ınez-del-Amor et al.

! " # $ % & ' (

!

!)"

!)$

!)&

!)(

"

")"

")$

*+,-./+01+23

4-05672-/+3

89:.-;<"3

89:.-;<"1

=/.13

3
>
1
1
;
5
>

(a) Nehalem

� � � �

�

���

���

���

���

�

���

���

���

�	
��
	��	��

��������
	�

���������

���������

�
���

�
�
�
�
�
�
�

(b) Sandy Bridge

Fig. 3. Speedups running 10 simulations with 50 environments in the system

when going from 3 to 4 processors is only between 0.1 and 0.2, suggesting that
the calculation is memory bound for larger core counts. On the Nehalem machine,
the maximum parallel speedup was 2.3x for all tests, which is barely greater than
the added available bandwidth from using the second socket. These results, led
us to suspect we that the Nehalem system’s performance was being limited our
programming approach. In particular, we did not account for the Non Uniform
Memory Access (NUMA) memory subsystem of the two sockets.

One final test was run to see if NUMA was hurting the performance of our code
on the Nehalem machine. First one and then two instances of the code was run
with 4 threads each (affinity locked to different sockets) on the machine. With two
instances a 2x speedup was achieved over the best parallel results from running
one instance of the OpenMP version. Confirming this result is that locking all
4 threads to a single socket performance results in a 50% performance increase
when compared to locking 2 threads to each socket. For the current tests, however,
affinity is controlled by the operating system and performance is similar to when

Parallel Simulation of Probabilistic P Systems on Multicore Platforms 25

two threads were locked to each socket. These preliminary tests also indicates that
the code is memory bound since overall speedups on 8 cores were less than 5x.

5 Conclusions and future work

In this paper, we showed how P systems simulations can take advantage of modern
multi-core architectures. Our implementation included three forms of parallelism.
Experiments ran to test the simulator indicate the simulations are memory bound
and the portion of the code we parallelized consumes over 98% of the runtime
in serial. From this initial work we conclude that parallelizing by simulations or
hybrid techniques yields the largest speedups. Also, using hardware, such as Intel’s
Sandy Bridge, that has more memory bandwidth is an easy way for scientists to
improve the speed of our simulator. It can also be concluded that performance
tuning to decrease data movement is important for P-system simulators.

Future Work

This paper leaves open many research questions that we plan to explore by building
on this work. We have experience overlapping communication and computation [8]
and compressing data [2] both of which will be especially important on GPUs.
We anticipate large speedups from using GPUs due to their increased memory
bandwidth and computational capabilities. In addition, we plan to leverage our
experience tuning shared memory systems to other optimizations for NUMA pro-
cessors [5]. Open research questions on NUMA machines include how our hybrid
parallel approach will best map to various processor configurations. A hybrid GPU
and CPU code will be able to take advantage of all compute resources on a given
system. Either an OpenCL or CUDA/C hybrid implementation will be used. While
not a high priority because the simulator is usually run on scientists workstations
an MPI version would offer large speedups due to simulations being embarrassingly
parallel.

As core counts continue to increase, exploiting parallelism within the environ-
ments may be profitable. Also, of interest is eliminating or reducing the synchro-
nization required at each time step. While dependencies exist between environ-
ments, not all environments depend on all other environments. For an environ-
ment to begin executing its next step, all environments from which organisms can
migrate into it must be finished. We believe that for simulations with few migra-
tion paths between environments, or with a large number of environments, it is
important balance workloads better.

26 Miguel A. Mart́ınez-del-Amor et al.

Acknowledgments

M.A. Mart́ınez-del-Amor and M.J. Pérez-Jiménez acknowledge the support of
“Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de
Andalućıa” under grant P08-TIC04200, and the support of the project TIN2009-
13192 of the “Ministerio de Educación y Ciencia” of Spain, both co-financed by
FEDER funds.

References

1. The OpenMP specification. ”http://www.openmp.org”.
2. A. A. Aqrawi and A. C. Elster. Bandwidth reduction through multithreaded com-

pression of seismic images. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), pages 1730 –1739, may
2011.

3. M. Cardona, M. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. Pérez-
Jiménez, and D. Sanuy. A computational modeling for real ecosystems based on
p systems. Natural Computing, 10:39–53, 2011.

4. M. A. Colomer, A. Margalida, D. Sanuy, and M. J. Pérez-Jiménez. A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological Modelling, 222(1):33 – 47, 2011.

5. A. C. Elster and J. C. Meyer. A super-efficient adaptable bit-reversal algorithm for
multithreaded architectures. In Proceedings of the 2009 IEEE International Sympo-
sium on Parallel&Distributed Processing, pages 1–8, Washington, DC, USA, 2009.

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M. J. Pérez-Jiménez,
and A. Riscos-Núñez. An overview of p-lingua 2.0. Lecture Notes in Computer Science,
5957:264–288, 2010.

7. M. Mart́ınez-del Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Maćıas-Ramos,
L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani-Dı́az, A. Riscos-Núñez,
M. Colomer, and M. Pérez-Jiménez. Dcba: Simulating population dynamics P systems
with proportional object distribution. In this volume.

8. T. Natvig and A. C. Elster. Run-time analysis and instrumentation for communication
overlap potential. In Proceedings of the 17th European MPI users’ group meeting
conference on Recent advances in the message passing interface, EuroMPI’10, pages
42–49, Berlin, Heidelberg, 2010. Springer-Verlag.

9. I. Pérez-Hurtado, L. Valencia-Cabrera, M. J. Pérez-Jiménez, M. A. Colomer, and
A. Riscos-Núñez. Mecosim: A general purpose software tool for simulating biological
phenomena by means of p systems. In IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), volume I, pages 637–
643, Changsha, China, 2010. IEEE, Inc.

DCBA: Simulating Population Dynamics P
Systems with Proportional Object Distribution

M.A. Mart́ınez-del-Amor1, I. Pérez-Hurtado1, M. Garćıa-Quismondo1, L.F.
Maćıas-Ramos1, L. Valencia-Cabrera1, A. Romero-Jiménez1, C. Graciani-Dı́az1,
A. Riscos-Núñez1, M.A. Colomer2, M.J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, perezh@us.es, mgarciaquismondo@us.es,

lfmaciasr@us.es, lvalencia@us.es, romero.alvaro@us.es, cgdiaz@us.es,

ariscosn@us.es, marper@us.es
2 Department of Mathematics

University of Lleida
Avda. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
E-mail: colomer@matematica.udl.es

Summary. Population Dynamics P systems refer to a formal framework for ecological
modelling. The semantics of the model associates probabilities to rules, but at the
same time, the model is based on P systems, so the rules are applied in a maximally
parallel way. Since the success of the first model using this framework [5], initially
called multienvironment probabilistic P systems, several simulation algorithms have been
defined in order to better reproduce the behaviour of the ecosystems with the models.

BBB and DNDP are previous attempts, which define blocks of rules having the
same left-hand side, but do not define a deterministic behaviour when different rules are
competing for the same resources. That is, different blocks of rules present in their left-
hand side common objects, being applicable at the same time. In this paper, we introduce
a new simulation algorithm, called DCBA, which performs a proportional distribution of
resources.

Keywords: Membrane Computing, Population Dynamics, Simulation Algorithm,
Probabilistic P systems, DCBA, P-Lingua, pLinguaCore

1 Introduction

Membrane Computing has a far–reaching background on the modelling of bio-
chemical phenomena, within the framework of Computational Systems Biology

28 M.A. Mart́ınez-del-Amor et al.

[2, 7, 17, 19], being complementary and an alternative to more classical approaches
(i.e. ODEs, Petri Nets, etc). However, in 2011 a Membrane Computing modelling
framework for ecosystem dynamics was introduced [3]. Based on this framework,
several ecosystem models have already been presented. Some examples are the
population dynamics of Gypaetus barbatus [4] and Rupicapra p. pyrenaica [8] in
the Catalan Pyrenees, as well as the population density of Dreissena polymorpha
in Ribarroja reservoir [3]. Some of the assets of this framework are the ability to
analyse the simultaneous evolution of a high number of species, as well as the
management of a large number of auxiliary objects. These objects could represent,
for instance, grass, biomass or animal bones.

The results obtained from the application of the framework on different ecosys-
tems prove its versatility and adaptability. Thus, a straightforward interpretation
of the results of the simulations of its models can be easily obtained by checking
the states and multisets associated to each one of the membranes.

Although this framework allows a direct interpretation of the simulations of
its models, the simulation itself is a complicated problem to solve from a practical
point of view. Therefore, algorithms capable of capturing the semantics described
by the framework are necessary. These algorithms should be able to select rules in
the models according to their associated probabilities while keeping the maximal
semantics of P systems. In this scenario, the concept of rule block takes form. A
rule block is a set of rules whose left hand side (that is, the necessary and sufficient
condition for them to be applied) is exactly the same. That is, given a P system
configuration, either all or none of the rules in the block can be applied. According
to the semantics associated to the modelling framework, one or more blocks are
selected on each step of computation. The probability for a block to be selected
is calculated out of the probabilities of its rules. Once a rule block is selected, its
rules are applied a number of times in a probabilistic manner according to their
associated probabilities, also known as local probabilities. Henceforth, the condi-
tion of the sum of the probabilities associated to all rules in each block being equal
to 1 is imposed.

The way in which the blocks and rules in the model are selected depends on
the specific simulation algorithm employed. These algorithms should be able to
deal with issues such as the possible overlapping of left hand sides from differ-
ent blocks, which might result on the competition of blocks and rules for objects.
So far, several algorithms have been developed in order to capture the semantics
defined by the modelling framework. Some of these algorithms are the Binomial
Block Based algorithm (BBB) and the Direct Non Deterministic algorithm with
Probabilities (DNDP). A comparison on the performance of these algorithms can
be found on [9].

DCBA: Simulating Population Dynamics P systems 29

The algorithms mentioned above share a common drawback. This drawback
involves the distortion of the way in which blocks and rules are selected. That
is, instead of blocks and rules being selected according to its probabilities in a
uniform manner, this selection process is biased towards those with the highest
probabilities. This paper introduces a new algorithm, known as Direct distribution
based on Consistent Blocks Algorithm (DCBA). This algorithm is introduced to
solve the aforementioned distortion, thus not biasing the selection process towards
the most likely blocks and rules.

The rest of the paper is structured as follows: Section 2 introduces preliminary
concepts, such as the formal modelling framework of PDP systems and the DNDP
algorithm. Section 3 describes the DCBA algorithm, together with a test example
to show the differences with DNDP, and some details on the implementation in the
PlinguaCore software framework. Section 4 shows the behaviour of DCBA when
simulating a real ecosystem model. The simulated model has been adapted and
improved from the original version. The paper ends with some conclusions and
ideas for future work in Section 5.

2 Preliminaries

2.1 The P system based framework

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, taking T time units, T ≥ 1, is a tuple

(G,Γ,Σ, T,RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})
where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are called
environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet representing the objects
that can be present in the environments;

• T is a natural number that represents the simulation time of the system;
• RE is a finite set of communication rules between environments of the form

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈ [0, 1],
for each t = 1, . . . , T . If p(x,j,j1,...,jh)(t) = 1, for each t, then we omit the
probabilistic function. These rules verify the following:

? For each environment ej and for each object x, the sum of functions
associated with the rules from RE whose left-hand side is (x)ej coincides
with the constant function equal to 1.

• µ is a membrane structure consisting of q membranes, with the membranes
injectively labeled by 0, . . . , q − 1. The skin membrane is labeled by 0. We also
associate electrical charges from the set {0,+,−} with membranes.

30 M.A. Mart́ınez-del-Amor et al.

• R is a finite set of evolution rules of the form r : u[v]αi → u′[v′]α
′

i where
u, v, u′, v′ are multisets over Γ , i ∈ {0, 1, . . . , q − 1}, and α, α′ ∈ {0,+,−}.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable function whose
domain is {1, . . . , T} and its range is [0, 1], verifying the following:
? For each u, v ∈ Γ ∗, i ∈ {0, . . . , q − 1} and α, α′ ∈ {0,+,−}, if r1, . . . , rz

are the rules from R whose left-hand side is u[v]αi and the right-hand side
have polarization α′, then

∑z
j=1 frj (t) = 1, for each t, 1 ≤ t ≤ T .

? If (x)ej is the left-hand side of a rule r ∈ RE, then none of the rules of R
has a left-hand side of the form u[v]α0 , for any u, v ∈ Γ ∗ and α ∈ {0,+,−},
having x ∈ u.

• For each j (1 ≤ j ≤ m), M0j , . . . ,Mq−1,j are strings over Γ , describing the
multisets of objects initially placed in the q regions of µ, within the environment
ej.

In other words, a system as described in the previous definition can be
viewed as a set of m environments e1, . . . , em linked between them by the arcs
from the directed graph G. Each environment ej contains a P system, Πj =
(Γ, µ,R,M0j , . . .Mq−1,j), of degree q, such that M0j , . . . ,Mq−1,j describe the
initial multisets for this environment, and every rule r ∈ R has a computable
function fr,j (specific for environment j) associated with it.

The tuple of multisets of objects present at any moment in the m environments
and at each of the regions of each Πj , together with the polarizations of the
membranes in each P system, constitutes a configuration of the system at that
moment. At the initial configuration of the system we assume that all environments
are empty and all membranes have a neutral polarization.

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (both from RE and R) are
synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from R = RE∪

⋃m
j=1RΠj

as follows: at each transition step, the rules to be applied
are selected according to the probabilities assigned to them, and all applicable rules
are simultaneously applied in a maximal way.

When a communication rule between environments

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into objects
y1, . . . , yh, respectively. At any moment t, 1 ≤ t ≤ T , for each object x in
environment ej , if there exist communication rules whose left-hand side is (x)ej ,
then one of these rules will be applied. If more than one communication rule
can be applied to an object, the system selects one randomly, according to their
probability which is given by p(x,j,j1,...,jh)(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

DCBA: Simulating Population Dynamics P systems 31

2.2 DNDP simulation algorithm

In this section, the Direct Non-deterministic Distribution with probabilities
algorithm (DNDP) [14, 13] is briefly described (algorithm 1). The aim of this
algorithm is to perform a non-deterministic object distribution, so rules having
common objects in their left-hand sides (object competition) will have the same
opportunities to consume objects.

The input consists on a PDP system of degree (q,m), and a number T of time
units. The algorithm simulates T transition steps of the PDP system. Therefore,
it only simulates one computation of the PDP system, by selecting and executing
rules in a non-deterministic maximal consistent parallel way.

Algorithm 1 DNDP MAIN PROCEDURE

Require: A PDP system of degree (q,m) with q ≥ 1, m ≥ 1, taking T time units,
T ≥ 1.

1: C0 ← initial configuration of the system
2: for t = 0 to T − 1 do
3: C′t ← Ct
4: Initialization
5: First selection phase (consistency).
6: Second selection phase (maximality).
7: Execution of selected rules.
8: Ct+1 ← C′t
9: end for

Similarly to the previous algorithms [14], the transitions of the P system are
simulated in two phases, selection and execution, to synchronize the consumption
and production of objects. However, selection is divided in two micro-phases: the
first one calculates a multiset of mutually consistent applicable rules, and the
second assure maximal application by eventually increasing the multiplicity of
some rules in the previous multiset, obtaining a multiset of maximal mutually
consistent applicable rules. The algorithm is described below, but for more details
refer to [13].

First of all, in order to simplify the selection and execution phases, the
initialization process constructs two ordered set of rules, Aj and Bj , gathering
only rules from RE and RΠ applicable in environment ej , in the sense of having
the same charge in the left-hand side than the membranes in the configuration.

In the first selection phase, a multiset of consistent applicable rules, denoted
by R1

j for each environment ej , is calculated. Moreover, a multiset of possible

applicable rules, denoted by R0
j , is also created. We will say that two rules are

consistent if they are associated to the same membrane, and they update it to the
same charge. It is used in order to store rules having 0 as the number of applications
when using the random number generator function. Hence, this multiset allows to
have elements with multiplicity 0.

32 M.A. Mart́ınez-del-Amor et al.

First, a random order is applied to Aj ∪ Bj , and stored in an ordered set Dj .
Moreover, a copy of the configuration Ct, called C ′t, is created and it is updated
each time that a rule is selected (removing the left-hand side). Then, a rule r is
applicable if the following holds: it is consistent with the previously (according to
the order in Dj) selected rules in R1

j , and the number of possible applications M
in C ′t is greater than 0. If a rule r is applicable, a binomial distributed random
number of applications n is calculated according to the probability.

On the one hand, since C ′t has been updated by the previously selected rules,
the number n cannot exceed M to guarantee a correct object distribution. On the
other hand, if the generated number n is 0, the corresponding rule is added to the
multiset R0

j , giving another chance to be selected in the next phase (maximality).

Note that only rules from R1
j are considered for the consistency condition, since

rules from R0
j are not applied in the first selection phase.

In the second selection phase, the consistent applicable rules are checked again
in order to achieve maximality. Only consistent rules are considered, and they are
taken from Rj = R0

j ∪ R1
j . If one rule r ∈ Rj has a number of applications M

greater than 0 in C ′t, then M will be added to the multiplicity of the rule. In
order to fairly distribute the objects among the rules, they are iterated in order
with respect to the probabilities. Moreover, one rule from the multiset R0

j can be

checked, so it is possible that another rule from R1
j , inconsistent to this one, have

been previously selected. In this case, the consistent condition has to be tested
again.

An example of several executions of the DNDP algorithm is showed in section
3.3, together with a comparison with the new algorithm introduced in this paper.

3 Direct distribution based on Consistent Blocks Algorithm
(DCBA)

3.1 Definitions for blocks and consistency

The selection mechanism starts from the assumption that rules in R can be
classified into blocks of rules having the same left-hand side, following the
definitions 2, 3 and 4 below.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ RΠ of the form r : u[v]αh → u′[v′]α
′

h :
• The left-hand side of r is defined as LHS(r) = (h, α, u, v), where h ∈ L,

α ∈ {0,+,−} and u′, v′ ∈ Γ ∗. This corresponds to multiset u in the parent
membrane of h, multiset v in membrane h, and membrane h with charge
α.

• The right-hand side of r is defined as RHS(r) = (h, α′, u′, v′), where h ∈ L,
α′ ∈ {0,+,−} and u′, v′ ∈ Γ ∗. This corresponds to multiset u′ in the parent
membrane of h, multiset v′ in membrane h, and membrane h with charge
α′.

DCBA: Simulating Population Dynamics P systems 33

(b) Given a rule r ∈ RE of the form r : (x)ej → (y1)ej1 . . . (yk)ejk :
• The left-hand side of r is defined as LHS(r) = (ej , x), corresponding to

the multiset with only one occurrence of object x in environment ej.
• The right-hand side of r is defined as RHS(r) = (ej1 , y1) . . . (ejk , yk),

corresponding to the k multisets with single objects y1 . . . yk, for each
environment ej1 . . . ejk respectively.

Definition 3. Rules from RΠ can be classified in blocks associated to (h, α, u, v)
as follows: Bh,α,u,v = {r ∈ RΠ : LHS(r) = (h, α, u, v)}.

Definition 4. Rules from RE can be classified in blocks associated to (ej , a) as
follows: Bej ,a = {r ∈ RE : ∃a ∈ Σ,LHS(r) ≡ (a)ej}.

Recall that, according to the semantics of the model, the sum of probabilities
of all the rules belonging to the same block is always equal to 1 – in particular,
rules with probability equal to 1 form individual blocks. Note that rules with
overlapping (but different) left-hand sides are classified into different blocks.

Definition 5. A block Bh,α,u,v is consistent if and only if ∃α′,∀r ∈ Bh,α,u,v,
charge(RHS(r)) = α′.

Definition 6. A consistent block Bh,α,α′,u,v, with h ∈ H, α, α′ ∈ {0,+,−},
u, v ∈ Γ ∗, is of the form Bh,α,α′,u,v = {r ∈ R : ∃u′, v′ ∈ Γ ∗ : r ≡ u[v]αh → u′[v′]α

′

h }.

Remark 1. Note that all the rules r ∈ Bh,α,α′,u,v are consistent, in the sense that
each membrane h with charge α goes to the same charge α′ when any rule of
Bh,α,α′,u,v is applied.

Definition 7. Two blocks Bh1,α1,β1,u1,v1 and Bh2,α2,β2,u2,v2 are mutually consis-
tent with themselves, if and only if (h1 = h2 ∧ α1 = α2)⇒ (β1 = β2).

Definition 8. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or mutually
consistent) if and only if ∀i, j(i 6= j ⇒ Bi and Bj are mutually consistent).

Remark 2. In such a context, a set of blocks has an associated set of tuples
(h, α, α′), that is, a relationship of H × C in C. Then, a set of blocks is mutually
consistent if and only if the associated relationship H × C in C is functional.

3.2 DCBA pseudocode

This new simulation algorithm for PDP systems has the same general scheme than
its predecessor, DNDP (algorithm 1). The main loop (algorithm 2) is divided into
two stages: selection and execution of rules, similarly to the DNDP algorithm.

34 M.A. Mart́ınez-del-Amor et al.

Algorithm 2 DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is then called C0.

1: INITIALIZATION . (Algorithm 4).
2: for t ← 0 to T − 1 do
3: C′t ← Ct
4: Calculate probability functions fr,j(t) associated to the rules.
5: SELECTION of rules. . (Algorithm 3)
6: EXECUTION of rules. . (Algorithm 8)
7: Ct+1 ← C′t
8: end for

Note that the algorithm selects and executes rules, but not blocks of rules.
Blocks are used by DCBA in order to select rules, and this is made in three
micro-stages as seen in algorithm 3. Phase 1 calculates a proportional object
distribution to the blocks. Phase 2 assures the maximality by checking the maximal
applications of each block. And finally, phase 3 passes from block applications
to rule applications by calculating random numbers following the multinomial
distribution with the corresponding probabilities.

Algorithm 3 SELECTION

1: Selection PHASE 1 : distribution . (Algorithm 5)
2: Selection PHASE 2 : maximality . (Algorithm 6)
3: Selection PHASE 3 : probabilities . (Algorithm 7)

Before starting to select and execute rules in the system, some data
initialization is required (see algorithm 4). For instance, the selection stage uses a
table in order to distribute the objects among the blocks. This table T , also called
static table, is used in each time step, so it is initialized only once, at the beginning
of the algorithm. The static table has one column per each consistent block of rules,
and one row per each pair of object and compartment (i.e. each membrane and
the environment in the skeleton). An expanded static table Tj is also constructed
for each environment, to consider also blocks from environment communication
rules. Finally, two multisets, Bj and Rjsel, are initialized for selected blocks and
rules, respectively.

Remark 3. The columns of the static table contain the information of their left-
hand side of the blocks. The rows of the static table contain the information of
the competitions for objects: each block competing for a given object will have a
value different to − in the corresponding row.

DCBA: Simulating Population Dynamics P systems 35

Algorithm 4 INITIALIZATION

1: Construction of the static distribution table T :
• Columns: consistent blocks of rules from RΠ : Bh,α,α′,u,v
• Rows: pairs (obj,membr) and (obj′, e), for all object obj ∈ Γ , obj′ ∈ Σ and

membrane membr ∈ µ, being e a way to generically identify the environment of
the skeleton of the P systems in the multienvironment system.

• Values: place 1/k in the element (x, y) of the table T , if the corresponding object
to the row x is in their left-hand side of the block given by column y, with
multiplicity k. Otherwise, keep unmarked with −.

2: for j = 1 to m do . (Construct the expanded table Tj)
3: Tj ← T . . (Initialize the table with the original T)
4: Add to table Tj a column for each communication rule block from RE associated

to the environment ej , and place the value 1 in the corresponding row for (obj′, e),
being obj′ the object appearing in the left-hand side.

5: end for
6: Initialize the multisets Bj ← ∅ and Rjsel ← ∅

The distribution of objects among the blocks with overlapping left-hand sides
is performed in selection phase 1 (algorithm 5). The expanded static table Tj is
used for this purpose in each environment. Three filters are defined in order to
adapt the Tj to the current state of the system. That is, to select which rule
blocks are going to receive objects. The first filter will delete columns of the table
corresponding to non applicable rule blocks due to the charges in the left-hand side.
The second filter will delete the columns of the rule blocks with no applications in
a configuration, because of the objects in the left-hand side. The goal of the third
filter is to save space in the table, deleting rows with no correspondence with the
non-filtered columns. These three filters are applied at the beginning of phase 1,
and the result is a dynamic table T tj (for the environment j and time step t).

Filter functions for selection Phase 1

function Filter 1(table T , configuration C) . (By columns and charges)
Delete columns from table T , according to the charge of the membrane in the

left-hand side of the corresponding block and in the configuration C.
return T

end function
function Filter 2(table T , configuration C) . (By columns and multiplicity)

Delete columns from table T , such that for any row (obj,membr) or (obj′, e), the
multiplicity of that object in C multiplied by 1/k (value in the table), returns a number
κ, 0 ≤ κ < 1. If all the values for that column are −, it is also filtered.

return T
end function
function Filter 3(table T , configuration C) . (By rows and multiplicity)

Delete rows from T of pairs (obj,membr), (obj′, e) according to the multisets of C,
those having multiplicity 0.

return T
end function

36 M.A. Mart́ınez-del-Amor et al.

Remark that the static table T contains all consistent blocks in the columns.
The set of all consistent blocks is unlikely to be mutually consistent. However, two
non-mutually consistent blocks, Bh,α,α′1,u,v and Bh,α,α′2,w,y (assigning a different
charge to the same membrane), can be filtered as follows:

• If u 6= w or v 6= y, and if one of these multisets is not present in Ct, then one
of the blocks is not applicable, and therefore will be filtered by filter 2. This
situation is commonly handled by the model designers, in order to take control
of the model evolution.

It is very important to have a set of mutually consistent blocks before
distributing objects to the blocks. For this reason, there are two complementary
methods to detect it. First, and after applying filters 1 and 2, a loop to check the
mutually consistency is performed. If this method ends with an error, meaning
that an inconsistency was encountered, the simulation process can finish, warning
the designer with the reason. Nevertheless, it can be interesting to find a way to
continue the execution by non-deterministically constructing a subset of mutually
consistent blocks. Since this method can be exponentially expensive in time, it is
optional for the user to whether activate it or not.

Once the columns of the dynamic table represent a set of mutually consistent
blocks, the distribution process starts. This is carried out by browsing the rows
of the table, in such a way that the values of the rows, different to −, will be the
multiplication of:

• The normalized value respecting the row, that is, the value divided by the
total sum of the row. This calculates a way to proportionally distribute
the corresponding object along the blocks. Since it depends on the value k
(multiplicity in the left-hand side), the distribution actually penalize the blocks
requiring more copies of the same object, what is inspired in the amount of
energy required to join individuals from the same species.

• The value in the original dynamic table (i.e. 1
k). This indicates the number of

possible applications of the block with the corresponding object.
• The corresponding multiplicity of the object in the current configuration C ′t.

This performs the distribution of the number of copies of the object along the
blocks.

After the object distribution process, the number of applications for each block
is calculated by selecting the minimum value in each column. This number is
then used for consuming the left-hand side from the configuration. However, this
application could be not maximal. The distribution process can eventually deliver
objects to blocks that are restricted by other objects. In view of that this situation
may occur frequently, the distribution and the configuration update process can be
A times, being A an input parameter referring to accuracy. The more the process
is repeated, the more is the distribution accurate, but the performance of the
simulation can be lower. We have experimentally see that A = 2 gives the best
accuracy/performance ratio.

DCBA: Simulating Population Dynamics P systems 37

Algorithm 5 SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do . (For each environment ej)
2: Apply filters to table Tj using Ct, obtaining T tj . The filters are applied as follows:

a. T tj ← Tj
b. T tj ← Filter 1 (T tj , Ct).
c. T tj ← Filter 2 (T tj , Ct).
d. Check mutual consistency for the blocks remaining in T tj :
• Create a vector MCtj , of order q (number of membranes in Π), with

MCtj(i) = −1, 1 ≤ i ≤ q.
• for each column Bh,α,α′,u,v in T tj , do

– if MCtj(h) = −1 then MCtj(h)← α′.
– else if MCtj(h) = α′ then do nothing.
– else store all the information about the inconsistency.

• if there was at least one inconsistency then report the information about
the error, and optionally stop the execution (in case of not activating steps
2 and 3.)

e. T tj ← Filter 3 (T tj , Ct).
3: (ACTIVATE OR NOT) Generate, from T tj , sub-tables formed by sets of mutually

consistent blocks, in a maximal way in T tj (by the inclusion relationship). This will
produce a set of sub-tables T tj,i, i = 1, . . . , s.

4: (ACTIVATE OR NOT) Randomly select one table from T tj,i, i = 1, . . . , s: T tj,z
5: a← 1
6: repeat
7: Add up the values of each row in T tj,z. Filter the rows whose sum is 0.
8: Each element of the table is divided by the sum of the corresponding row.
9: For each pair (obj,membr) and (obj′, e) ∈ Cat , if the object in Cat has

multiplicity mult > 0, all the elements of the corresponding row in T tj,z are multiplied
by mult, by the corresponding value in T tj,z (calculated in the previous step), and
by the original value in Tj . That is, if in the position (x, y) of the table Tj there is
a value different than −, and the corresponding object in the row x has multiplicity
multx,a,t in Cat , then:

T tj,z(x, y) = bmultx,a,t · T tj,z(x, y) ·
T tj,z(x, y)

RowSumx,t
c = bmultx,a,t ·

(T tj,z(x, y))2

RowSumx,t
c

10: For each block b (i.e. column) appearing (i.e. not filtered) in T tj,z, calculate the
minimum number of the previously calculated values, Na

b ≥ 0. This is the number
of times the block is going to be applied. This value is accumulated to the total
calculated through the iteration of the loop over a: Bj ← Bj ∪ {< b,Na

b >}
11: Ca+1

t ← Cat − LHS(b) ·Na
b . (Delete the left-hand side of the block.)

12: T tj,z ← Filter 3 (Filter 2 (T tj,z, C
a+1
t),Ca+1

t), that is, apply filters 2 and 3.
13: a← a+ 1
14: until (a > A) ∨ (all the selected minimums in step 10 are 0)
15: end for

In order to efficiently repeat the loop for A, and also before going to the next
phase (maximality), it is interesting to apply again filter 2. In this way, blocks

38 M.A. Mart́ınez-del-Amor et al.

updating the configuration and without more applications, are deleted from the
table.

After phase 1, some objects may be left unevolved. It can come from the issue
of having a low A value, or because the rounded value calculated in the distribution
process. Due to the maximal property of P systems, after each computation step
no object can be left unevolved. In order to sort out this problem, a maximality
phase is applied. This phase consists of selecting those blocks whose rules can still
be applied. Then, a random order on these blocks is obtained. Finally, these blocks
are applied by following that order. In this phase, each rule block is applied on a
maximal manner. That is, blocks consume all objects which can be consumed. In
order to minimize the distortion towards the most probable blocks, this phase is
left after phase 1, as a residual number of objects is expected to be consumed in
this phase.

Algorithm 6 SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do . (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T tj,z in Phase

1, step 12.
3: for each block b, following the previous random order do
4: Calculate the number of applications, Nb, of b in CAt (last updated

configuration in Phase 1, step 11).
5: Add Nb to the total number of applications calculated for b in each loop of

phase 1, step 10 : Bj ← Bj ∪ {< b,Nb >}
6: CAt ← CAt − LHS(b) ·Nb . (delete the objects in the left-hand side of

block b, Nb times.)
7: C′t ← CAt
8: end for
9: end for

After the application of the phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks is computed. The output of the selection stage is,
in fact, a maximal multiset of selected rules. Hence, phase 3 (algorithm 7) passes
from blocks to rules, by applying the corresponding probabilities (at the local level
of blocks). The rules belonging to a block are selected according to a multinomial
distribution M(N, p1, . . . , pk), where N is the number of applications of the block,
and p1, . . . , pk are the probabilities associated with the rules within the block
r1, . . . , rk, respectively.

DCBA: Simulating Population Dynamics P systems 39

Algorithm 7 SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do . (For each environment ej)
2: for all block < b,Nb >∈ Bj do
3: Calculate a random multinomial M(Nb, pr1 , . . . , prlb) with respect to the

probabilities of the lb rules r1, . . . , rlb within the block b.
4: for i = 1 to lb do Add the randomly calculated value nri , using the

multinomial distribution for rule ri, to the multiset of selected rules Rjsel,t ←
Rjsel,t ∪ {< ri, nri >}.

5: end for
6: end for
7: Delete the multiset of selected blocks Bj ← ∅. This is useful for the next step

over time T .
8: end for

Once the rules to be applied on the current simulation step are selected, the
execution stage (algorithm 8) is applied. This stage consists on executing the
previously selected multiset of rules. As the objects present on the left hand side
of these rules have already been consumed, the only operation left is the application
of the right-hand side of the selected rules. Therefore, for each selected rule, the
objects present on the right-hand side to the corresponding membranes are added
and the indicated membrane charge is set.

Algorithm 8 EXECUTION

1: for j = 1 to m do . (For each environment ej)
2: for all Rule < r, n >∈ Rjsel do . (Apply the right-hand side of the selected

rules)
3: C′t ← C′t + n ·RHS(r)
4: Update the electrical charges of C′t from RHS(r).
5: end for
6: Delete the multiset of selected rules Rjsel ← ∅. This is useful for the next step

over time T .
7: end for

3.3 Running a test example

Let us consider a test example, without any biological meaning, in order to show
the different behaviour of the algorithms. This test PDP system is of degree (2, 1),
and of the following form:

Πtest = (G,Γ, µ,R, T, {fr : r ∈ R},Me,M1,M2)

where:

• G is an empty graph because RE = ∅.

40 M.A. Mart́ınez-del-Amor et al.

• Γ = {a, b, c, d, e, f, g, h}
• µ = [[]2]1 is the membrane structure, and the corresponding initial multisets

are:

– Me = { b } (in the environment)
– M1 = { a60 } (in membrane 1)
– M2 = { a90 b72 c66 d30 } (in membrane 2)

• T = 1, only one time step.
• The rules R to apply are:

r1.1 ≡ [a4 b4 c2]2
0.7−−−→ e2 []2

r1.2 ≡ [a4 b4 c2]2
0.2−−−→ [e2]2

r1.3 ≡ [a4 b4 c2]2
0.1−−−→ [e f]2

r2 ≡ [a4 d]2
1−−−→ f2[]2

r3 ≡ [b5 d2]2
1−−−→ g2[]2

r4 ≡ b [a7]−1
1−−−→ [h100]−1

r5 ≡ a3 []2
1−−−→ [e3]2

r6 ≡ a b []2
1−−−→ [g3]−2

We can construct a set of six consistent rule blocks BΠtest
(of the form

bh,α,α′,u,v) from the set R of Πtest as follows:

• b1 ≡ b2,0,0,∅,{a4,b4,c2} = {r1.1, r1.2, r1.3}
• b2 ≡ b2,0,0,∅,{a4,d} = {r2}
• b3 ≡ b2,0,0,∅,{b5,d2} = {r3}
• b4 ≡ b1,−,−,{b},{a7} = {r4}
• b5 ≡ b2,0,0,{a3},∅ = {r5}
• b6 ≡ b2,0,−,{a,b},∅ = {r6}

It is noteworthy that the set BΠtest
is not mutually consistent. However, only

the blocks b1, b2, b3 and b5 are applicable in the initial configuration, and they, in
fact, conform a mutually consistent set of blocks. Block b4 is not applicable since
the charge of membrane 1 is neutral, and block b6 cannot be applied because there
are no b’s in membrane 1.

Table 1 shows five different runs for one time step of Πtest using the DNDP
algorithm. The values refers to the number of applications for each rule, which is

DCBA: Simulating Population Dynamics P systems 41

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 11 0 0 0 0

r1.2 4 4 3 0 0

r1.3 1 0 0 0 0

r2 6 18 6 22 2

r3 1 6 12 4 14

r4 - - - - -

r5 20 20 20 20 20

r6 - - - - -

Table 1: Simulating Πtest using the DNDP algorithm

actually the output of the selection stage (and the input of the execution stage).
Note that for simulation 1, the applications for r1.1, r1.2 and r1.3 follows the
multinomial distribution. The applications of these rules are reduced because they
are competing with rules r2 and r3, . However, this competition leads to situations
where the applications of the block b1 does not follow a multinomial distribution. It
comes from the fact of using a random order over the rules, but not over the blocks.
Rules having a probability equals to 1 are more restrictive on the competitions
because they are applied in a maximal way in their turn. This is the reason because
on simulations 4 and 5, none of the rules r1.i, 1 ≤ i ≤ 3 are applied.

This behaviour could create a distortion of the reality described in the
simulated model. But it is usually appeased running several simulations and
making a statistical study. Finally, rules not competing for objects are applied
as is, in a maximal way. For example, rule r5 is always applied 20 times because
its probability is equal to 1.

In the following, the test example is executed using the DCBA. The main
results of the different phases of the process is also detailed.

In the initialization phase, the static table is created, containing all the
consistent blocks. The static table of the Πtest P system is showed in table 2.
As shown, the values inside the cells of the table represents the inverse (1/k) of
the multiplicity of the object (in the membrane, as specified in the row) inside the
block indicated in the header of the column.

Once the static table has been initialized, the simulation main loop runs for
the stated steps. Then, for each step of computation, the selection and execution
of rules runs, as illustrated in the following paragraphs.

The selection starts with the distribution phase. The needed filters are
performed, causing some objects and blocks to be discarded, as they need not
present charges and/or objects. Then the corresponding calculus take place, getting
the minimum number of applications of each way. The result of the selection phase
1 of the step 1 is showed in table 3. The sum of the previously obtained values is
showed in the last column. Then, the possible number of applications of a block is
calculated for each object, considering its multiplicity in the current configuration

42 M.A. Mart́ınez-del-Amor et al.

Objects
Consistent Blocks

b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2} b1,−,−,{b},{a7} b2,0,0,{a3},∅ b2,0,−,{a,b},∅

< a,2> 1/4 1/4 - - - -

< b,2> 1/4 - 1/5 - - -

< c,2> 1/2 - - - - -

< d,2> - 1/1 1/2 - - -

< a,1> - - - 1/7 1/3 1/1

< b,1> - - - - 1/1

< b,e> - - - 1/1 - -

Table 2: Static table

and the block, and the relation with the sum of the row. This relation somehow
captures the proportion of objects to be initially assigned to each block. Then, the
minimum number of each block (given by the column) is calculated.

Objects
Consistent Blocks

Sum
b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2} b2,0,0,{a3},∅

< a,2> * 90 0.25 | 11 0.25 | 11 - - 0.5

< b,2> * 72 0.25 | 10 - 0.2 | 6 - 0.45

< c,2> * 66 0.5 | 33 - - - 0.5

< d,2> * 30 - 1.0 | 20 0.5 | 5 - 1.5

< a,1> * 60 - - - 0.33 | 20 0.33

Applications 10 11 5 20

Table 3: Selection Phase 1 - Distribution

The next phase, maximality, starts from the remaining objects, selecting new
applications of the blocks in a maximal way. The result of this phase is showed in
table 4. This table presents the remaining objects (the ones not assigned in phase
1) and the possible blocks to be selected. The blocks are chosen in a random way,
as shown in algorithm 6, and the possible applications of the block are calculated.
This process guarantees a maximal set of blocks to be selected, with a maximal
number of applications of each block. The last row, applications, shows that the
block b2,0,0,∅,{a4,b4,c2} is applying 1 time, additional to the number of applications
calculated in the distribution phase.

Then the phase 3, probability, take place. For each block selected in the previous
phases, its number of applications is divided among the rules being part of the

DCBA: Simulating Population Dynamics P systems 43

Objects
Consistent Blocks

b2,0,0,∅,{a4,b4,c2} b2,0,0,∅,{a4,d} b2,0,0,∅,{b5,d2}

< a,2> * 6 - - -

< b,2> * 7 - - -

< c,2> * 46 - - -

< d,2> * 9 - - -

Applications 1 - -

Table 4: Selection Phase 2 - Maximality

block, according to their probabilities. As a result, the number of applications of
each rule is obtained, as showed in table 5.

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 7 10 7 6 7

r1.2 3 0 4 1 2

r1.3 1 1 5 3 1

r2 11 11 11 12 12

r3 5 5 5 6 6

r4 - - - - -

r5 20 20 20 20 20

r6 - - - - -

Table 5: Simulating Πtest using the DCBA algorithm

It is noteworthy that the selection of rules belonging to block 1 {r1.i, 1 ≤ i ≤ 3},
in table 5, always follows a multinomial distribution respecting the 3 probabilities.
This solves the drawback we showed on table 1. Moreover, it can be seen that
the maximality sometimes can give one more application to blocks 2 and 3, in
spite of keeping the original 10 applications for block 1 from phase 1. In any case,
the number of applications is proportionally distributed, avoiding the distortion of
using a random order over the blocks (or rules), as made in the DNDP algorithm.

3.4 Implementation in pLinguaCore

In [11], a Java library called pLinguaCore was presented under GPL license. It
includes parsers to handle input files and built–in simulators to handle different P
System based models. It is not a closed product because developers with knowledge
of Java can add new components to the library. Within the scope of this paper,
pLinguaCore has been upgraded to provide an implementation of the DBCA,

44 M.A. Mart́ınez-del-Amor et al.

thus extending its existing probabilistic model simulation algorithms support.
Along with the inclusion of other extensions, regarding to models such as Spiking
Neural P Systems and Numerical P Systems, current version of the library, named
pLinguaCore 3.0, and featuring an implementation of the introduced DBCA can be
downloaded from [21]. In what follows, details of the implementation of the DBCA
in pLinguaCore are shown. Data structures, methods, code optimization and bug
fixes are reviewed. Going Top-down, Java classes involved in the implementation:

• DynamicMatrix. It provides an implementation for the main operations of the
DBCA.

DynamicMatrix is built as a dynamic map indexed by MatrixKey class objects.
MatrixKey objects are implemented as a pair of (MatrixRow, MatrixColumn)
class objects. Associated to each MatrixKey object within the map, multiplic-
ity k of the object specified by the MatrixRow row in the left hand side of
the rule specified by the MatrixColumn column is stored. Note that k is stored
instead of 1/k for accuracy reasons.

As different filters are applied over the DynamicMatrix object, a couple of lists
of MatrixRow and MatrixColumn objects respectively are associated to the
matrix to keep track of its valid cells. Removal of elements from these lists is
performed when filters are applied, while the DynamicMatrix object itself is
reset in every step of the main loop of selection phase. Thus, DynamicMatrix
object can be viewed as a hash table of multiplicities that allows a significant
reduction of the required amount of memory for execution of the DBCA.

Also, attributes that stores the sum of the multiplicities of the objects in the
matrix by row as well as the minimum of the columns are included in the Dy-
namicMatrix class. Inconsistent blocks are controlled by means of a list of pairs
of MatrixColumn objects.

DynamicMatrix class directly extends from StaticMatrix class. Methods in Dy-
namicMatrix implements the DBCA different phases themselves, remarkably:

– initData() initializes valid rows and columns lists in the DynamicMatrix
object, clearing up them; also application of rules data structure is
initialized.

– filterColumns1() computes valid columns and associates them to the
DynamicMatrix object; applies Filter 1 to these columns;

– filterColumns2() applies Filter 2 over valid columns associated to the
DynamicMatrix object, removing the required ones.

– checkMutualConsistency() checks mutual consistency over blocks of the
DynamicMatrix object; if any inconsistency is found, an exception is thrown
and execution of the simulator is halted; a message listing the mutual
inconsistent blocks found is shown to the user.

DCBA: Simulating Population Dynamics P systems 45

– initFilterRows() computes valid rows and associates them to the Dynamic-
Matrix object; applies Filter 3 to these rows.

– filterRows() applies Filter 3 to valid rows, removing the required ones; this
method is called inside the main loop of the selection phase, while the
previous one is called outside, at the beginning of this phase.

– normalizeRowsAndCalculateMinimums() implements the main loop of
selection phase.

– maximality() implements maximality phase.
– executeRules() implements execution phase; remarkably, multinomial dis-

tribution is computed by computing binomial distributions, implemented
through the specialized CERN Java library (cern.jet.random.Binomial).

• StaticMatrix. Provides an implementation for the static matrix used by the
DBCA. Similarly to DynamicMatrix class, cells within the matrix are stored
as a map indexed by MatrixKey class objects, each one of them associated to
a multiplicity. A couple of immutable lists of MatrixRow and MatrixColumn
class objects determines the structure of the matrix. Contents of the cells are
fixed once initialized.

• MatrixRow. Provides an implementation for rows featured in DynamicMatrix,
StaticMatrix and MatrixKey objects. Implemented by a pair of String objects
representing object and membrane label respectively, it also provides a method
for computing the validity of the row, i.e. to determine if the row has to be
kept within the DynamicMatrix object with respect to a given environment.

• MatrixColumn. Provides an implementation for columns featured in Dynamic-
Matrix, StaticMatrix and MatrixKey objects. An abstract class, its extended
and implemented by a couple of classes representing the two kinds of rule
blocks:

– SkeletonRulesBlock, which implements blocks of skeleton rules.

– EnvironmentRulesBlock, which implements blocks of environment rules.

Both classes have the same structure: a single object to store the common left
hand rule side of the rule, plus a collection to store the several right hand
rule side objects that conforms the block. Also, each one provides an specific
method for computing the validity of the corresponding column within the dy-
namic matrix.

To conclude, let us note that while conducting the DBCA implementation,
several bugs have been fixed in pLinguaCore, notably some of them regarding to
the way in which rules are parsed and stored, thus applying beyond the scope of

46 M.A. Mart́ınez-del-Amor et al.

the DBCA an affecting to implementation of probabilistic models simulators as a
whole:

• Multisets of objects are now taken into account while checking rule blocks. In
previous versions of pLinguaCore, when checking of the consistency of proba-
bilities of a rule block was conducted (i.e. checking that sum of probabilities of
the rules must equal to one), multiplicities of objects in the left hand side of
the rules were ignored.

• Issues with “intentional duplicate rules” solved assigning an unique identifier
for every rule within the scope of probabilistic models. Issues found were:

– Instantiation of parameters in syntactically different rule schemes for some
models produced duplicated rules and caused the parser to throw an error
and halt. As this duplicity proved intentional, the parser was modified sub-
sequently to take it into account.

– Probability was not taken into account when differencing rules. This made
the parser to discard a rule syntactically identical, except for its probability,
to a previous parsed one.

4 Validation

4.1 Improved model for the scavenger bird ecosystem

In this section, it is presented a novel model for an ecosystem related to the
Bearded Vulture in the Pyrenees (NE Spain), by using PDP systems. This model
is an improved model of which is provided in [5]. The Bearded Vulture (Gypaetus
barbatus) is an endangered species in Europe that feeds almost exclusively on bone
remains of wild and domestic ungulates. In this model, the evolution of six species
is studied: The Bearded Vulture and five subfamilies of domestic and will ungulates
upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ, µ,R, T, {fr : r ∈ R},M1,M2)

where:

• G is an empty graph because RE = ∅.

• In the alphabet Γ , we represent the six species of the ecosystem (index i is
associated with the species and index j is associated with their age, and the
symbols X, Y and Z represent the same animal but in different states); it

DCBA: Simulating Population Dynamics P systems 47

also contains the auxiliary symbol B, which represents 0.5 kg of bones, and C,
which allows a change in the polarization of the membrane labeled by 2 at a
specific stage.

Γ = {Xi,j , Yi,j , Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}

The species are the following:
– Bearded Vulture (i = 1)
– Pyrenean Chamois (i = 2)
– Red Deer Female (i = 3)
– Red Deer Male (i = 4)
– Fallow Deer (i = 5)
– Roe Deer (i = 6)
– Sheep (i = 7)

• µ = [[]2]1 is the membrane structure, and the corresponding initial multisets
are:
– M1 = { Xqi,j

i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}
– M2 = { C,Bα}

where α = d
21∑
j=1

q1,j · 1.10 · 682e

Value α represents an external contribution of food which is added during
the first year of study so that the Bearded Vulture survives. In the formula,
q1,j represents the number of j years of age of Bearded Vultures, the finality
of constant factor 1.10 is to guarantee enough food for 10% population
growth. At present, the population growth is estimated an average 4%, but
this value can reach higher values. Thus, to avoid problems related with the
underestimation of this value the first year we estimated the population
growth (overestimated) at 10%. The constant value 682 represents the
amount of food needed per year for a Bearded Vulture pair to survive.

• Each year in the real ecosystem is simulated by 3 computational steps, so
T = 3 · Y ears, where Y ears is the number of years to simulate.

• The rules R to apply are:

– Reproduction rules for ungulates

Adult males

r0,i,j ≡ [Xi,j]1
1−ki,13−−−→[Yi,j]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j]1
ki,5ki,13−−−→[Yi,j , Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i 6= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3

48 M.A. Mart́ınez-del-Amor et al.

Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j]1
(1−ki,5)ki,13−−−→ [Yi,j]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j]1
ki,13−−−→[Yi,j]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Young ungulates that do not reproduce

r6,i,j ≡ [Xi,j]1
1−−−→[Yi,j]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

– Growth rules for the Bearded Vulture

r7,j ≡ [X1,j]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j]1
1−k1,6−k1,10−−−→ [Y1,j]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4]1

r10 ≡ [X1,k1,4]1
1−k1,6−−−→[Y1,k1,4]1

– Mortality rules for ungulates

Young ungulates which survive

r11,i,j ≡ Yi,j []2
1−ki,7−ki,8−−−→ [Zi,j]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j []2
ki,8−−−→[Bki,11]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j []2
ki,7−−−→[]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy

Those which survive

r14,i,j ≡ Yi,j []2
1−ki,10−−−→[Zi,j]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j []2
ki,10−−−→[Bki,12]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy

Those which die in the ecosystem

r16,i ≡ Yi,ki,4 []2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 []2
(1−ki,9)(1−ki,10)

−−−→ []2 : 2 ≤ i ≤ 7

– Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j []2
1−k1,10−−−→[Z1,j]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j []2
k1,10−−−→[]2 : k1,2 ≤ j < k1,4

DCBA: Simulating Population Dynamics P systems 49

r20 ≡ Y1,k1,4 []2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[]2
1−−−→[Z1,k1,2−1]2

– Feeding rules

r22,i,j ≡ [Zi,jB
ki,14]2

1−−−→Xi,j+1[]+2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

– Balance rules

Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[]2

Adult animals that die because they have not enough food

r24,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,12]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,11]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization
r26 ≡ [C]+2

1−−−→[C]2

• The constants associated with the rules have the following meaning:

– ki,1: Age at which adult size is reached. This is the age at which the animal
consumes food as an adult does, and at which, if the animal dies, the amount
of biomass it leaves behind is similar to the total left by an adult. Moreover,
at this age it will have surpassed the critical early phase during which the
mortality rate is high.

– ki,2: Age at which it begins to be fertile.

– ki,3: Age at which it stops being fertile.

– ki,4: Average life expectancy in the ecosystem.

– ki,5: Fertility ratio (number of descendants by fertile females).

– ki,6: Population growth (this quantity is expressed in terms of 1).

– ki,7: Animals retired from the ecosystem in the first years, age < ki,1 (this
quantity is expressed in terms of 1).

– ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is
expressed in terms of 1).

– ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value is
1.

– ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is expressed
in terms of 1).

– ki,11: Amount of bones from young animals, age < ki,1.

– ki,12: Amount of bones from adult animals, age ≥ ki,1.

– ki,13: Proportion of females in the population (this quantity is expressed in
terms of 1).

50 M.A. Mart́ınez-del-Amor et al.

– ki,14: Amount of food necessary per year and breeding pair (1 unit is equal
to 0.5 kg of bones).

• In [5], they can be found actual values for the constants associated with the
rules as well as actual values for the initial populations qi,j for each species i
with age j. There are two sets of initial populations values, one beginning on
year 1994 and another one beginning on year 2008.

4.2 Simulation results

In [5], a simulator for the model was presented. The authors show a comparison of
the results provided by the simulator and actual data obtained from the ecosystem.
That simulator was written in C++ and the rules were implemented directly on
the source code. So, that is a simulator implemented ad hoc for the model. The
simulator does not implement any described simulation algorithm for P systems
and does not implement any generic method to define P systems. We have found
that ad hoc simulators like the one presented in [5] have a strong coupling design
and it is a problem for debugging. So, if the simulator does not reproduce the
expected behaviour of the model, what is causing the problem?. In that situation,
we could think that:

1. The model is wrong.
2. The rules are not correctly written in the source code.
3. The semantics of the model is not correctly implemented in the source code.

It is very difficult to find the cause of the problem with a strong coupling software
design. Moreover, if we think that the cause of the problem is, for instance, 2, but
it is really 1 or 3, then we can introduce new errors trying to correct it.

From a software engineering point of view it is very important to decouple
software components, that is the point of view of P-Lingua and pLinguaCore [21]:

• The model is designed on a paper.
• The rules are written on a P-Lingua file. So, the parser checks the

syntactical/semantics errors.
• The semantics of the model is implemented on the pLinguaCore library

following a good described simulation algorithm.

PLinguaCore is a simulation library that accepts the input written in P-Lingua
and provides simulations of the defined P systems. For each type of P system,
there are one or more simulation algorithms implemented in pLinguaCore. It is a
software framework, so it can be expanded with new simulation algorithms.

Thus, we have expanded the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems, the current version of pLinguaCore is 3.0
and it can be downloaded from [21].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [14] and DCBA. We also compare the

DCBA: Simulating Population Dynamics P systems 51

results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data obtained from [5].
In [22] it can be found the P-Lingua file which defines the model and instructions
to reproduce the comparisons.

We have set the initial population values with the actual ecosystem values
for year 1994. For each simulation algorithm we have made 1000 simulations of
14 years, that is, 42 computational steps. The simulation workflow have been
implemented on a Java program that runs over the pLinguaCore library (this Java
program can be downloaded from [22]). For each simulated year (3 computational
steps), the Java program counts the number of animals for each species i, that is:

Xi =
ki,4∑
j=0

Xi,j . After 1000 simulations, the Java program calculates average values

for each year and species and writes the output to a text file. Finally, we have used
the GnuPlot software [20] to produce population graphics.

In figures 1, 2, 3, 4 ,5, 6 and 7 the population graphics for each species and
simulation algorithm are represented.

(a) Using DCBA

(b) Using DNDP

Fig. 1: Evolution of the Bearded Vulture birds

52 M.A. Mart́ınez-del-Amor et al.

Fig. 2: Evolution of the Pyrenean Chamois

Fig. 3: Evolution of the female Red Deer

Fig. 4: Evolution of the male Red Deer

Fig. 5: Evolution of the Fallow Deer

The main difference between DNDP and DCBA algorithms is the way the
algorithms distribute the objects between different rule blocks that compete for

DCBA: Simulating Population Dynamics P systems 53

Fig. 6: Evolution of the Roe Deer

Fig. 7: Evolution of the Sheep

the same objects. In the model, the behavior of the ungulates are modeled by
using rule blocks that do not compete for objects. So, the simulator provides
similar results for both DCBA and DNDP algorithms. In the case of the Bearded
Vulture, there are a set of rules r22,i,j that compete for B objects because k1,14 is
not 0 (the Bearded Vulture needs to feed on bones to survive). The ki,14 constants
are 0 for ungulates, 2 ≤ i ≤ 7, because they do not need to feed on bones to
survive. The initial amount of bones and the amount of bones generated during
the simulation is enough to support the Bearded Vulture population regardless the
way the simulation algorithm distributes the bones between vultures of different
ages (rules r22,1,j). By the way, there are a small initial population of bearded
vultures (20 pairs), because of that, we can see differences between the results
with DCBA, DNDP, C++ simulator and actual ecosystem data for the Bearded
Vulture (39 bearded vultures with DCBA for year 2008, 36 with DNDP, 38 with
the C++ simulator and 37 on the actual ecosystem).

In figure 8 it is showed the comparison between the actual data for year
2008 and the simulation results by using the C++ ad hoc simulator, the DNDP
algorithm and the DCBA algorithm implemented in pLinguaCore. In the case
of the Pyrenean Chamois, there is a difference between the actual population
data on the ecosystem (12000 animals) and the results provided by the other
simulators (above 20000 animals), this is because the population of Pyrenean
Chamois was restarted on year 2004 [5]. Taking this into account, we can see
that all the simulators behave in a similar way for the above model and they can
reproduce the actual data after 14 simulated years. So, the DCBA algorithm is
able to reproduce the semantics of PDP systems and it can be used to simulate
the behavior of actual ecosystems by means of PDP systems.

54 M.A. Mart́ınez-del-Amor et al.

Sheep

Pyrenean Chamois

Roe deer

Red deer

Fallow deer

Bearded Vulture pair

0 50000 100000 150000 200000 250000

200000

12000

10000

5500

1500

37

192097

12297

9774

5631

1602

38

192255

20026

9962

5228

1623

35

192295

20017

9875

5187

1598

39

Real measurement

Simulator in C++

DNDP simulator

DCBA simulator

Fig. 8: Data of the year 2008 from: real measurements of the ecosystem, original
simulator in C++, simulator using DNDP and simulator using DCBA.

5 Conclusions and Future Work

In this paper we have introduced a novel algorithm for Population Dynamics P
systems (PDP systems), called Direct distribution based on Consistent Blocks
Algorithm (DCBA). This new algorithm performs an object distribution along
the rules that eventually compete for objects. The main procedure is divided into
two stages: selection and execution. Selection stage is also divided into three micro-
phases: phase 1 (distribution), where by using a table and the construction of rule
blocks, the distribution process takes place; phase 2 (maximality), where a random
order is applied to the remaining rule blocks in order to assure the maximality
condition; and phase 3 (probability), where the number of application of rule
blocks is translated to application of rules by using random numbers respecting
the probabilities.

By using a test example, it is shown how this new algorithm solves some
drawbacks in its predecessor, the DNDP algorithm. Moreover, both algorithms
are validated towards a real ecosystem model (the bearded vulture birds), showing
that they reproduce the same results than the original simulator written in C++.

DCBA: Simulating Population Dynamics P systems 55

Finally, some details and updates of its implementation in the pLinguaCore
framework are provided.

The accelerators in High Performance Computing offers new approaches to
accelerate the simulation of P systems and Population Dynamics [6]. An initial
parallelization work of the DCBA by using multi-core processors is described in
[12]. The analysis of the two parallel levels (simulations and environments), and the
speedup achieved by using the different cores, make interesting the search for more
parallel architectures. For the near future work, we will use the massively parallel
architectures inside the graphics cards (GPUs) using CUDA. We will adapt and
scale the DCBA algorithm using the CUDA programming model, and develop a
parallel simulator for GPU based systems.

Acknowledgments

The authors acknowledge the support of “Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa” of the “Junta de Andalućıa” under grant P08-TIC04200,
and the support of the project TIN2009-13192 of the “Ministerio de Educación y
Ciencia” of Spain, both co-financed by FEDER funds.

References

1. D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri. Modelling metapopulations with
stochastic membrane systems, Biosystems, 91 (2008), 499–514.

2. L. Bianco, V. Manca, L. Marchetti, M. Petterlini. Psim: a simulator for
biomolecular dynamics based on P systems, IEEE Congress on Evolutionary
Computation (2007), 883–887

3. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A computational modeling for real ecosystems based on P
systems, Natural Computing, 10, 1 (2011), 39-53.

4. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
D. Sanuy. A P system based model of an ecosystem of some scavenger birds,
Membrane Computing, 10th International Workshop, LNCS 5957 (2010), 182–195.

5. M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, D. Sanuy, A. Margalida.
Modeling ecosystem using P systems: The bearded vulture, a case study. Membrane
Computing, 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31,
2008, Revised Selected and Invited Papers. Lecture Notes in Computer Science,
5391 (2009), 137-156.

6. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez. Simulation of P systems with active membranes
on CUDA, Briefings in Bioinformatics, 11, 3 (2010), 313–322

7. S. Cheruku, A. Păun, F.J. Romero-Campero, M.J. Pérez-Jiménez, O.H. Ibarra.
Simulating FAS-induced apoptosis by using P systems, Progress in Natural Science,
17, 4 (2007), 424–431.

56 M.A. Mart́ınez-del-Amor et al.

8. M.A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy, E. Serrano, L. Valencia-Cabrera. Modeling population growth
of Pyrenean Chamois (Rupicapra p. pyrenaica) by using P systems, Membrane
Computing, 11th International Conference, CMC 2010, Jena, Germany, August
24-27, 2010, Revised Selected Papers. LNCS, 6501 (2011), 144–159.

9. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos. Com-
paring simulation algorithms for multienvironment probabilistic P system
over a standard virtual ecosystem. Natural Computing, online version
(http://dx.doi.org/10.1007/s11047-011-9289-2).

10. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez. Simulating
Tritrophic Interactions by Means of P Systems. Proceedings of the 5th IEEE
International Conference on Bio-Inspired Computing: Theories and Applications,
vol. 2 (2010), 1621–1628.

11. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, Agust́ın Riscos-Núñez. An overview of P-Lingua 2.0, Membrane
Computing, 10th International Workshop, LNCS 5957 (2010), 264–288.

12. M.A. Mart́ınez-del-Amor, I. Karlin, R.E. Jensen, M.J. Pérez-Jiménez, A.C. Elster.
Parallel Simulation of Probabilistic P Systems on Multicore Platforms. In this
volume.

13. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez,
F. Sancho-Caparrini. A simulation algorithm for multienvironment probabilistic P
systems: A formal verification. International Journal of Foundations of Computer
Science, 22, 1 (2011), 107–118.

14. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez,
M.A. Colomer. A new simulation algorithm for multienvironment probabilistic
P systems,Proceedings of the 5th IEEE International Conference on Bio-Inspired
Computing: Theories and Applications, vol. 1 (2010), 59–68,

15. V. Nguyen, D. Kearney, G. Gioiosa. An algorithm for non-deterministic object
distribution in P systems and its implementation in hardware, Membrane
Computing, 9th International Workshop, LNCS 5391 (2009), 325–354.

16. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), pp. 108–143, and Turku Center for Computer Science-TUCS Report
No 208.

17. Gh. Păun, F.J. Romero-Campero. Membrane Computing as a Modeling Frame-
work. Cellular Systems Case Studies, Formal Methods for Computational Systems
Biology, LNCS, 5016 (2008), 168–214.

18. M.J. Pérez-Jiménez, F.J. Romero-Campero. P systems, a new computational
modelling tool for systems biology, Transactions on Computational Systems
Biology VI, LNCS 4220 (2006), 176–97.

19. G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, M. Cámara.
Environment aware P-System model of quorum sensing, New Computational
Paradigms, LNCS 3526 (2005), 473–485.

20. The GNUplot web page. http://www.gnuplot.info
21. The P-Lingua web page. http://www.p-lingua.org
22. The Bearded Vulture ecosystem model in P-Lingua. http://www.p-lingua.org/

wiki/index.php/bvBWMC12

Two Topics Ahead Membrane Computing

Adam Obtu lowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland
e-mail: A.Obtulowicz@impan.pl

Summary. Two topics from the area of probability theory and randomness challenging
membrane computing together with open problems and research proposals are discussed.

1 Introduction

We outline in the paper the following two topics challenging membrane computing
[16]:

1) new mathematical approaches to causes and origins of uncertainty resulting
from critique of old approaches to probability and randomness,

2) western polyphony musical scores as predecessor of an exact (as mathemati-
cal) approach to concurrency and parallelism in computer science: looking for
mutual inspiration.

These topics together with new open problems and research proposals for mem-
brane computing are discussed in subsequent Sections 2 and 3, respectively.

2 New mathematical approaches to uncertainty with
a regard to membrane computing

The critical discussion of foundations of probability theory from the points of
view of quantum theorya, computation theoryb, and philosophy (general method-
ology) of exact sciencesc inspired the following new mathematical approaches to
the causes and origins of uncertainty:

a see, e.g., the papers and book by L. Accardi, D. Aerst and I. Pitowsky quoted in
Subsection 1.2 of [1].

b see [18] for some brief and comprehensive summary of the discussion of a concept of
randomness in a context of algorithmic information by various scientists.

c see, e.g., the paper [5] due to M. Bunge and his other papers quoted in [5].

58 A. Obtu lowicz

A1) measurement (quantum) uncertainty approached by nonclassical (non-
Bayesian, non-Markovian) probability theory proposed among others in [1],
where also some new non-physical applications of quantum formalism are
presented,

A2) algorithmic approaches to randomness, see [18] for some their survey,
A3) interactive randomization (e.g., via oracles), cf. [2], versus classical and mas-

sively parallel Monte Carlo randomizations used e.g. in [7], [12] in classical
case, and in [14], [15] in massively parallel case, where the massively parallel
randomization was inspired also by the critical discussion of massive quantum
parallelism in [17], [6].

The attempts to fill the gap between formal reasoning about correctness of
programs and heuristic estimations of error probability and computation time of
randomized algorithms (cf., e.g., [12], [13]) resulted in an invention of

A4) probabilistic functional programming systems approached by monad theory
and related systems of proving correctness of probabilistic programs (e.g. in
Coq), cf. [3], [8].

The approaches outlined in A1)–A4) give rise to the following open problems
and research proposals for membrane computing:

P1) searching for non-classical probabilistic P systems respecting measurement
interactions and eventually simulating quantum computers (see A1)), where
the P systems in [14], [15] may be treated as an attempt of this simulation
respecting quantum massive parallelism,

P2) establishing the relationships (eventually an equivalence) between interactive
randomization and Monte Carlo massively parallel randomization (see A2),
A3)), where some ideas from membrane computing, like assembly of massively
parallel computing device by membrane division, are applied, see [14], [15],

P3) modifications of P lingua [19] programming environment by introducing prob-
abilistic aspects like in the case of probabilistic functional programming, see
A4).

Similar ideas to P3) have been already discussed in [10].

3 Western polyphony musical scores as a predecessor of an
approach to concurrency and parallelism in computer
science

Western polyphony from Middle Ages, through J. S. Bach’s (implied) polyphony,
to G. Ligeti’s sound-mass music contains an exact (as mathematical) approach to
concurrency and parallelism appearing in performance according to musical scores
for many voices.

Two Topics Ahead Membrane Computing 59

Writing a musical score for many simultaneously appearing voices resembles
writing a program (e.g. in NESL [4]) which respects simultaneously working pro-
cessors, where e.g. the restrictions for sharing an access to central memory could
correspond to counterpoint rules of polyphony.

The following quotation:

Ligeti’s goal was apparently to entangle the voices to such a degree that
they become imperceptible as individual entities . . .

together with remarks about randomization of beats in a bar according to K. Stock-
hausen from J. J. Iverson’s Ph.D. thesis [11] suggests that

• Ligeti’s sound-mass music could serve as a metaphor for quantum massive
parallelism,

• randomized spiking neural P systems [9] (respecting the timing of spikes by
counting time by beats in the bars) could be mathematical models for this
metaphor, where membranes—neurons could correspond to voices.

References

1. Aerst, D., Broekaert, J., Gabora L., A case for applying an abstract quantum for-
malism to cognition, New Ideas in Psychology 29 (2011), pp. 136–146.

2. Arora, S., Barak, B., Computational Complexity. A Modern Approach, Cambridge
Univ. Press, Cambridge, 2009.

3. Audebaud, P., Paulin-Mohring, C., Proofs of randomized algorithms in Coq, Sci.
Comput. Programming 74 (2009), pp. 568–589.

4. Blelloch, G. E., NESL: a Nested Data-Parallel Language (Version 3.1), Technical
Report CMU-CS-95-170, Carnegie-Mellon University, 1995.

5. Bunge, M., Bayesianism: Science or Pseudoscience, International Review of Victi-
mology 15 (2008), pp. 165–178.

6. Fortnow, L., One complexity theorist’s view of quantum computing, Theoret. Comput.
Sci. 292 (2003), pp. 597–610.

7. Hofmeister, T., et al., Randomized algorithms for 3-SAT, Theory of Comput. Syst.
40 (2007), pp. 249–262.

8. Hurd, J., Verification of the Miller–Rabin probabilistic primality tests, J. Log. Algebr.
Program. 56 (2003), pp. 3–21.

9. Ionescu, M., Păun, Gh., Yokomuri, T., Spiking neural P systems, Fund. Inform. 71
(2006), pp. 279–308.

10. Ipate, F., Turcanu, A., Modeling, verification, and testing of P systems using Rodin
and Prob, in: 9th BWMC, Sevilla, January 31 – February 4, 2011, ed. Martinez-del-
Amour, M. A. et al., Sevilla Univ., 2011, pp. 209–219.

11. Iverson, J. J., Historical memory and György Ligeti’s sound-mass music 1958–1968,
Ph.D. Dissertation, The University of Texas in Austin, 2009.

12. Iwama, K., et al., Improved randomized algorithms for 3-SAT, in: Algorithms and
Computation, Part I, Lecture Notes in Comput. Sci. 6506, Springer, Berlin, 2010,
pp. 73–84.

13. Lenstra, A. K., Lenstra, H. W., Jr. (eds.), The Development of the Number Field
Sieve, Lecture Notes in Math. 1554, Springer, Berlin, 1993.

60 A. Obtu lowicz

14. Obtu lowicz, A., Probabilistic P systems, in: Membrane Computing, Lecture Notes in
Comput. Sci. 2597, Springer, Berlin, 2003, pp. 377–387.

15. Obtu lowicz, A., Randomized Gandy–Păun–Rozenberg machines, in: Membrane Com-
puting (Jena, 2010), Lecture Notes in Comput. Sci. 6501, Springer, Berlin, 2011,
pp. 305–324.

16. Păun, Gh., Rozenberg, G., Salomaa, A., The Oxford Handbook of Membrane Com-
puting, Oxford, 2009.

17. Steane, A. M., A quantum computer only needs one universe, Studies in History and
Philosophy of Physics 34 (2003), pp. 469–478.

18. Volchan, S. B., What is a random sequence?, Amer. Math. Monthly 109 (2002),
pp. 46–63.

19. The P-Lingua website, http://www.p-lingua.org

Languages and P Systems: Recent Developments

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. Languages appeared from the very beginning in membrane computing, by
their length sets or directly as sets of strings. We briefly recall here this relationship, with
some details about certain recent developments. In particular, we discuss the possibility
to associate a control word with a computation in a P system. An improvement of a result
concerning the control words of spiking neural P systems is given: regular languages can
be obtained as control words of such systems with only four neurons (and with usual
extended rules: no more spikes are produces than consumed). Several research topics are
pointed out.

1 Introduction

Basically, membrane computing is associated with multiset processing in the com-
partments defined by a membrane structure, hence with handling numbers encoded
in a unary manner, by means of the multiplicity of given objects, represented by
symbols of an alphabet. However, from the very beginning, [22], also P systems
were considered whose objects are strings. While the multisets of objects are pro-
cessed by biochemical or biological inspired rules (similar to reactions taking place
among the chemicals in a cell, or by other operations, such as symport and an-
tiport), the string objects should be processed by specific rules, such as rewriting,
splicing (from DNA computing), replication. However, also in the case of symbol
objects we can “compute” (generate, accept or translate) strings and languages,
and we find this case particularly interesting, taking into account the qualitative
difference between the “internal data structure”, the multiset, and the “external
data structure”, the string (hence with a positional information). That is why
in what follows we only discuss this case, of symbol objects P systems handling
languages.

For P systems with string objects we refer to the corresponding chapter of [31]
and to the current bibliography of membrane computing from [38]. It is important

62 Gh. Păun, M.J. Pérez-Jiménez

to note, however, that P systems with string objects can have interesting appli-
cations in natural language processing; we refer only to [1], but researches of the
same group should be followed in this respect.

In what follows, we assume that the reader is familiar with basic facts in mem-
brane computing, including definitions of the main classes of P systems: cell-like P
systems with symbol objects (called here transition P systems, P systems with ac-
tive membranes, symport-antiport P systems, spiking neural P systems (in short,
SN P systems). Details can be found in [23], [31], and at [38]. We also assume some
familiarity with basic elements of formal language theory, e.g., from [34]. Some no-
tations will be also given below; we only mention now thatREG,LIN,CF,CS,RE
denote the families of regular, linear, context-free, context-sensitive, and recur-
sively enumerable languages, respectively, and that V ∗ is the set of all strings over
the alphabet V , the empty string, λ, included.

Informal presentations of the four classes of P systems are given below, in order
to facilitate the understanding of the subsequent sections.

A transition P system uses rules of the form u → v, where u and v are strings
over a given alphabet O of objects, representing multisets; the intuition is that the
objects in the multiset (represented by) u are consumed and those in v are pro-
duced, like in a (bio)chemical reaction. The objects in v can have associated target
indications, in the forms (a, here), (a, in), (a, out); the meaning is that the object a
produced by applying the rule remains in the same compartment of the membrane
structure if here is associated with it, it goes to a membrane immediately inside
the compartment where the rule is used, or it goes outside this compartment, in
the surrounding compartment, if the indications in or out are associated, respec-
tively. Note that the objects are processed inside compartments, by local rules,
but they can travel across membranes, due to the target indications. In particular,
an object (a, out) produced in the external membrane of a P system (also called
skin membrane) leaves the system and it “gets lost” in the environment.

Rules of the general form u → v are called cooperative. If u consists of a single
object, then the rule is said to be non-cooperative. The intermediate case of rules
ca → cv, where a and c are objects, with c taken from a distinguished subset C of
O, is the catalytic case.

In P systems with active membranes, the membranes themselves are part of
rules and can evolve during a computation. The objects can evolve inside com-
partments (by cooperative, catalytic or non-cooperative rules) and can pass across
membranes, while membranes can get divided, dissolved, separated, etc.

In P systems with symport-antiport rules the objects pass across membranes
by rules of the forms (u, in), (u, out) (symport rules), and (u, out; v, in) (antiport
rules), where u, v are strings in O∗ (representing multisets of objects). The rules
are associated with the membranes, the objects are never modified, they are just
moved from a compartment to another one.

Starting from an initial configuration (the membrane membrane structure and
the multisets placed in its compartments), and using the rules in a specified way

Languages and P Systems: Recent Developments 63

(synchronously or unsynchronously, in the maximally parallel way, sequentially,
etc.), we get transitions among configurations; a sequence of transitions forms a
computation; a computation which reaches a configuration where no rule can be
applied is said to be halting. In all the previous cases, the most natural result of
a computation is a number, for instance, of objects present in the halting config-
uration in a specified membrane.

In what follows, always the P systems work in the maximally parallel manner.

Finally, an SN P system consists of a set of neurons placed in the nodes of a
directed graph and sending signals (spikes, denoted in what follows by the symbol
a) along synapses (arcs of the graph). The objects evolve by means of spiking
rules, which are of the form E/ac → a; d, where E is a regular expression over
{a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron
containing k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce
one spike, after a delay of d steps. This spike is sent to all neurons to which a
synapse exists outgoing from the neuron where the rule was applied. There also
are forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes are
forgotten, provided that the neuron contains exactly s spikes. If rules can produce
more than one spike, i.e., they are of the form E/ac → ap; d, with E, c, d as above
and 1 ≤ p ≤ c, then the system is said to be extended. (Note that the number p
of produced spikes cannot be greater than the number c of consumed spikes.) In
the initial configuration, each neuron contains a given number (it can be zero) of
spikes.

The system works in a synchronized manner, i.e., in each time unit, the rule to
be applied in each neuron is non-deterministically chosen, each neuron which can
use a rule should do it, but the work of the system is sequential in each neuron:
only (at most) one rule is used in each neuron. One of the neurons is considered to
be the output neuron, and its spikes are also sent to the environment. The moments
of time when a spike is emitted by the output neuron are marked with 1, the other
moments are marked with 0. This binary sequence is called the spike train of the
system – it might be infinite if the computation does not stop. The result of a
computation can be the spike train itself (a binary string if the computation halts,
or an infinite sequence otherwise) or a number (e.g., the distance between the first
two spikes sent into the environment by the output neuron of the system).

If a spiking rule E/ac → a ∗ p has L(E) = ac, then we write it in the simpler
form ac → ap (and we call it finite).

Four ways to associate a language with a P system were considered so far:

1. external output,
2. using a P system in the accepting mode,
3. following the trace of a distinguished object through the membrane structure,
4. control words.

We shortly present them below, with some details in the case of control words,
and then we propose some ideas for further research.

64 Gh. Păun, M.J. Pérez-Jiménez

It should be noted that the references we give here are not meant to be complete
or to indicate the first place where a notion was introduced, but only to offer a
good introduction to this research area.

A general research topic can already be formulated here: consider systematically
the 4 × 4 combinations of (basic) types of P systems and ways to associate a
language with a P system. Not all of these 16 possibilities were explored (but we
cannot say in advance that any of them is of no interest). In particular, equivalences
between some of the 16 combinations would be nice to be found.

2 External Output

Introduced already in [30], for transition P systems, the idea is simple: because
objects can exit a P system (of any type), we (the user, the observer) can “wait in
the environment” and arrange the symbols which leave the system in a sequence.
If the computation halts, then we obtain a string, if not, we obtain an infinite
sequence. An important detail: we have to decide what to do in the case when
several objects leave the system at the same time. In [30] and several subsequent
papers, all permutations of the symbols are allowed, hence several strings are
associated with the same computation. An interesting possibility is to disregard
certain symbols and/or to associate a single symbol to a multiset (by means of a
given “interpretation mapping”), like in [12].

Somewhat surprisingly, in spite of its simple definition, defining a language in
the external output manner was not too much investigated – at least not until
last years, when a systematic study was started in [3], [4], mainly for transition P
systems with non-cooperative rules (and no further ingredients; in [30], catalytic
rules and membrane dissolution rules are used, as well a priority relation among
them). The obtained family lies in between REG and CS and has interesting
(combinatorial) properties.

The spike train of an SN P system can also be considered as the result of a
computation defined in the external mode, but, having only one object, we have
to assign different symbols to the time units when (at least) a spike exits the
system and to the time units when no spike is emitted. In this way, a binary string
(or sequence, when the computation does not stop) is obtained. There are several
papers in the SN P systems area dealing with such languages.

The external output is not very much investigated for symport-antiport sys-
tems, and we know no paper of this kind dealing with P systems with active
membranes. Also, as far as we know, the case when only computations which send
out at most one object in each step was not investigated (this condition imposes a
restriction on the accepted computations, hence the computing power of P systems
can be altered in this way).

Languages and P Systems: Recent Developments 65

3 P Automata

This is indeed a much investigated topic in membrane computing – but mainly for
the symport-antiport case. The idea is simple (symmetric to the external output):
we arrange in a sequence the symbols which enter a P system, again with the two
possibilities, to consider all permutations of symbols which enter in the same step
(see [21] and its bibliography), or to consider an encoding of multisets by symbols
(see a survey and references in [12]).

For symport-antiport P systems the “reading” of symbols from the environment
is naturally defined by means of symport and antiport rules associated with the
skin membrane. This is also provided by rules with active membranes, but we
know no study about this issue for such systems. For transition P systems and
for SN P systems we have to input symbols in an “external manner” (an external
user provides a string, symbol by symbol, according to its wish). In most cases,
a string is accepted if the computation halts (there are also other ways to define
successful computations, such as local halting, reaching final configurations, but
we do not discuss them here).

This way of using P systems is also related to the use of P systems to solve
decidability problems, were an input is introduced in the system and the problem
(an instance of it) has a positive answer if the computation halts (and a special
object is sent to the environment), however, in this case the input (an encoding
of the instance of the problem) is introduced in the form of a multiset, placed in
a distinguished membrane. Details can be found in [32].

A recent variant of P automata was introduced in [26], called dP automata: sev-
eral (symport-antiport) systems are connected to each other by means of antiport-
like rules; they read separately strings from the environment, process them, also
communicating, and if the computation halts, then the concatenation of the input
strings is accepted. This is a way to introduce more distribution in P systems,
making explicit the splitting of a problem among the components of the dP au-
tomaton. There are several papers devoted to this topic, see, e.g., [27], [28], [37].
The idea was extended also to SN P systems, in [19]; in this context, also a dual of
spiking rules is introduced, in the form of request rules (depending on the contents
of a neuron, spikes can be brought in from the environment, that is, the spikes
come in by request, not introduced by an external user).

4 Traces

The idea was introduced in [18] for symport-antiport P systems, investigated in
a couple of papers (see [17] and its bibliography), and extended to SN P systems
in [7]: distinguish an object and follow its path across membranes; the sequence
of membrane labels visited by that object provides a string (in the case of SN
P systems, one single spike is distinguished, it it always used by a spiking rule
applied in the neuron where the marked spike resides and one of the produced

66 Gh. Păun, M.J. Pérez-Jiménez

spikes become marked). We know no paper dealing with traces in transition P
systems and in P systems with active membranes.

5 Control Words

Finally, the fourth way to associate a string with a computation is to consider
control words, as sequences of labels of rules used in the steps of a computation.

This is a well investigated topic in formal language theory, especially for Chom-
sky grammars, because in each step such grammars use only one rule. Each deriva-
tion produces a control word; the set of all control words associated with all ter-
minal derivations in a grammar is called the Szilard language associated with
(generated by) the grammar. The things become more complicated in the case of
parallel computing devices, when several rules are used simultaneously.

This is the case also in membrane computing, and probably this is the reason
why control words were, up to our knowledge, never considered in this area (until
the special case proposed in [33]). However, a sort of bidimensional control word
was introduced already in [10], under the name of Sevilla carpet, as a way to
describe the rules used in a computation and their multiplicity in each step, but
not as a way to define a control language associated with the computations in a
P system.

A possible solution to the above difficulty is to consider a sequence of multisets
of labels, those labels associated with all rules applied in a given step. Then, a
string of symbols can be obtained following the ideas also used for accepting P
systems: take a function from multisets to strings and build the string(s) obtained
by concatenating the strings associated with the multisets. For instance, all per-
mutations of the labels in a multiset can be considered, as in [21], or only one
specific string (maybe a symbol) associated with the multiset, like in [12].

Another idea was recently introduced in [33], starting from the following re-
striction: all rules used in a computation step should have the same label, or they
can also be labeled with λ.

The definition in [33] is given for SN P systems, but it works for any type of P
systems.

Indeed, let us consider a P systemΠ, of any type, with the total set of rules (the
union of all sets of rules associated with compartments, membranes, neurons – as
it is the case) denoted with R. Consider a labeling mapping l : R → B∪{λ}, where
B is an alphabet. We consider only transitions s =⇒b s′, between configurations
s, s′ of Π, which use only rules with the same label b and rules labeled with λ.
We say that such a transition is label restricted. With a label restricted transition
we associate the symbol b if at least one rule with label b is used; if all used
rules have the label λ, then we associate λ to this transition. Thus, with any
computation in Π starting from the initial configuration and proceeding through
label restricted transitions we associate a (control) word. The language of control
words associated with all label restricted halting computations in Π is denoted

Languages and P Systems: Recent Developments 67

by Szλ(Π). The subscript indicates the fact that λ steps are permitted; in the
opposite case, we write Sz(Π) (the label restricted transitions which cannot use
only rules with label λ are called λ-label restricted).

We give here two results for symport-antiport P systems. The family of lan-
guages Sz(Π) associated with symport-antiport P systems with at most m mem-
branes is denoted with SzSAPm; when λ moves are allowed, we write SzλSAPm,
and if the number of membranes is not bounded, then the subscript m is replaced
with ∗.

In what follows we need the characterizations of regular languages by means of
regular grammars. Such a device is a construct G = (N,T, S, P), where N,T are
disjoint alphabets (the nonterminal and the terminal one, respectively), S ∈ N
(the axiom), and P is a finite set of rewriting rules of the forms A → aB,A → a,
where A,B ∈ N and a ∈ T ; a rule S → λ can be added, if we also want to
generated the empty word. The language generated by G is denoted with L(G).
Without any loss of generality we may assume that the grammar is reduced: each
A ∈ N can be reached from S and can derive a terminal string.

When comparing two language generating or accepting devices G1, G2, the
empty string is ignored, that is, L(G1) is considered equal to L(G2) as soon as
L(G1)−{λ} = L(G2)−{λ}. Thus, no λ-rule is necessary in our regular grammars.

Theorem 1. REG ⊂ SzSAP1.

Proof. The inclusion is easy to prove: for a regular grammar G = (N,T, S, P)
with N = {A1 = S,A2, . . . , An}, we consider the antiport rules b : (Ai, out;Aj , in)
associated with Ai → bAj ∈ P and the symport rules b : (Ai, out) associated with
Ai → b ∈ P . Initially, the single membrane of the system contains the object A1.
Clearly, each terminal derivation in G corresponds to a halting computation in the
system we have constructed, and conversely.

The inclusion is strict; actually, we have a stronger result: SzSAP1 −CF ̸= ∅.
A P system proving this assertion is

Π = (O, []
1
, e, O,R1), where:

O = {a1, a2, e, f, g, h},
R1 = {a : (e, out; ea1a2, in), a : (e, out; fa1a2, in),

b : (fa1, out; f, in), b : (fa1, out; g, in),

c : (ga2, out; g, in), c : (ga1, out;h, in),

d : (ha1, out;ha1, in), d : (ha2, out;ha2, in)}.

The “carrier” e bring inside n ≥ 1 copies of a1 and a2, then f and g remove copies
of a1 and a2, respectively. Eventually, the object h is introduced in the system.
If any copy of a1 or a2 is still present in the system, then the computation never
halts, because the rules with label d can be used forever. Therefore, the control
words associated with terminal computations are of the form anbncn, for some
n ≥ 1, hence Sz(Π) is not context-free. ⊓⊔

68 Gh. Păun, M.J. Pérez-Jiménez

If steps when only rules with label λ are allowed, then all one-letter recursively
enumerable languages can be generated.

Theorem 2. If L ⊆ a∗, L ∈ RE, then L ∈ SzλSAP1.

Proof. A language L ∈ a∗ is in RE if and only if its length set is a recursively
enumerable set of numbers. Symport-antiport P systems with one membrane (and
rules with no restricted complexity) can generate all recursively enumerable sets
of numbers, [31]. Take such a system Π, namely, one which simulates a register
machine M = (n,H, l0, lh, I) (the number of registers, the set of instruction labels,
the label of the initial instruction, the label of the halt instruction, the set of
instructions, labeled with elements of H; simulating register machines is the usual
way to prove the universality of symport-antiport P systems, so the reader is
assumed to be familiar with such proofs). In the halting configuration, the system
contains k copies of a symbol a1, which encodes the contents of register 1 of M ,
the one where the number is generated, as well as the object lh, for k ∈ N(M).
Assume that all rules of Π are labeled with λ, and add the following rules a :
(lha1, out; lh, in). This rule must be used for each copy of a1 present in the system,
hence the control word of the computation in the augmented system – let us
denote it by Π ′ – is ak. The halting label lh is introduced only in the last step of
a computation in Π. Consequently, L = Szλ(Π

′). ⊓⊔

In the previous results we have imposed no restriction on the length of the
symport and antiport rules; if such restriction are considered, then a larger number
of membranes is expected to be necessary.

The control words associated with transition P systems and with systems with
active membranes remain to be investigated. In what follows we consider the case
of SN P systems.

6 Control Words for SN P Systems

The fact that λ steps increase the power of systems is also confirmed for the
control words associated with SN P systems, a case which is investigated in [33]. Let
SzSNPm, SzλSNPm be the families of all languages Sz(Π), Szλ(Π), respectively,
associated with SN P systems Π (with extended rules) with at most m neurons;
if the number of neurons is not restricted, then we replace the subscript m by ∗.
In [33] it is proved that SzλSNP∗ = RE, but SzSNP∗ ⊂ CS, strict inclusion (an
example of a language not in SzSNP∗ is the linear language {xxR | x ∈ V ∗}, where
V is an alphabet with at least two symbols and xR is the reversal/mirror image
of the string x). Moreover, a theorem in given in [33] stating that each regular
languages L is the λ-label restricted Szilard language of an SN P system Π – with
the mentioning that the system Π uses extended rules of the form E/ac → ap

without the restriction p ≤ c and it has arbitrarily many neurons. This result will
be improved in the next theorem.

Languages and P Systems: Recent Developments 69

We give first an example, also improving a result from [33], where it is shown
that SzSNP6 contains non-context-free languages. We prove that four neurons
suffice.

Consider the SN P system (with four neurons, σ1, σ2, σ3, σ4)

Π = ({a}, σ1, σ2, σ3, σ4, syn), where:

σ1 = σ2 = (2, {r1 : a2 → a2, r2 : a2 → a}),
σ3 = (1, {r2 : (a4)+a/a → a, r3 : (a4)+a2/a4 → a},
σ4 = (1, {r2 : (a4)+a/a → a, r4 : (a4)+a2/a4 → a},

syn = {(1, 2), (2, 1), (1, 3), (1, 4), (2, 3), (2, 4)}.

The system is given in a graphical form in Figure 1. Each neuron contains
initially one or two spikes, but only σ1 and σ2 can fire. If the rules r2 are used in
σ1 and σ2 (not also in σ3, σ4, because we do not have here enough spikes), then
the computation halts. Let us assume that for a number n of steps we use the rule
r1 in σ1 and σ2. Neurons 1 and 2 exchange spikes to each other and, together, they
send four spikes to each of σ3, σ4. These neurons cannot use the rules r3, r4 until
getting inside an even number of spikes, and this means that the rules r2 in σ3, σ4

were used. This however supposes that also σ1, σ2 use the rules r2 (these rules are
applicable, hence they must be applied), and this ends the work of these neurons.
After using the rules r2, neurons 3 and 4 can fire nondeterministically, but not
both at the same time: they have to use the rules r3 and r4, which have different
labels. After using the rules r2, each of σ3 and σ4 contains the same number of
spikes, namely 4n+ 2, hence, besides the string r2, Sz(Π) contains strings of the
form rn1 r2w, with w ∈ {r3, r4}∗ containing the same number of r3 and r4. This
language is not context-free, hence SzSNP4 − CF ̸= ∅.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
-

�

? ?

Z
Z
Z

Z
ZZ~

�
�

�
�

��=

1

a2

r1 : a2 → a2

r2 : a2 → a

2

a2

r1 : a2 → a2

r2 : a2 → a

3
a

r2 : (a4)+a/a → a

r3 : (a4)∗a2/a4 → a

4

a

r2 : (a4)+a/a → a

r4 : (a4)∗a2/a4 → a

Fig. 1. An SN P system whose Szilard language is not context-free.

70 Gh. Păun, M.J. Pérez-Jiménez

We give now the improvement of the mentioned result from [33].

Theorem 3. REG ⊂ SzSNP4.

Proof. In view of the previous example, it is enough to prove the inclusion REG ⊆
SzSNP . To this aim, let us consider a regular language L generated by a reduced
regular grammar G = (N,T, S, P) with N = {S = A1, A2, . . . , An} and the rules
in P of the forms Ai → bAj , Ai → b, for some Ai, Aj ∈ N and b ∈ T . Let us
denote J = {1, 2, . . . , n}.

We construct the following SN P system of degree 4 (together with the rules
we also specify their labels):

Π = ({a}, (a2n+1, R12), (0, R12), (a
2n+1, R34), (0, R34), syn),

R12 = {b : a2n+i → aj | Ai → bAj ∈ R, i, j ∈ J}
∪ {b : a2n+i → a2n | Ai → b ∈ R, i ∈ J},

R34 = {a2n+k → a2n | k ∈ J},
syn = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3)}.

The system is also given in a graphical form in Figure 2. Note that it is finite
and uses no forgetting rule.

'
&

$
%

'

&

$

%
'
&

$
%

'
&

$
%

?

6

?

6

-

�

-

�

1

2 3

4a2n+1

b : a2n+i → aj , Ai → bAj ∈ R

b : a2n+i → a2n, Ai → b ∈ R

b : a2n+i → aj , Ai → bAj ∈ R

b : a2n+i → a2n, Ai → b ∈ R

λ : a2n+j → a2n, j ∈ J

a2n+1

λ : a2n+j → a2n, j ∈ J

Fig. 2. An SN P system whose control language is a given regular language

In the first step, neurons 1 and 3 can fire; in the next step, neurons 2 and 4
fire – and the computation proceeds in steps which alternate the previous pairs of
neurons. When a pair of neurons fires, then no spike remains inside these neurons,
but the other pair receives spikes. This means that in each step a rule with a
label b ∈ T and one with the label λ are used (hence the computation is λ-label
restricted).

Languages and P Systems: Recent Developments 71

With each nonterminal Ai, 1 ≤ i ≤ n, we have associated 2n+i spikes; initially,
we have in neurons 1 and 3 spikes which identify the nonterminal S = A1.

Assume that either σ1, σ3, or σ2, σ4 contain spikes, namely 2n+ i in σ1, σ2, for
a rule Ai → bAj ∈ R, and 2n + k in σ3, σ4, for some k ∈ J . The rule Ai → bAj

is simulated by using the rule (with label b) a2n+i → aj in σ1, σ2, simultaneously
with using the rule (with label λ) a2n+k → a2n in σ3, σ4. The symbol b is added
to the control word, and the process is continued with the simulation of a rule
Aj → u ∈ R, u ∈ T ∪ TN .

In the moment when a (terminal) rule Ai → b ∈ R is simulated, the active σ1

or σ2 introduces 2n spikes, at the same time with 2n spikes produced by the paired
neuron σ3, σ4. Two neurons are empty, the other two contains 4n spikes, hence no
rule can be applied in any neuron. The computation halts, having as its control
word the word generated by the derivation in G. Consequently, Sz(Π) = L(G),
which concludes the proof. ⊓⊔

We do not know whether the number of neurons in the previous theorem can
be decreased.

7 Controlled P Systems

In the previous sections, the control words were collected in order to have a new
way of producing a language starting from a P system. The computations can-
not proceed freely, but they should be label restricted or λ-label restricted. This
restriction has an influence on the computing power of P systems, considered as
number computing devices. Indeed, let us consider the following systems:

Π1 = ({a, b}, []
1
, a, {r1 : a → aa, r2 : a → b}, 1),

Π2 = ({a, b}, []
1
, a, {a, b}, {r1 : (a, out; aa, in), r2 : (a, out; b, in)}, 1).

When only label restricted transitions are allowed, the two rules of each system can-
not be used at the same time, hence we obtain Nlr(Π1) = Nlr(Π2) = {2n | n ≥ 0}
(we have added the subscript lr in order to indicate that only label restricted
computations are allowed). This set of numbers cannot be generated by non-
cooperative transition P systems, neither by symport-antiport P systems of this
complexity (one membrane, two rules) with non-restricted computations.

A more general case is the one when a pair (Π,C) is considered, where Π
is a P system of any type, with the rules labeled by elements of an alphabet H
and C ⊆ H∗ is a given language. This language is used in order to restrict the
computations in Π: only label restricted computations are allowed whose control
words are in C. (This corresponds to controlled context-free grammars in regulated
rewriting.)

The study of controlled P systems remains to be done (combining classes of P
systems with types of control languages, as already done for Chomsky controlled

72 Gh. Păun, M.J. Pérez-Jiménez

grammars). It is expected that a control language provides a powerful way to
“program” the work of a P system.

8 Final Remarks

Many research topics were mentioned in the previous sections, many others remain
to be explored. For instance, we have said nothing about tissue-like P systems – is
anything interesting in this case from the language computing point of view? How
this case compares with the four types of P systems considered above?

Another direction of investigation concerns sets of infinite sequences (also called
ω-languages). Some results were reported in [15] for symport-antiport P systems,
and in [29] and [14] for SN P systems.

A related issue was considered in [35]: handling languages over infinite alpha-
bets.

Besides the previous ways to associate a language with a P system, also are
other ideas were preliminarily explored. One of them is to encode a string in
the membrane structure itself, and then handling the membrane structure means
processing the string; see [5] for some details.

For all families of languages which are not equal to RE it makes sense to
consider the classic problems investigated in formal language theory: closure prop-
erties, decidability, representation theorems, semilinearity, and so on. Also, the
membership complexity is of interest (an issue considered already in [2]). In view
of possible applications in modeling aspects related to natural languages, it would
be of interest to find ways to generate mildly context-sensitive languages (semilin-
ear, parsable in polynomial time, powerful enough to cover some non-context-free
constructions in natural languages).

A related research direction concerns the translation of languages. Some at-
tempts were reported in [11] and [25].

We can conclude with the observation that many things were done in membrane
computing in handling languages by means of P systems with symbol objects, but
a lot of work still remains to be carried out

Acknowledgements. Work supported by Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. A. Alhazov, E. Boian, S. Cojocaru, Yu. Rogozhin: Modelling inflections in Romanian
language by P systems with string replication. Pre-proc. Tenth Workshop on Mem-
brane Computing, WMC10, Curtea de Argeş, August 2009 (M.J. Pérez-Jiménez, A.
Riscos-Núñez, eds.), 116–128.

2. A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin: Membrane systems languages
are polynomial-time parsable. Computer Science Journal of Moldova, 18, 2 (2010),
139–148.

Languages and P Systems: Recent Developments 73

3. A. Alhazov, C. Ciubotaru, S. Ivanov, Y. Rogozhin: The family of languages generated
by non-cooperative membrane systems. Membrane Computing. 11th International
Conference, CMC11, Jena, Germany, August 24-27, 2010. Revised, Selected, and
Invited Papers (M. Gheorghe et al., eds.), LNCS 6501, Springer, Berlin, 2010, 65–79.

4. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The membrane systems language
class. Proc. Eighth Brainstorming Week on Membrane Computing, Sevilla, 2010, 23–
35, and Proc. LA Symposium, RIMS Kôkyûroku Series 1691, Kyoto University, 2010,
44–50.

5. F. Bernardini, M. Gheorghe: Language generating by means of P systems with active
membranes. Proc. Brainstorming Week on Membrane Computing, Technical Report,
26/03, Rovira i Virgili University, Tarragona, 2003, 46–60.

6. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162.

7. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages generated
by spiking neural P systems. Proc. Fourth Brainstorming Week on Membrane Com-
puting, Sevilla, 2006.

8. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

9. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages with
spiking neural P systems with extended rules. Romanian J. Information Sci. and
Technology, 9, 3 (2006), 151–162.

10. G. Ciobanu, Gh. Păun, Gh. Ştefănescu: Sevilla carpets associated with P systems.
Proc. Brainstorming Week on Membrane Computing (M. Cavaliere et al., eds.), Tar-
ragona Univ., TR 26/03, 2003, 135–140.

11. G. Ciobanu, Gh. Păun, Gh. Ştefănescu: P transducers. New Generation Computing,
24, 1 (2006), 1–28.

12. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems.Membrane Computing, International Workshop, WMC-CdeA, Curtea de Argeş,
Romania, August 19-23, 2002, Revised Papers (Gh. Păun et al., eds.), LNCS 2597,
Springer, 2003, 219–233.

13. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP
automata. Ann. Univ. Buc. Mathem.-Informatics Series, 63 (2009), 5–22.

14. R. Freund, M. Oswald. Regular omega-languages defined by finite extended spiking
neural P systems. Fundamenta Informaticae, 83 (2008), 65-73.

15. R. Freund, M. Oswald, L. Staiger. Omega-P automata with communication rules.
Pre-proc. Workshop on Membrane Computing, Tarragona, July 2003 (A. Alhazov et
al., eds.), 252–265.

16. O.H. Ibarra, Gh. Păun: Characterizations of context-sensitive languages and other
language classes in terms of symport/antiport P systems. Theoretical Computer Sci.,
358, 1 (2006), 88–103.

17. M. Ionescu: Membrane Computing. Traces, Neural Inspired Models, Controls. PhD
Thesis, URV Tarragona, 2008.

18. M. Ionescu, C. Martin-Vide, Gh. Păun: P systems with symport/antiport rules: The
traces of objects. Grammars, 5 (2002), 65–79.

19. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori: Spiking neural dP systems.
Fundamenta Informaticae, 11, 4 (2011), 423–436.

74 Gh. Păun, M.J. Pérez-Jiménez

20. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71 (2006), 279–308.

21. M. Oswald: P Automata, PhD Thesis, TU Viena, 2003.
22. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143

(see also TUCS Report 208, November 1998 (www.tucs.fi).
23. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
24. Gh. Păun: Languages in membrane computing. Some details for spiking neural P

systems. Proc. 10th DLT Conf., Santa Barbara, USA, 2006, LNCS 4036, Springer,
Berlin, 2006, 20–35.

25. Gh. Păun: Spiking neural P systems used as acceptors and transducers. Proc. CIAA
2007, 12th Conf., Prague, July 2007, LNCS 4783 (J. Holub, J. Zdarek, eds.), Springer,
Berlin, 2007, 1–4.

26. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane
computing: dP systems, Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

27. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Rainbow of Computer
Science (C.S. Calude, G. Rozenberg, A. Salomaa, eds.), LNCS 6570, Springer, Berlin,
2011, 102–115.

28. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
systems. Theoretical Computer Sci., 431 (2012), 4–12.

29. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

30. Gh. Păun, G. Rozenberg, A. Salomaa: Membrane computing with an external output.
Fundamenta Informaticae, 41, 3 (2000), 313–340

31. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

32. M.J. Pérez–Jiménez: A computational complexity theory in membrane computing.
Membrane Computing, Tenth International Workshop, WMC 2009, Curtea de Argeş
Romania, August 2009, Selected and Invited Papers (Gh. Păun et al., eds.), LNCS
5937, Springer, Berlin, 2009, 125–148.

33. A. Ramanujan, K. Krithivasan: Control words of spiking neural P systems. Paper in
preparation, 2012.

34. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

35. G. Vaszil: On a class of P automata as a machine model for languages over infinite
alphabets. Proc. Third Brainstorming Week on Membrane Computing, Sevilla, 2005
(M.A. Gutiérez-Naranjo et al., eds.), 317–325.

36. G. Vaszil: A class of P automata for characterizing context-free languages. Proc.
Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, vol. II (C. Gra-
ciani et al., eds.), 267–276.

37. G. Vaszil: Variants of distributed P automata and the efficient parallelizability of
langauges. Membrane Computing. 12th Intern. Conf., CMC 2011, Fontainebleau,
France, August 2011, Revised Selected Papers (M. Gheorghe et al., eds.), LNCS 7184,
Springer, Berlin, 2012, 51–61.

38. The P Systems Website: http://ppage.psystems.eu.

Image Thresholding with Cell-like P Systems

Hong Peng1,3, Jie Shao1, Bing Li1, Jun Wang2, Mario J. Pérez-Jiménez3,
Yang Jiang1, Yufan Yang1

1 School of Mathematics and Computer Engineering,
Xihua University, Chengdu, Sichuan, 610039, China

2 School of Electrical and Information Engineering,
Xihua University, Chengdu, Sichuan, 610039, China

3 Research Group of Natural Computing,
Department of Computer Science and Artificial Intelligence,
University of Seville, Sevilla, 41012, Spain
ph.xhu@hotmail.com

Summary. P systems are a new class of distributed parallel computing models. In this
paper, a novel three-level thresholding approach for image segmentation based on cell-
like P systems is proposed in order to improve the computational efficiency of multi-
level thresholding. A cell-like P system with a specially designed membrane structure is
developed and an improved evolution mechanism is integrated into the cell-like P system.
Due to parallel computing ability and particular mechanism of the cell-like P system, the
presented thresholding approach can effectively search the optimal thresholds for three-
level thresholding based on total fuzzy entropy. Experimental results of both qualitative
and quantitative comparisons for the proposed approach and GA-based and PSO-based
approaches illustrate the applicability and effectiveness.

Key words: Image segmentation, Thresholding approach, Membrane computing, Cell-
like P systems, Total fuzzy entropy

1 Introduction

Membrane computing, as a new branch of natural computing, was proposed by
Păun [1] in 2000. Membrane computing is a novel class of distributed parallel com-
puting models, which is inspired by the structure and functioning of living cells,
as well as from the way the cells are organized in tissues or higher order structure
[2]. The computing models are commonly called P systems. Since then, a large
number of P systems and their variants have been proposed [3, 4, 5, 6, 7, 8, 9, 10].
The main ingredients of a P system are (i) the membrane structure, delimiting
compartments where (ii) multisets of objects evolve according to (iii) (reaction)
rules of a bio-chemical inspiration. According to their structures, these models
can be divided into three categories: cell-like P systems, tissue-like P systems and

76 H. Peng et al.

neural-like P systems. The investigation of P systems mainly focuses on building
a variety of computing models for different classes of problems, such as computing
power, computational efficiency, and so on. The application research of P systems,
especially applying P systems to solve real-world problems, has been concerned
about in recent years. Among them, membrane algorithms are a class of representa-
tive models, which have been successfully used to deal with optimization problems
[11, 12], control problems [13] and signal processing [14]. This paper focuses on
application of P systems to image segmentation problem.

Image segmentation is a process of grouping an image into units that are ho-
mogeneous with respect to one or more characteristics. It is an important task
in image analysis. Thresholding is widely used as a popular technique in image
segmentation. The goal of thresholding is to separate objects from background im-
age or discriminate objects from objects that have distinct gray levels. Over these
years, A large number of thresholding techniques have been addressed [15, 16, 17].
Bi-level thresholding, which is firstly discussed, segments an image into two dif-
ferent regions. The pixels with gray values greater than a certain threshold are
classified as object pixels, and the others with gray values lesser than the thresh-
old are classified as background pixels. Otsu’s approach [18] and Kapur’s approach
[19], which find the optimal thresholds by maximizing the between-class variance
of gray levels and the entropy of the histogram respectively, are simple and effective
in bi-level thresholding. However, the gray level histograms of most of the images
in the real world is multimodal. Therefore, multi-level thresholding has been re-
ceived many attentions in recent years. Multi-level thresholding determines more
than one threshold for an image and segments the image into several distinct
regions, which corresponds to one background and several object. The Otsu’ and
Kapur’s approaches can be extendable to multi-level thresholding but inefficient in
determining the optimal thresholds due to the exponential growth in computation
time. To improve the efficiency, some approaches have been proposed to reduce
the computational complexity of determining the multi-level thresholds, such as
the recursive algorithm [20]. But they still suffer from long processing time when
the number of thresholds increases. The fuzzy entropy has been introduced into
image segmentation in recent years [21, 22, 23, 24]. Cheng et al. [21] proposed a
thresholding approach, where the fuzzy relation and the maximum fuzzy entropy
were used to perform fuzzy partition on a two-dimensional histogram. In [22],
Shelokar et al. found the optimal threshold by minimizing the sum of the fuzzy
entropies. Zhao et al. [23] presented a three-level thresholding approach based
on fuzzy entropy. In [24], Liu et al. presented a fuzzy classification entropy to
deal with multi-level thresholding. However, these approaches still suffer from the
same problem mentioned above. In order to overcome this problem, some intel-
ligent computing approaches have been applied to solve multi-level thresholding
problems, such as genetic algorithm (GA), particle swarm optimization (PSO) and
ant colony optimization (ACO). Yin et al. [25] presented a GA-based thresholding
approach, where the objective function was similar to Otsu’s or Kapur’s function.
In [26], Cheng et al. defined an approach to fuzzy entropy and employed the GA to

Image Thresholding with Cell-like P Systems 77

find the optimal combination of the fuzzy parameters. Tao et al. [27] presented a
three-level thresholding approach that uses the GA to find the optimal thresholds
by maximizing the fuzzy entropy. In [28], Hammouche et al. proposed a multi-level
thresholding approach, which allows the determination of the appropriate num-
ber of threshols as well as the adequate threshold values. However, GA has some
drawbacks such as slow convergence rate, premature convergence to local minima.
Thus, the PSO has been applied to multi-level thresholding [29, 30, 31]. In addition,
Tao et al. [32] used the ACO to obtain the optimal parameters of the presented
entropy-based object segmentation approach. Currently, adapting P systems to
solve image segmentation problems has been addressed [33, 34]. Dı́az-Pernil et al.
[33] combined the membrane structure and symport-antiport communication rules
of tissue-like P systems to deal with homology groups of binary 2D image. Wang
et al. [34] presented a bi-level image thresholding approach.

In this paper, we propose a novel three-level thresholding approach based on
cell-like P systems for image segmentation. Our main motivation is to improve
and enhance the efficiency of multi-level thresholding approach based on the fuzzy
entropy criterion by applying the parallel computing ability as well as specially
designed structure and mechanisms of cell-like P systems. The proposed three-level
thresholding approach is evaluated on several standard images and compared with
the GA-based and PSO-based approaches.

The rest of this paper is organized as follows. Section 2 briefly describes the
maximum fuzzy entropy principle. The proposed three-level thresholding approach
based on cell-like P systems is presented in Section 3. Experimental results are
provided in Section 4. Finally, Section 5 draws the conclusions.

2 Maximum Fuzzy Entropy Principle

In this section, we briefly review maximum fuzzy entropy principle and give fuzzy
membership functions used in this paper.

Let D = {(i, j) | i = 0, 1, . . . ,M − 1; j = 0, 1, . . . , N − 1}, G = {0, 1, . . . , l− 1},
where M , N and l are three positive integers. Let I(x, y) be the gray level of an
image I at the pixel (x, y). Denote

Dk = {(x, y) | I(x, y) = k, (x, y) ∈ D}, k = 0, 1, 2, . . . , l − 1 (1)

hk =
nk

M ×N
(2)

where nk is the number of pixels in Dk. So, 0 ≤ hk ≤ 1,
∑l−1

n=0 hk = 1. Let H =
{h0, h1, . . . , hl−1} be the gray histogram of the image I. {Do, D1, . . . , Dl−1} forms
a probability partition of D and its probabilistic distribution is pk = P (Dk) =
hk (k = 0, 1, . . . , l − 1).

In this paper, we will deal with three-level image thresholding, which has two
thresholds, t1 and t2. The two thresholds will segment the image I into three gray
levels, low gray level, middle gray level and high gray level, and the corresponding

78 H. Peng et al.

domains are denoted by Dl, Dm and Dh respectively. Thus, D = Dl

∪
Dm

∪
Dh,

Dl

∩
Dm = Dl

∩
Dh = Dm

∩
Dh = ϕ. Let pl, pm and ph be the probabilistic

distributions of Dl, Dm and Dh respectively, i.e., pl = P (Dl), pm = P (Dm),
ph = P (Dh). However, these probabilistic distributions are unknown.

For k = 0, 1, . . . , 255, denote

Dkl = {(x, y) | I(x, y) ≤ t1, (x, y) ∈ Dk}
Dkm = {(x, y) | t1 < I(x, y) ≤ t2, (x, y) ∈ Dk} (3)

Dkh = {(x, y) | I(x, y) > t2, (x, y) ∈ Dk}

Then, we have

pkl = P (Dkl) = pk × pl|k

pkm = P (Dkm) = pk × pm|k (4)

pkh = P (Dkh) = pk × ph|k

with a constraint that pl|k + pm|k + ph|k = 1 (k = 0, 1, . . . , 255). Thus, pl =∑255
k=0 pk × pl|k, pm =

∑255
k=0 pk × pm|k and ph =

∑255
k=0 pk × ph|k.

Let µl(k), µm(k) and µh(k) denote the membership grades of a pixel belonging
to Dl, Dm and Dh respectively. Then

pl =
255∑
k=0

pk × µl(k), pm =

255∑
k=0

pk × µm(k), ph =

255∑
k=0

pk × µh(k) (5)

In this paper, we employ the following three functions to approximate the
membership functions µl(k), µm(k) and µh(k), respectively

µl(k) =


1, k ≤ a

1− (k−a)2

(c−a)×(b−a) , a < k ≤ b
(k−c)2

(c−a)×(c−b) , b < k ≤ c

0, k > c

(6)

µm(k) =



0, k ≤ a
(k−a)2

(c−a)×(b−a) , a < k ≤ b

1− (k−c)2

(c−a)×(c−b) , b < k < c

1, k = c

1− (k−c)2

(e−c)×(d−c) , c < k ≤ d
(k−e)2

(e−c)×(e−d) , d < k ≤ e

0, k > e

(7)

µh(k) =


0, k ≤ c

(k−c)2

(e−c)×(d−c) , c < k ≤ d

1− (k−e)2

(e−c)×(e−d) , d < k ≤ e

1, k > e

(8)

Image Thresholding with Cell-like P Systems 79

where 0 < a ≤ b ≤ c ≤ d ≤ e < 255.
The fuzzy entropies of above three classes are given as follows:

Hl = −
255∑
k=0

pk × µl(k)

pl
× ln

(
pk × µl(k)

pl

)

Hm = −
255∑
k=0

pk × µm(k)

pm
× ln

(
pk × µm(k)

pm

)
(9)

Hh = −
255∑
k=0

pk × µh(k)

ph
× ln

(
pk × µh(k)

ph

)
Then the total fuzzy entropy is computed by

H(a, b, c, d, e) = Hl +Hm +Hh (10)

From the Eq.(10), we can see that H is the function of five parameters a, b, c, d, e in
fact. The optimal image thresholding is to find the most appropriate combination
of these parameters so that the total fuzzy entropy H(a, b, c, d, e) achieves the
maximum value. Then the most appropriate combination of these parameters, by
which the image I is segmented into three classes, can satisfy the following relation:

µl(t1) = µm(t1) = 0.5, µm(t2) = µh(t2) = 0.5 (11)

Note that threshold t1 is the intersection point of curves µl(k) and µm(k),
while threshold t2 is the intersection point of curves µm(k) and µh(k). Therefore,
according to Eqs.(6)-(8), the two thresholds can be determined as follows:

t1 =

{
a+

√
(c− a)× (b− a)/2, (a+ c)/2 ≤ b ≤ c

c−
√
(c− a)× (c− b)/2, a ≤ b ≤ (a+ c)/2

(12)

t2 =

{
c+

√
(e− c)× (d− c)/2, (c+ e)/2 ≤ d ≤ e

e−
√

(e− c)× (e− d)/2, c ≤ d ≤ (c+ e)/2
(13)

3 The Proposed Image Thresholding Approach

The proposed thresholding approach is based on a cell-like P system. In order to
effectively deal with three-level thresholding problem under P systems, we design
a special membrane structure with three layers, which consists of (2m+ 1) mem-
branes, shown in Fig. 1. These membranes are labeled by 1, 2, . . . ,m,m + 1,m +
2, . . . , 2m, 2m + 1, respectively. The m membranes labeled by 1, 2, . . . ,m, which
are called evolution membranes, will cooperatively evolve the objects in the system
to find the optimal segmentation thresholds. Each evolution membrane has one
child membrane, called local store membrane, whose role is to store the best object

80 H. Peng et al.

found as far in the evolution membrane. In Fig.1, membranes m+1,m+2, . . . , 2m
are the local store membranes of evolution membranes 1, 2, . . . ,m, respectively. In
each computing step, if a evolution membrane find its new best object by evolu-
tion rule it will transmit the new best object into the corresponding local store
membrane and skin membrane (2m+1). The skin membrane is called global store
membrane in this paper, whose role is to store best object found as far in en-
tire system. In the beginning of computing step, each evolution membrane will
receive local best object from the corresponding local store membrane as well as
global best object from global store membrane (skin membrane). In Fig.1, the ar-
rows with different directions indicate the transitive relations of objects. As usual
in P systems, these evolution membranes as parallel computing units work in a
maximally parallel way (a universal clock is considered here).

m+1m+1

1

m+2m+2

2

2m2m

m

2m+1

Fig. 1. Membrane structure of the used cell-like P system.

As we known, every membrane contains a certain number of objects. For sim-
plicity, we assume that every evolution membrane contains same number of ob-
jects, and the number is denoted by n. However, local store membranes and global
store membrane contain only one object respectively. In this work, each object is
a five-dimensional vector X = (x1, x2, x3, x4, x5), where x1, x2, x3, x4 and x5 cor-
respond to five segmentation parameters, a, b, c, d, and e respectively. Therefore,
each object in fact expresses a candidate of the optimal segmentation thresholds to
be found. In the cell-like P system, the total fuzzy entropy (i.e., Eq. (10)) will be
regarded as fitness function of object in the system to evaluate the quality of each
object, i.e., Fitness = H(a, b, c, d, e). Initially, we randomly generate n objects
for each evolution membrane and fill its best object into the corresponding local
store membrane, and then fill the best object of entire system into global store
membrane. Note that if a randomly generate object do not hold the increasing
order 0 < a ≤ b ≤ c ≤ d ≤ e < 255, we re-compute its components as follows:

Image Thresholding with Cell-like P Systems 81
c′ = c
b′ = c′ × (b/255)
a′ = b′ × (a/255)
d′ = c′ + (255− c′)× (d/255)
e′ = d′ + (255− d′)× (e/255)

(14)

In this work, multiple evolution membranes are designed to collaboratively
evolve objects in the system, thus this will accelerate the exploitation of opti-
mal segmentation parameters. The mutation operation and crossover operation of
differential evolutionary (DE) algorithm are used as evolution rules of evolution
membranes, however, we use a modified mutation operation according to special
structure of the cell-like P system, which can be viewed as a variant of the rule
“DE/current-to-best/1” in the DE . During one computing step, each evolution
membrane will use the modified mutation operation to generate a mutation object
for its every current object, Xi,

Yi = Xi + F · (Xlbest −Xi) + F (Xgbest −Xi) + F (Xr1 −Xr2), (15)

where Xlbest is the best object form the corresponding local archive membrane,
Xgbest is the best object from global archive membrane, and Xr1 , Xr2 are two
randomly selected objects from current objects. The scaling factor F is a positive
control parameter for scaling the difference vector. The improved mutation rule
is based on the point: two best objects, which are from different sources (local
and global store membranes), will guide the evolution of objects and speed up the
convergence, and can also improve the diversity of objects in the system.

After the mutation operation, crossover operation is applied to each pair of the
current object and its corresponding mutant object to generate a trial object Zi,
and the crossover operation is defined as follows:

Zi =

{
Yi, if randi ≤ CR or j =randj
Xi, otherwise

(16)

where the crossover rate CR is a user-specified constant within the range [0, 1],
which controls the fraction of parameter values copied from the mutant object,
and randj is a randomly chosen integer in the range [1, 5].

The maximum execution step number is employed as halt condition in the
proposed three-level thresholding approach based on cell-like P systems. When
the system halts, the object in the skin membrane is regarded as the output of
entire system.

The proposed three-level thresholding approach based on cell-like P systems is
summarized as follows.

Three-level Thresholding Approach Based on Cell-like P Systems

program Three-level-thresholding

Input:

82 H. Peng et al.

Number of evolution membranes m;

Number of objects in each evolution membrane n;

Maximum execution step number Smax;

Scaling factor F;

Crossover rate CR;

Output:

Optimal thresholds (a,b,c,d,e);

begin

Step 1: /* Initialization */

for k=1 to m

for j=1 to n

/* Generate initial objects for each evolution

membrane */

X(k,j) = rand(5,255);

/* Calculate the fitness value of the object

according to Eq.(10) */

Fit(k,j) = FitnessCalculation(X(k,j));

end for

end for

Set computing step s = 0;

Step 2: /* Object evolution in membranes */

Receive best object from global store membrane;

for each evolution membrane k in parallel do

Receive best object from its local store membrane;

for j=1 to n

Evolve the object X(k,j) in the evolution membrane k

according to Eqs.(15)-(16);

Fit(k,j) = FitnessCalculation(X(k,j));

end for

/* Update best object into its local store membrane and

global store membrane */

Update Xlbest(k) and Xgbest(k);

end for

Step 3: /* Halt condition judgment */

If s > Smax is satisfied then

Export object in skin membrane as (a,b,c,d,e);

HALT;

else

s = s + 1;

goto Step 2;

end if

end.

Image Thresholding with Cell-like P Systems 83

4 Experimental results

The applicability and efficiency of the proposed image thresholding approach in
image segmentation has be evaluated on three standard test images. These well-
known images are Hunter, Lena and Peppers respectively, shown in Fig. 2(a)-(c).
The test images are with size 512× 512. Fig. 2(d)-(f) show the histograms of the
three test images. In experiments, parameters of the proposed image thresholding
approach based on cell-like P systems are given as follows:

(i) The used cell-like P system includes three evolution membranes (m = 3), where
the number of objects contained in each evolution membrane is n = 50, and
the maximum execution step number is Smax = 100;

(ii) In the used mutation rule (15), the scaling factor is set to be F = 0.35. In the
used crossover rule (16), the crossover rate is set to be CR = 0.2.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Three test images ((a) Hunter; (b) Lena; (c) Peppers) and their histograms ((d)
Hunter; (e) Lena; (f) Peppers).

In order to illustrate segmentation performance of the proposed three-level
thresholding approach, its segmentation results are compared with the results
obtained by PSO-based and GA-based approaches respectively. For the PSO-
based approach, basic position-velocity model is employed and its parameters
are set: population size NP = 30, maximum generation number Gmax = 100,

84 H. Peng et al.

c1 = c2 = 1.0, and w linearly varies from 0.9 to 0.4. For the GA-based approach,
its parameters are given: population size NP = 30, crossover probability Pc = 0.6,
mutation rate Pm = 0.01 and maximum generation number Gmax = 100.

Table 1 lists their optimal segmentation thresholds. Fig. 3 gives optimal three-
level segmentation results on above three test images for the proposed three-level
thresholding approach based on cell-like P systems (in short, P systems), PSO-
based approach (in short, PSO), GA-based approach (in short, GA), respectively.
From the Fig. 3, we can see that results of the proposed three-level thresholding
approach based on cell-like P systems is slightly better than that of PSO-based
approach but evidently outperforms that of GA-based approach. This illustrates
the applicability of the proposed approach for three-level thesholding.

Table 1. The optimal thresholds obtained by different methods.

Approaches Lunter Lena Peppers

P systems 86, 179 98, 165 76, 152
PSO 82, 183 99, 166 80, 145
GA 73, 179 103, 168 85, 151

In order to investigate the efficiency, all approaches are compared based on
the average CPU time (in seconds) taken to converge the solution. Comparison
results of all methods given in Table 2. Form Table 2, it is clear that the proposed
three-level thresholding approach based on cell-like P systems has fast convergence
compared with PSO-based and GA-based approaches. The results demonstrate
that the proposed three-level thresholding approach based on cell-like P systems
is more efficient and effective that other approaches for three-level thresholding.

Table 2. Comparison of CPU time (in seconds) for different methods.

Approaches Lunter Lena Peppers

P systems 7.975 7.641 7.012
PSO 9.521 9.136 9.849
GA 11.973 11.654 12.117

5 Conclusion

In this paper, we have presented a fast three-level thresholding approach based
on cell-like P systems, which employed the total fuzzy entropy as the evaluation
criterion. In order to effectively exploit the optimal segmentation thresholds, a
special membrane structure with three layers was designed, which allows multi-
ple membranes to co-evolve the objects of the system, and an improved evolution

Image Thresholding with Cell-like P Systems 85

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Three-level thresholding images obtained by different methods. (a)-(c) P systems;
(d)-(f) PSO; (g)-(i) GA.

operation of DE was used as evolution rules of these membranes. With the spe-
cial membrane structure and mechanism of the cell-like P system, two best objects
were used to guide the evolution of the objects: one was best object from the corre-
sponding local store membrane and another was from global store membrane. This
mechanism not only effectively accelerates the speed of convergence but also en-
hances the diversity of objects in the system. The proposed thresholding approach
based on cell-like P systems has been tested on several standard images and were
compared with GA-based and PSO-based approaches. The experimental results
showed the proposed thresholding approach outperforms the other approaches in
terms of the applicability and computation efficiency. Further works are to be car-

86 H. Peng et al.

ried out to feasibility of the proposed thresholding approach for various types of
image processing applications.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of
China (Grant No. 61170030), Foundation of Sichuan Provincial Key Discipline of
Computer Software and Theory (No. SZD0802-09-1), Research Fund of Sichuan
Key Laboratory of Intelligent Network Information Processing (No. SGXZD1002-
10), and the Importance Project Foundation of Xihua University (No. Z1122632),
China.

References

1. Păun, Gh.: Computing with Membranes. Journal of Computer System Sciences 61(1),
108–143 (2000)

2. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrance Com-
puting. Oxford Unversity Press, New York (2010)

3. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundameta Infor-
maticae 71(2-3), 279–308 (2006)

4. Wang, J., Zhou, L., Peng, H., Zhang, G.X.: An Extended Spiking Neural P System
for Fuzzy Knowledge Representation. International Journal of Innovative Computing,
Information and Control 7(7A), 3709–3724 (2011)

5. Păun, Gh., Pérez-Jiménez, M.J.: Membrane Computing: Brief Introduction, Recent
Results and Applications. BioSystem 85, 11–22 (2006)

6. Freund, R., Păun, Gh., Pérez-Jiménez, M.J.: Tissue-like P Systems with Channel-
states. Theoretical Computer Science 330, 101–116 (2005)

7. Wang, J., Zhou, L., Peng, H., Zhang, G.X.: An Extended Spiking Neural P System
for Fuzzy Knowledge Representation. International Journal of Innovative Computing,
Information and Control 7(7A), 3709–3724 (2011)

8. Wang, H., Peng, H., Shao, J.: A Thresholding Method Based on P Systems for Image
Segmentation. ICIC Express Letters, 6(1), 221–227 (2012)

9. Wang, T., Wang, J., Peng, H., Tu, M.: Optimization of PID Controller Parameters
Based on PSOPS Algorithm. ICIC Express Letters, 6(1), 273–280 (2012)

10. Peng, H., Wang, J., Perez-Jimenez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy Rea-
soning Spiking Neural P System for Fault Diagnosis. Information Sciences, 2012.
(Accepted)

11. Nishida, T.Y.: An Application of P-system: A New Algorithm for NP-complete Opti-
mization Problems. In: Proc. 8th World Multi-Conference on Systemics, Cybernetics
and Informatics, 109–112 (2004)

12. Zaharie, D., Ciobanu, G.: Distributed Evolutionary Algorithms Inspired by Mem-
branes in Solving Continuous Optimization Problems. Lecture Notes in Computer
Science, vol. 4361, 536–553 (2006)

13. Huang, L., Suh, I.H., Abraham, A.: Dynamic Multi-objective Optimization Based
on Membrane Computing for Control of Time-varying Unstable Plants. Information
Sciences 181, 2370–2391 (2011)

Image Thresholding with Cell-like P Systems 87

14. Zhang, G.-X., Liu, C.-X., Rong, H.-N.: Analyzing Radar Emitter Signals with Mem-
brane Algorithms. Mathematical and Computer Modelling 52, 1997–2010 (2010)

15. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A survey of Thresholding Tech-
niques. Comput. Vis. Graph. Image Process. 41(2), 233–260 (1988)

16. Pikaz, A., Averbuch, A.: Digital Image Thresholding Based on Topological Stable
State. Pattern Recognit. 29(5), 829–843 (1996)

17. Huang, L.K., Wang, M.J.: Image Thresholding by Minimizing The Measure of Fuzzi-
ness. Pattern Recognition 28, 41–51 (1995)

18. Otsu, N.: A Threshold Selection Method from Gray Level Histograms. IEEE Trans-
actions on Systems, Man and Cybernetics SMC 9(1), 62–66 (1979)

19. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-level Picture
Thresholding Using The Entropy of The Histogram. Computer Vision, Graphics and
Image Processing 29(3), 273–285 (1985)

20. Liao, P.S., Chen, T.S., Chung, P.C.: A Fast Algorithm for Multilevel Thresholding.
Journal of Information Sciences and Engineering 17(5), 713–727 (2001)

21. Cheng, H.D., Chen, Y.H., Jiang, X.H.: Thresholding Using Two-dimensional His-
togram and Fuzzy Entropy Principle. IEEE Trans. on Image Processing 9(4), 732-735
(2000)

22. Shelokar, P.S., Jayaraman, V.K, Kulkarni, B.D.: An Ant Colonyapproach for Clus-
tering. Anal. Chim. Acta 59, 187–195 (2004)

23. Zhao, M.S., Fu, A.M.N., Yan, H.: A Technique of Threelevel Thresholding Based on
Probability Partition and Fuzzy 3-partition. IEEE Trans. on Fuzzy Systems 9(3),
469–479 (2001)

24. Liu, D., Jiang, Z.H., Feng, H.Q.: A Novel Fuzzy Classification Entropy Approach to
Image Thresholding. Pattern Recognition Letters 27, 1968–1975 (2006)

25. Yin, P.Y.: A Fast Scheme for Optimal Thresholding Using Genetic Algorithms. Signal
Processing 72, 85–95 (1999)

26. Cheng, H.D., Chen, Y.H., Sun, Y.: A Novel Fuzzy Entropy Approachto Image En-
hancement and Thresholding. Signal Processing 75, 277–301 (1999)

27. Tao, W.B., Tian, J.W., Liu, J.: Image Segmentation by Three-level Thresholding
Based on Maximum Fuzzy Entropy and Genetic Algorithm. Pattern Recognit. Lett.
24, 3069–3078 (2003)

28. Hammouche, K., Diaf, M., Siarry, P.: A Multilevel Automatic Thresholding Method
Based on A Genetic Algorithm for A Fast Image Segmentation. Computer Vision
and Image Understanding 109, 163–175 (2008)

29. Zahara, E., Fan, S.-K.S., Tsai, D.M.: Optimal Multi-thresholding Using A Hybrid
Optimization Approach. Pattern Recognit. Lett. 26, 1085–1095 (2005)

30. Maitra, M., Chatterjee, A.: A Hybrid Cooperative-comprehensive Learning Based
PSO Algorithm for Image Segmentation Using Multilevel Thresholding. Expert Sys-
tems with Applications 34, 1341–1350 (2008)

31. Gao, H., Xu, W.B., Sun, J., Tang, Y.L.: Multilevel Thresholding for Image Segmen-
tation Through An Improved Quantum-behaved Particle Swarm Algorithm. IEEE
Trans. On Instrumentation and Measurement 59(4), 934–946 (2010)

32. Tao, W.B., Jin, H., Liu, L.M.: Object Segmentation Using Ant Colony Optimization
Algorithm and Fuzzy Entropy. Pattern Recognit. Lett. 28(7), 788–796 (2008)

33. Dı́az-Pernil, D., Gutiérrez-Naranjo M.A., Real P., Sánchez-Canales V.: A Cellular
Way to Obtain Homology Groups in Binary 2D Images. Eighth Brainstorming Week
on Membrane Computing, 89–100 (2010)

34. Wang, H., Peng, H., Shao, J.: A Thresholding Method Based on P Systems for Image
Segmentation. ICIC Express Letters 6(1), 221–227 (2012)

The Role of the Environment in
Tissue P Systems with Cell Division

Mario J. Pérez-Jiménez1, Agust́ın Riscos-Núñez1, Miquel Rius-Font2,
Francisco J. Romero-Campero1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: marper@us.es, ariscosn@us.es, fran@us.es

2 Department of Applied Mathematics IV
Universitat Politécnica de Catalunya, Spain
E-mail: mrius@ma4.upc.edu

Summary. Classical tissue P systems with cell division have a special alphabet whose
elements appear at the initial configuration of the system in an arbitrary large number
of copies. These objects are shared in a distinguished place of the system, called the en-
vironment. Besides, the ability of these computing devices to have infinite copies of some
objects has been widely exploited in the design of efficient solutions to computationally
hard problems.

This paper deals with computational aspects of tissue P systems with cell division
where there is not an environment having the property mentioned above. Specifically,
we establish the relationships between the polynomial complexity class associated with
tissue P systems with cell division and with or without environment. As a consequence,
we prove that it is not necessary to have infinite copies of some objects at the initial
configuration in order to solve NP–complete problems in an efficient way.

Key words:Membrane Computing, Tissue P Systems, Cell Division, Environment
of a tissue, Computational Complexity.

1 Preliminaries

An alphabet, Γ , is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Γ , then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by
λ. The set of all strings over an alphabet Γ is denoted by Γ ∗. In algebraic terms, Γ ∗

90 M.J. Pérez-Jiménez et al.

is the free monoid generated by Γ under the operation of concatenation. Subsets,
finite or infinite, of Γ ∗ are referred to as languages over Γ .

The set of symbols occurring in a string u ∈ Γ ∗ is denoted by alph(u).
The Parikh vector associated with a string u ∈ Γ ∗ with respect to the alphabet

Σ = {a1, . . . , ar} ⊆ Γ is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes the number
of ocurrences of symbol ai in string u. This is called the Parikh mapping associated
with Σ. Notice that, in this definition, the ordering of the symbols from Σ is
relevant. If Σ1 = {ai1 , . . . , air} ⊆ Γ , then we define ΨΣ1(u) = (|u|ai1

, . . . , |u|air
),

for each u ∈ Γ ∗.
A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If

m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. Throughout this paper, we speak
about “the finite multiset m” where m is a string, meaning “the finite multiset
represented by the string m”. If m1 = (A, f1), m2 = (A, f2) are multisets over A,
then we define the union of m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2,
that is, g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows: A \B = {x ∈ A | x /∈ B}.

Finally, for any set A we denote |A| the cardinal (number of elements) of A, as
usual.

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [4].

2 Tissue P Systems with communication rules

Definition 2.1 A tissue P system with communication rules of degree q ≥ 1 is a
tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ ;
3. M1, . . . ,Mq are strings over Γ , representing finite multisets of objects;
4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈

{0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗, |u|+ |v| > 0;
5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system without environment is a tissue P system such that E = ∅. In
this case, alphabet E can be removed from the tuple.

The Role of the Environment in Tissue P Systems with Cell Division 91

A tissue P system with communication rules Π = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labelled by 1, . . . , q, with an
environment labelled by 0 such that: (a) M1, . . . ,Mq represent the finite multisets
of objects initially placed in the q cells of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; and (c) iout ∈ {0, 1, 2, . . . , q} represents a distinguished
cell or the environment which will encode the output of the system. We use the
term region i (0 ≤ i ≤ q) to refer cell i in the case 1 ≤ i ≤ q and to refer the
environment in the case i = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of the communication rule (i, u/v, j)
is defined as |u|+ |v|.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P system has an
underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that its connections are defined by
communication rules of the form (i, u/v, j), with i = 0 or j = 0.

The rules of a system like the one above are used in a non-deterministic max-
imally parallel manner as it is customary in membrane computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further applicable rule can be
added).

An instantaneous description or a configuration at any instant of a tissue P
system with communication rules is described by all multisets of objects over Γ
associated with all the cells present in the system, and the multiset of objects over
Γ − E associated with the environment at that moment. Bearing in mind that
the objects from E have infinite copies in the environment, they are not properly
changed along the computation. The initial configuration is (M1, · · · ,Mq; ∅). A
configuration is a halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with communication rules Π. We say that con-
figuration C1 yields configuration C2 in one transition step, denoted C1 ⇒Π C2, if
we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying the rules of the system in a maximally parallel man-
ner with the restrictions previously mentioned; and

92 M.J. Pérez-Jiménez et al.

3. if the sequence is finite (called halting computation), then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region iout in the halting configuration.

We denote by Comp(Π) the set of computations of the tissue P system Π.
If C = {Ci}i<r+1 of Π (r ∈ N) is a halting computation, then the length of C
is r, that is, the number of non-initial configurations which appear in the finite
sequence C. We denote it by |C|. We also denote by Ci(j) the contents of cell j at
configuration Ci.

3 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based on
the cell-like model of P systems with membranes division [3]. In these models, the
cells are not polarized; the cells obtained by division have the same labels as the
original cell, and if a cell is divided, its interaction with other cells or with the
environment is locked during the division process. In some sense, this means that
while a cell is dividing it closes its communication channels.

Definition 3.1 A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ ;
3. M1, . . . ,Mq are strings over Γ , representing finite multisets of objects;
4. R is a finite set of rules of the following forms:

(a)Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

(b)Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i ̸= iout and a, b, c ∈
Γ ;

5. iout ∈ {0, 1, 2, . . . , q}.

The Role of the Environment in Tissue P Systems with Cell Division 93

A tissue P system with cell division is a tissue P system with communication rules
where also division rules are allowed. When applying a division rule [a]i → [b]i[c]i,
under the influence of object a, the cell with label i is divided into two cells with
the same label; in the first copy, object a is replaced by object b, in the second
one, object a is replaced by object c; all the other objects residing in cell i are
replicated and copies of them are placed in the two new cells. The output cell iout
cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane comput-
ing. At each step, all cells which can evolve must evolve in a maximally parallel
way (at each step we apply a multiset of rules which is maximal, no further ap-
plicable rule can be added), with the following important remark: if a cell divides,
then the division rule is the only one which is applied for that cell at that step; the
objects inside that cell do not evolve by means of communication rules. In other
words, before division a cell interrupts all its communication channels with the
other cells and with the environment. The new cells resulting from division will
interact with other cells or with the environment only at the next step – providing
that they do not divide once again. The label of a cell precisely identifies the rules
which can be applied to it.

4 Recognizer Tissue P Systems

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Many abstract problems are not decision problems. For example,
in combinatorial optimization problems some value must be optimized (minimized
or maximized). In order to deal with such problems, they can be transformed into
roughly equivalent decision problems by supplying a target/threshold value for the
quantity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages can be
established as follows. Given a decision problem X = (IX , θX), its associated
language is LX = {w ∈ IX : θX(w) = 1}. Conversely, given a language L, over an
alphabet Γ , its associated decision problem is XL = (IXL , θXL), where IXL = Γ ∗,
and θXL

= {(x, 1) : x ∈ L}∪{(x, 0) : x /∈ L}. The solvability of decision problems
is defined through the recognition of the languages associated with them.

In order to study the computing efficiency, the notions from classical computa-
tional complexity theory are adapted for membrane computing, and a special class
of cell-like P systems is introduced in [7]: recognizer P systems (called accepting
P systems in a previous paper [6]). For tissue P systems, with the same idea as
recognizer cell-like P systems, recognizer tissue P systems is introduced in [5].

Definition 4.1 A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

94 M.J. Pérez-Jiménez et al.

• (Γ, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell division of degree
q ≥ 1, as defined in the previous section.

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisets M1, . . . , Mq, but none of them
is present in E.

• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
• M1, . . . ,Mq are strings over Γ \Σ.
• iin ∈ {1, . . . , q} is the input cell.
• The output region iout is the environment. In the case of tissue without envi-

ronment, iout is a distinguished cell, that is iout ∈ {1, . . . , q}.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each multiset m over Σ, the computation of the system Π with input m starts
from the configuration of the form (M1,M2, . . . ,Miin + m, . . . ,Mq; ∅), that is,
the input multiset m has been added to the contents of the input cell iin, and we
denote it by Π + m. Therefore, we have an initial configuration associated with
each input multiset m (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division, and a halting computation
C = {Ci}i<r+1 of Π (r ∈ N), we define the result of C as follows:

Output(C) =


yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧

Ψ{yes,no}(Mi,iout) = (0, 0) for i = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧

Ψ{yes,no}(Mi,iout) = (0, 0) for i = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mi,iout is the multiset over Γ \ E associated
with the output region at the configuration Ci, in particular, Mr,iout

is the multiset
over Γ \ E associated with the output region at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (respectively, Output(C) = no), that is, if
object yes (respectively, object no) appears in the output region associated with
the corresponding halting configuration of C, and neither object yes nor no appears
in the output region associated with any non–halting configuration of C.

Let us notice that if a recognizer tissue P system

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

has a rule of the type (i, λ/u, 0) then alph(u)∩(Γ \E) ̸= ∅, because on the contrary
all computations of Π would be non halting.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and with communication rules of length at most

k. In the case of tissue P systems without environment, we denote by T̂DC(k)
the class of recognizer tissue P systems with cell division and with communication
rules of length at most k.

The Role of the Environment in Tissue P Systems with Cell Division 95

5 Polynomial Complexity Classes of Tissue P systems

Next, we define what solving a decision problem in the framework of tissue P
systems in a uniform and efficient way means. Bearing in mind that they provide
devices with a finite description, a numerable family of tissue P systems will be
necessary in order to solve a decision problem.

Definition 5.1 We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recog-
nizer tissue P systems (with symport/antiport rules, with cell division or with cell
separation) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input

multiset of the system Π(s(u));
− for each n ∈ IN, s−1(n) is a finite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the
set of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [6].

Next, we prove a technical result concerning recognizer tissue P systems.

Lemma 5.2 Let Π = {Π(n) | n ∈ IN} a family of recognizer tissue P systems
solving a decision problem X = (IX , θX) in polynomial time according to the pre-
vious definition. Let (cod, s) a polynomial encoding associated with that solution.
Let r(n) be a polynomial function such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most r(|u|) steps. Then, there
exists a polynomial function p(n) such that for each instance u ∈ IX , 2p(|u|) is an

96 M.J. Pérez-Jiménez et al.

upper bound of the number of objects from E which are moved from the environ-
ment to all cells of the system Π(s(u))+ cod(u) by communication rules along any
computation.

Proof: Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

Let k ∈ IN be such that Π(s(u)) + cod(u) ∈TDC(k). Let M = |M1 + · · ·+Mq|.
Then, any computation of Π(s(u)) + cod(u) performs, at most, r(|u|) transition
steps. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ r(|u|), be a computation of Π. For each
t, 0 ≤ t ≤ m and i, 1 ≤ i ≤ q, we denote by Ct(i) the multiset of objects over Γ
in cell i at time t. We also denote Ct(0) the multiset of objects over Γ \ E in the
environment at time t.

Let us suppose that we apply only communication rules at m consecutive tran-
sition steps. At this situation, for each t (0 ≤ t ≤ m) we compute an upper bound
of |Ct(0)+ Ct(1)+ . . .+ Ct(q)|. Then, for each i, j (0 ≤ i, j ≤ q, i ̸= j) we denote by
At(i, j) the multiset of objects being moved from region j to region i by applying
rules of the type (i, u/v, j) at time t.

Let us construct αt, 0 ≤ t ≤ m, an upper bound of the number of objects
which appear in the whole system (taking all cells into account) at time t. That
is,

αt ≥ |Ct(0) + Ct(1) + . . .+ Ct(q)|
The construction is made by induction on t. For t = 0 we consider α0 = M . Let
t be such that 0 ≤ t < m and for each t′ (0 ≤ t′ ≤ t) let us assume that we have
constructed αt′ such that

αt′ ≥
q∑

i=0

|Ct′(i)|

The number of objects moved into cell i (1 ≤ i ≤ q) at instant t+ 1 is

At(i, 0) +

q∑
j=1,j ̸=i

At(i, j)

The number of objects sent to the environment at instant t+ 1 is

q∑
j=1

At(0, j).

Notice that objects coming to region i from some other cell j were already
present in the previous configuration. Besides, in order to trigger a communication
rule bringing objects from the environment into region i, at least one object in
region i is required, or else one symbol from Γ \ E in the environment. Finally,
recall that the length of communication rules is bounded by k.

From these considerations, we deduce:

q∑
i=1

q∑
j=1,j ̸=i

|At(i, j)| ≤ αt and

q∑
i=1

|At(i, 0)| ≤ αt · k

The Role of the Environment in Tissue P Systems with Cell Division 97

Besides,
q∑

j=1

|At(0, j)| ≤ αt · k

Then, we can consider αt+1 = αt + αt · k + αt · k = αt · (1 + 2k). Thus, for each
t (0 ≤ t ≤ m) we define αt = M · (1 + 2k)t. Hence, if we applied in a consecutive
way the maximum possible number of communication rules (without applying any
division rules) to the system Π(s(u)) + cod(u), in any instant of any computation
of the system, M · (1+ 2k)r(|u|) is an upper bound of the number of objects in the
whole system.

Now, let us consider the effects of applying in a consecutive way the maximum
possible number of division rules (without applying any communication rules) to
the system Π(s(u)) + cod(u) when the initial configuration has M · (1 + 2k)r(|u|)

objects. After that, an upper bound of the number of objects in the whole system
by any computation is M · (1 + 2k)r(|u|) · 2r(|u|) · r(|u|). Hence, for each instance
u ∈ IX the number of objects from E which are moved from the environment to the
whole cells of the systemΠ(s(u))+cod(u) is, at most,M ·(1+2k)r(|u|) ·2r(|u|) ·r(|u|).

Then, we consider a polynomial function p(n) such that

p(|u|) ≥ log(M) + r(|u|) · log(1 + 2k) + r(|u|) + log(r(|u|))

for each instance u ∈ IX . The polynomial function p(n) fulfills the property re-
quired at the Lemma.

�

6 Simulating tissue P systems with cell division by means of
tissue P systems with cell division and without environment

The goal of this section is to show that any tissue P system with cell division can
be simulated by a tissue P system with cell division and without environment in
an efficient way.

First of all, we define the meaning of efficient simulations in the framework of
recognizer tissue P systems.

Definition 6.1 Let Π and Π ′ be recognizer tissue P systems. We say that Π ′

simulates Π in an efficient way if the following holds:

1. Π ′ can be constructed from Π by a deterministic Turing machine working in
polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of computations
of Π onto the set Comp(Π ′) of computations of Π ′ such that:
⋆ There exists a deterministic Turing machine that constructs computation

f(C) from computation C in polynomial time.
⋆ A computation C ∈ Comp(Π) is an accepting computation if and only if

f(C) ∈ Comp(Π ′) is an accepting one.

98 M.J. Pérez-Jiménez et al.

⋆ There exists a polynomial function p(n) such that for each C ∈ Comp(Π)
we have |f(C)| ≤ p(|C|).

Now, for every family of recognizer tissue P system with cell division solving
a decision problem, we design a family of recognizer tissue P systems with cell
division and without environment efficiently simulating it, according to Definition
6.1.

In what follows throghout this Section, let Π = {Π(n) | n ∈ IN} a family of
recognizer tissue P systems solving a decision problem X = (IX , θX) in polynomial
time according to Definition 5.1, and let p(n) be a polynomial function such that
for each instance u ∈ IX , 2p(|u|) is an upper bound of the number of objects
from E which are moved from the environment to all cells of the system by any
computation of Π(s(u)) + cod(u).

Definition 6.2 For each n ∈ IN, let Π(n) = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)
an element of the previous family of degree q and for the sake of simplicity we
denote p instead of p(n). Let us consider the recognizer tissue P system of degree
q1 = 1 + q · (p+ 2) + |E| with cell division and without environment

S(Π(n)) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
q1 ,R

′, i′in, i
′
out)

defined as follows:

• Γ ′ = Γ ∪ {αi : 0 ≤ i ≤ p− 1}.
• Σ′ = Σ.
• Each cell i ∈ {1, . . . , q} of Π provides a cell of S(Π(n)) with the same label.

In addition, S(Π(n)) has:
– p + 1 new cells, labelled by (i, 0), (i, 1), . . . , (i, p), respectively, for each i ∈

{1, . . . , q}.
– A distinguished cell labelled by 0.
– A new cell, labelled by lb, for each b ∈ E.

• Initial multisets: M′
lb
= {α0}, for each b ∈ E, and

M′
(i,0) = Mi

M′
(i,1) = ∅

.
M′

(i,p) = ∅
M′

i = ∅

 (1 ≤ i ≤ q)

• Set of rules:

R′ = R ∪ {[αj]lb → [αj+1]lb [αj+1]lb : b ∈ E ∧ 0 ≤ j ≤ p− 2}
∪ {[αp−1]lb → [b]lb [b]lb : b ∈ E}
∪ {(lb, b/λ , 0) : b ∈ E}
∪ {

(
(i, j), a/λ , (i, j + 1)

)
: a ∈ Γ ∧ 1 ≤ i ≤ q ∧ 0 ≤ j ≤ p− 1}

∪ {
(
(i, p), a/λ , i

)
: a ∈ Γ ∧ 1 ≤ i ≤ q}

The Role of the Environment in Tissue P Systems with Cell Division 99

• i′in = (iin, 0), and i′out = 0.

Let us notice that S(Π(n)) can be considered as an extension of Π(n) without
environment, in the following sense:

⋆ Γ ⊆ Γ ′, Σ ⊆ Σ′ and E = ∅.
⋆ Each cell in Π is also a cell in S(Π(n)).
⋆ There is a distinguished cell in S(Π(n)) labelled by 0 which plays the role of

environment of Π(n).
⋆ R ⊆ R′, and now 0 is the label of a “normal cell” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and we
compare them with the computations of Π(n).

Lemma 6.3 Let C′ = (C′
0, C′

1, . . .) be a computation of S(Π(n)). For each t (1 ≤
t ≤ p) the following holds:

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ p we have:

C′
t(i, j) =

{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E, there exist 2t cells labelled by lb whose content is:

C′
t(lb) =

{
αt, if 1 ≤ t ≤ p− 1
b, if t = p

Proof: By induction on t.
Let us start with the basic case t = 1. The initial configuration of system

S(Π(n)) is the following:

• C′
0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q we have C′
0(i, 0) = Mi, and C′

0(i, j) = ∅, for 1 ≤ j ≤ p.
• For each b ∈ E , there exists only one cell labelled by lb whose contents is {α0}.

At configuration C′
0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
•

(
(i, 0), a/λ , (i, 1)

)
, for each a ∈ supp(Mi).

Thus,

• For each i (1 ≤ i ≤ q) we have:
C′
1(i) = ∅

C′
1(0) = ∅

C′
1(i, 0) = ∅

C′
1(i, 1) = Mi

C′
1(i, j) = ∅, for 2 ≤ j ≤ p

100 M.J. Pérez-Jiménez et al.

• For each b ∈ E , there are 2 cells labelled by lb whose content is {α1}.

Hence, the result holds for t = 1.
By induction hypothesis, let t be such that 1 ≤ t < p, and let us suppose the

result holds for t, that is,

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ p we have:

C′
t(i, j) =

{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E , there exist 2t cells labelled by lb whose contents is C′
t(lb) = {αt}

(because t ≤ p− 1).

Then, at configuration C′
t only the following rules are applicable:

(1) If t ≤ p− 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = p− 1, the rules [αp−1]lb → [b]lb [b]lb , for each b ∈ E .
(3)

(
(i, t), a/λ , (i, t+ 1)

)
, for each a ∈ Γ .

From the application of rules of types (1) or (2) at configuration C′
t we deduce that

there are 2t+1 cells labelled by lb in C′
t+1, for each b ∈ E , whose content is {αt+1},

if t ≤ p− 2, or {b}, if t = p− 1.
¿From the application of rules of type (3) at configuration C′

t, we deduce that

C′
t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ p ∧ j ̸= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce
that C′

t+1(i) = ∅, for 0 ≤ i ≤ q.
This completes the proof of this Lemma.

�

Lemma 6.4 Let C′ = (C′
0, C′

1, . . .) be a computation of the tissue P system
S(Π(n)). Configuration C′

p+1 is the following:

(1) C′
p+1(0) = b2

p

1 . . . b2
p

m , where E = {b1, . . . , bm}.
(2) C′

p+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
(3) C′

p+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ p.
(4) There exist 2p cells labelled by lb whose content is empty, for b ∈ E.

Proof: From Lemma 6.3, the configuration C′
p is the following:

• C′
p(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C′
p(i, j) =

{
Mi, if j = p
∅, if j ̸= p

The Role of the Environment in Tissue P Systems with Cell Division 101

• For each b ∈ E , there exist 2p cells labelled by lb whose content is {b}.

At configuration C′
p only the following rules are applicables:

•
(
(i, p), a/λ , i

)
, for each a ∈ Γ ∩ supp(Mi).

•
(
lb, b/λ , 0

)
, for each b ∈ E .

Thus,

• C′
p+1(0) = b2

p

1 . . . b2
p

m , where E = {b1, . . . , bm}.
• C′

p+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
• C′

p+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ p.
• There exist 2p cells labelled by lb whose content is empty, for each b ∈ E .

�

Definition 6.5 Let C = (C0, C1, . . . , Cr) be a halting computation of Π(n). Then
we define the computation S(C) = (C′

0, C′
1, . . . , C′

p, C′
p+1, . . . , C′

p+1+r) of S(Π(n)) as
follows:

(1) The initial configuration is:
C′
0(i) = ∅, for 0 ≤ i ≤ q

C′
0(i, 0) = C0(i), for 1 ≤ i ≤ q

C′
0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ p

C′
0(lb) = α0, for each b ∈ E

(2) The configuration C′
t, for 1 ≤ t ≤ p, is described by Lemma 6.3.

(3) The configuration C′
p+1 is described by Lemma 6.4.

(4) The configuration C′
p+1+s, for 0 ≤ s ≤ r, coincides with the configuration Cs of

Π, that is, Cs(i) = C′
p+1+s(i), for 1 ≤ i ≤ q. The content of the remaining cells

(excluding cell 0) at configuration C′
p+1+s is equal to the content of that cell at

configuration C′
p+1, that is, these cells do not evolve after step p+ 1.

That is, every computation C of Π(n) can be “reproduced” by a computation S(C)
of S(Π(n)) with a delay: from step p+ 1 to step p+ 1 + r the computation S(C)
restricted to cells 1, . . . , q provides the computation C of Π(n).

¿From Lemma 6.3 and Lemma 6.4 we deduce that: (a) S(C) is a compu-
tation of S(Π(n)), and (b) S is an injective function from Comp(Π(n)) onto
Comp(S(Π(n))). Moreover, if p is a polynomial function on the size of Π(n),
then we have the following:

Proposition 6.6 The tissue P system S(Π(n)) defined in 6.2 simulates Π(n) in
an efficient way.

Proof. In order to show that S(Π(n)) can be constructed from Π(n) by a deter-
ministic Turing machine working in polynomial time, it is enough to note that the
amount of resources needed to construct S(Π(n)) from Π(n) is polynomial in the
size of the initial resources of Π(n). Indeed,

1. The size of the alphabet of S(Π(n)) is |Γ ′| = |Γ |+ p.

102 M.J. Pérez-Jiménez et al.

2. The initial number of cells of S(Π(n)) is 1 + q · (p+ 2) + |E|.
3. The initial number of objects of S(Π(n)) is the initial number of objects of

Π(n) plus |E|.
4. The number of rules of S(Π(n)) is |R′| = |R|+ (p+ 1) · |E|+ |Γ | · q · (p+ 1).
5. The maximal length of a communication rule of S(Π(n)) is equal to the max-

imal length of a communication rule of Π(n).

¿From Lemma 6.3 and Lemma 6.4 we deduce that: (a) every computation C′ of
S(Π(n)) has associated a computation C of Π(n) such that S(C) = C′ in a natural
way, (b) the function S is injective, and (c) a computation C of Π is an accepting
computation if and only if S(C) is an accepting computation of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length r, then
S(C) is a computation of S(Π(n)) with length p+ 1 + r.

7 Computational Complexity classes of Tissue P Systems
with Cell Division and without environment

In this Section, we analyze the role of the environment in the efficiency of tissue
P systems with cell division. That is, we study the ability of these P systems with
respect to the computational efficiency when the alphabet of the environment is
an empty set.

Theorem 7.1 For each k ∈ IN we have PMCTDC(k+1) = PMC
T̂DC(k+1)

.

Proof: Obviously, P ⊆ PMC
T̂DC(1)

⊆ PMCTDC(1) = P.

Let k ≥ 1. Since T̂DC(k + 1) ⊆ TDC(k + 1) it suffices to show that
PMCTDC(k+1) ⊆ PMC

T̂DC(k+1)
. For that, let X ∈ PMCTDC(k+1). Let us show

that X ∈ PMC
T̂DC(k+1)

.

Let {Π(n) : n ∈ N} be a family of tissue P systems from TDC(k+1) solving
X according to Definition 5.1. Let (cod, s) be a polinomial encoding associated
with that solution. Let u ∈ IX be an instance of the problem X and s(u) = n.
Then, that instance will be processed by the system Π(s(u)) + cod(u). According
to Lemma 5.2, let p(n) be a polynomial function such that 2p(|u|) is an upper
bound of the number of objects from E which are moved from the environment to
all cells of the system by any computation of Π(s(u)) + cod(u), for each instance
u ∈ IX .

If Π(s(u))+ cod(u) = (Γ,Σ,M1, . . . ,Miin + cod(u), . . .Mq, E ,R, iin, iout), we
consider the tissue P system without environment

S(Π(s(u))) + cod(u) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
iin + cod(u), . . .M′

q1 ,R
′, i′in, i

′
out)

according to Definition 6.2, where q1 = 1 + q · (p(|u|) + 2) + |E|.
Therefore, S(Π(s(u)))+ cod(u) ∈ T̂DC(k+1) and in the system S(Π(s(u)))+

cod(u) the following holds:

The Role of the Environment in Tissue P Systems with Cell Division 103

• A new distinguished cell labelled by 0 has been considered, which will play the
role of the environment at the system Π(s(u)) + cod(u).

• We must guarantiee that system S(Π(s(u))) + cod(u) has initially enough ob-
jects in cell 0 to simulate the behaviour of the environment of Π(n).

• New objects, new rules and new cells will be introduced in S(Π(s(u)))+cod(u).
• After p(n) + 1 step, computations of S(Π(s(u))) + cod(u) reproduce the com-

putations of Π(s(u)) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bm}. In order to simulate Π(s(u)) + cod(u) by a
tissue P system without environment in an efficient way, we need to have enough
objects in the cell of S(Π(s(u))) + cod(u) labelled by 0 available. That is, 2p(n)

objects in that cell are enough.
In order to start the simulation of any computation C of Π(s(u)) + cod(u),

it would be enough to have 2p(n) copies of each object bj ∈ E in the cell of
S(Π(s(u))) + cod(u) labelled by 0. For this purpose

• For each b ∈ E we consider a cell in S(Π(s(u))) + cod(u) labelled by lb which
only contains object α0 initially. We also consider the following rules:
– [αj]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ p(n)− 2.
– [αp(n)−1]lb → [b]lb [b]lb .
– (lb, b/λ, 0).

• By applying the previous rules, after p(n) transition steps we get 2p(n) cells
labelled by lb, for each b ∈ E in such a way that each of them contains only
object b. Finally, by applying the third rule we get 2p(n) copies of objects b in
cell 0, for each b ∈ E .

Therefore, after the execution of p(n) + 1 transition steps in each computation of
S(Π(s(u))) + cod(u) in cell 0 of the corresponding configuration, we have 2p(n)

copies of each object b1, . . . , bm ∈ E . This number of copies is enough to simulate
any computation C of Π(s(u)) + cod(u) through the system S(Π(s(u)) + cod(u)).

¿From Proposition 6.6 we deduce that the family {S(Π(n))| n ∈ N} solves X
in polynomial time according to Definition 5.1. Hence, X ∈ PMC

T̂DC(k+1)
.

�

8 Conclusions and Further Works

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The space-time tradeoff method is used to efficiently solve NP-
complete problems in the framework ofMembrane Computing. Membrane division,
membrane creation, and membrane separation are three efficient ways to obtain
exponential workspace in polynomial time. Cell division were introduced [5] into
tissue–like P systems, and a linear time solution for SAT problem by tissue P
systems with cell division was given [5].

In the framework of tissue P systems, there is an additional advantage when
cell division is used to generate exponential workspace in polynomial time: all the

104 M.J. Pérez-Jiménez et al.

other objects in the cell are duplicated except the object that activate the cell
division operation.

In this paper, the computational efficiency of tissue P systems with cell division
and without environment has been studied. We conclude that the environment of
tissue P systems can be removed without a loss of efficiency.

For future work, we plan to do further research in the study of tissue P systems
with cell separation. Let us recall that, in this kind of systems, the application of
separation rules only duplicates the cell while the objects are not replicated. They
are simply distributed according to a prefixed criterion.

Acknowledgements

The work was supported by Project TIN2009-13192 of the Ministerio de Ciencia
e Innovación of Spain and Project of Excellence with Investigador de Reconocida
Vaĺıa, from Junta de Andalućıa, grant P08 – TIC 04200.

References

1. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. and Romero-Campero, F.J. A linear
solution for QSAT with Membrane Creation. Lecture Notes in Computer Science
3850, (2006), 241–252.

2. Pan, L. and Ishdorj, T.-O. P systems with active membranes and separation rules.
Journal of Universal Computer Science, 10, 5, (2004), 630–649.

3. Păun, Gh. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, 94-115.

4. Păun, Gh. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).
5. Păun, Gh., Pérez-Jiménez, M.J. and Riscos-Núñez, A. Tissue P System with cell

division. In. J. of Computers, communications & control, 3, 3, (2008), 295–303.
6. Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. Complexity

classes in models of cellular computing with membranes. Natural Computing, 2, 3
(2003), 265–285.

7. Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. A polynomial
complexity class in P systems using membrane division. Journal of Automata, Lan-
guages and Combinatorics, 11, 4, (2006), 423-434.

Improving the Efficiency of
Tissue P Systems with Cell Separation

Mario J. Pérez-Jiménez1, Petr Sośık2,3

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012 Sevilla, Spain
marper@us.es

2 Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Campus de Montegancedo s/n,
Boadilla del Monte, 28660 Madrid, Spain

3 Research Institute of the IT4Innovations Centre of Excellence,
Faculty of Philosophy and Science, Silesian University in Opava,
74601 Opava, Czech Republic
psosik@fi.upm.es

Summary. Cell fission process consists of the division of a cell into two new cells such
that the contents of the initial cell is distributed between the newly created cells. This
process is modelled by a new kind of cell separation rules in the framework of Membrane
Computing. Specifically, in tissue-like membrane systems, cell separation rules have been
considered joint with communication rules of the form symport/antiport. These models
are able to create an exponential workspace, expressed in terms of the number of cells,
in linear time. On the one hand, an efficient and uniform solution to the SAT problem by
using cell separation and communication rules with length at most 8 has been recently
given. On the other hand, only tractable problems can be efficiently solved by using
cell separation and communication rules with length at most 1. Thus, in the framework
of tissue P systems with cell separation, and assuming that P ̸= NP, a first frontier
between efficiency and non-efficiency is obtained when passing from communication rules
with length 1 to communication rules with length at most 8.

In this paper we improve the previous result by showing that the SAT problem can be
solved by a family of tissue P systems with cell separation in linear time, by using com-
munication rules with length at most 3. Hence, we provide a new tractability borderline:
passing from 1 to 3 amounts to passing from non–efficiency to efficiency, assuming that
P ̸= NP.

1 Introduction

Membrane Computing is a young branch of Natural Computing initiated by Gh.
Păun in the end of 1998 [16]. It is inspired by the structure and functioning of

106 M.J. Pérez-Jiménez, P. Sośık

living cell, as well as from the organization of cells in tissues, organs, and other
higher order structures. The devices of this paradigm, called P systems, provide
models for distributed, parallel and non-deterministic computing.

Membrane Computing has received an important attention from the scientific
community since then, and many applications have been reported ([3], [21]). It
was selected by the Institute for Scientific Information, USA, as a fast Emerging
Research Front in Computer Science, and [19] was mentioned in [25] as a highly
cited paper in October 2003.

Roughly speaking, the main ingredient of a membrane system is a cell-like
membrane structure (a rooted tree), in the compartments of which one places
multisets of symbol-objects. The objects evolve in a synchronous maximally parallel
manner according to given evolution rules, also associated with the membranes (for
introduction see [18] and for further bibliography see [26]).

Several different models of cell-like P systems have been successfully used to
solve computationally hard problems efficiently, by trading space for time: an ex-
ponential workspace is created in polynomial time by using some kind of rules,
and then massive parallelism is used to simultaneously check all the candidate so-
lutions. Inspired by living cell, several ways for obtaining exponential workspace in
polynomial time were proposed: membrane division (mitosis) [17], membrane cre-
ation (autopoiesis) [9], and membrane separation (membrane fission) [14]. These
three ways have given rise to the following models: P systems with active mem-
branes, P systems with membrane creation, and P systems with membranes sepa-
ration.

A new type of P systems, the so-called tissue P systems, was considered in [12].
Instead of considering a hierarchical arrangement, membranes/cells are placed in
the nodes of a virtual graph. This variant has two biological justifications (see
[13]): intercellular communication and cooperation between neurons. The common
mathematical model of these two mechanisms is a net of processors dealing with
symbols and communicating these symbols along channels specified in advance.
The communication among cells is based on symport/antiport rules, which were
introduced to P systems in [19]. Symport rules move objects across a membrane
together in one direction, whereas antiport rules move objects across a membrane
in opposite directions. From the seminal definitions of tissue P systems [12, 13],
several research lines have been developed and other variants have arisen (see,
for example, [1, 2, 6, 10, 11, 24]). One of the most interesting variants of tissue P
systems was presented in [20], where the definition of tissue P systems is combined
with the one of P systems with active membranes, yielding tissue P systems with
cell division. In this kind of models [20], there exists cell replication, that is, the
two new cells generated by a division rule have exactly the same objects except
for at most a pair of different objects.

In the biological phenomenon of fission, the contents of the two new cells
evolved from a cell can be significantly different, and membrane separation in-
spired by this biological phenomenon in the framework of cell-like P systems was
proved to be an efficient way to obtain exponential workspace in polynomial time

Improving the Efficiency of Tissue P Systems with Cell Separation 107

[14]. In [15], a new class of tissue P systems based on cell fission, called tissue P
systems with cell separation, was presented. Its computational efficiency was inves-
tigated, and two important results were obtained: (a) only tractable problems can
be efficiently solved by using cell separation and communication rules with length
at most 1, and (b) an efficient (uniform) solution to the SAT problem by using cell
separation and communication rules with length at most 8 was presented. Hence,
in the framework of recognizer tissue P systems with cell separation, the length of
the communication rules provide a borderline between efficiency and non-efficiency,
that is, a frontier is there when we pass from length 1 to length 6, assuming that
P ̸= NP.

In this paper we present an improvement of the previous borderline of the
tractability. Specifically, we propose a (uniform) family of tissue P systems with
cell separation and communication rules with length at most 3 which solves the
SAT problem in linear time. Hence, a new borderline is provided in this paper:
passing from 1 to 3 amounts to passing from non–efficiency to efficiency, assuming
that P ̸= NP.

The paper is organized as follows: first, we recall some preliminaries, and then,
the definition of tissue P systems with cell separation is given. Next, recognizer
tissue P systems and computational complexity classes in this framework, are
briefly described. In Section 5, an efficient (uniform) solution to the SAT problem
by using cell separation and communication rules with length at most 3 is shown.
Section 6 is devoted to present a detailed formal verification of the main result.
Finally, conclusions and further works are presented.

2 Preliminaries

An alphabet, Σ, is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string o word. If u and v are strings over Σ, then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v after
one another. The number of symbols in a string u is the length of the string, and it
is denoted by |u|. As usual, the empty string (with length 0) will be denoted by λ.
The set of all strings over an alphabet Σ is denoted by Σ∗. In algebraic terms, Σ∗

is the free monoid generated by Σ under the operation of concatenation. Subsets,
finite or infinite, of Σ∗ are referred to as languages over Σ.

The Parikh vector associated with a string u ∈ Σ∗ with respect to the alphabet
Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes the number of
ocurrences of the symbol ai in the string u. This is called the Parikh mapping
associated with Σ. Notice that in this definition the ordering of the symbols fromΣ
is relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ then we define ΨΣ1(u) = (|u|ai1

, . . . , |u|ais
),

for each u ∈ Σ∗.
A multisetm over a set A is a pair (A, f) where f : A → N is a mapping. Ifm =

(A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}. A
multiset is empty (resp. finite) if its support is the empty set (resp. a finite set). If

108 M.J. Pérez-Jiménez, P. Sośık

m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak} then it will be

denoted as m = {af(a1)
1 , . . . , a

f(ak)
k }. That is, superscripts indicate the multiplicity

of each element, and if f(x) = 0 for x ∈ A, then the element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string precisely identify the same multisetm. Throughout this paper, we speak
about “the finite multiset m” where m is a string, and meaning “the finite multiset
represented by the string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union
of m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2.

For any sets A and B the relative complement A \ B of B in A is defined as
follows:

A \B = {x ∈ A | x /∈ B}

In what follows, we assume the reader is already familiar with the basic notions
and the terminology of P systems. For details, see [18].

3 Tissue P Systems with Cell Separation

Let us recall that the model of tissue P systems with cell separation is based on
the cell-like model of P systems with membranes separation [14]. The biological
inspiration is the following: alive tissues are not static network of cells, since new
cells are generated by membrane fission in a natural way. In these models, the cells
are not polarized; the two cells obtained by separation have the same labels as the
original cell, and if a cell is separated, its interaction with other cells or with the
environment is blocked during the separation process. In some sense, this means
that while a cell is separating it closes its communication channels.

Definition 3.1 A tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ1, Γ2, E ,M1, . . . ,Mq,R, iout),

where:

1. Γ is a finite alphabet whose elements are called objects;
2. {Γ1, Γ2} is a partition of Γ , that is, Γ = Γ1 ∪ Γ2, Γ1, Γ2 ̸= ∅, Γ1 ∩ Γ2 = ∅;
3. E ⊆ Γ is a finite alphabet representing the set of objects initially in the environ-

ment of the system, and 0 is the label of the environment (the environment is
not properly a cell of the system); let us assume that objects in the environment
appear in arbitrary copies each;

4. M1, . . . ,Mq are strings over Γ , representing the finite multisets of objects
placed in the q cells of the system at the beginning of the computation;
1, 2, · · · , q are labels which identify the cells of the system;

5. R is a finite set of rules of the following forms:

Improving the Efficiency of Tissue P Systems with Cell Separation 109

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈
Γ ∗, |uv| > 0. When applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and, simultaneously,
the objects of the multiset v are sent from region j to region i;

(b) Separation rules: [a]i → [Γ1]i[Γ2]i, where i ∈ {1, 2, . . . , q} and a ∈ Γ , and
i ̸= iout. In reaction with an object a, the cell i is separated into two cells
with the same label; at the same time, object a is consumed; the objects
from Γ1 are placed in the first cell, those from Γ2 are placed in the second
cell; the output cell iout cannot be separated;

6. iout ∈ {0, 1, 2, . . . , q} is the output cell.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has
an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by the communication rules of the form (i, u/v, j), with i = 0 or j = 0.

The length of the communication rule (i, u/v, j) is defined as |u|+ |v|.
The rules of a system like the above one are used in the non-deterministic

maximally parallel manner as customary in Membrane Computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further rule can be added being
applicable). This way of applying rules has only one restriction: when a cell is
separated, the separation rule is the only one which is applied for that cell at that
step; thus, the objects inside that cell do not evolve by means of communication
rules. The new cells resulting from separation could participate in the interaction
with other cells or the environment by means of communication rules at the next
step – providing that they are not separated once again. The label of a cell precisely
identify the rules which can be applied to it.

An instanstaneous description or a configuration at any instant of a tissue P
system with cell separation is described by all multisets of objects over Γ associated
with all the cells present in the system, and the multiset of objects over Γ − E
associated with the environment at that moment. Bearing in mind the objects from
E have infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, · · · ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with cell separation Π. We say that configuration
C1 yields configuration C2 in one transition step, denoted C1 ⇒Π C2, if we can
pass from C1 to C2 by applying the rules from R following the previous remarks.
A computation of Π is a (finite or infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;

110 M.J. Pérez-Jiménez, P. Sośık

2. each non-initial configuration of the sequence is obtained from the previous
configuration by aplying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output cell iout in the halting configuration.

We denote by Comp(Π) the set of computations of the tissue P system Π.
If C = {Ci}i<r+1 of Π (r ∈ N) is a halting computation, then the length of C
is r, that is, the number of non-initial configurations which appear in the finite
sequence C. We denote it by |C|. We also denote by Ci(j) the contents of cell j at
the configuration Ci.

In the framework of tissue P systems with symport/antiport rules, it is interest-
ing to highlight some differences between a division rule of the type [a]i → [b]i [c]i,
and a separation rule of the type [a]i → [Γ1]i [Γ2]i:

1. The object a triggers both rules and it is consumed. Nevertheless,
⋆ Division rule: Produces an object (b or c) in each new cell.
⋆ Separation rule: Does not produce any new object in new cells.

2. The remaining objects in cell i:
⋆ Division rule: Are replicated in each new cell.
⋆ Separation rule: Are distributed between the new cells, according to sets

Γ1 and Γ2.
3. If there is n objects in the cell i where the rule is applied:

⋆ Division rule: The total number of objects in the cells created is 2n, each
of them contains n objects.

⋆ Separation rule: The total number of objects in the cells created is n− 1.
4. If the rules are consecutively applied during k transtition steps in a cell i which

contains n objects:
⋆ Division rule: 2k new cells are created, and the total number of objects is

n · 2k.
⋆ Separation rule: 2 ·k new cells are created, and the total number of objects

is n− k.

Hence, division and separation rules have the ability to produce an exponential
number of new cells in linear time, but only division rules are able to simultaneously
produce an exponential number of objects.

3.1 Recognizer Tissue P Systems with Cell Separation

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Many abstract problems are not decision problems, for example,
in combinatorial optimization problems some value must be optimized (minimized

Improving the Efficiency of Tissue P Systems with Cell Separation 111

or maximized). In order to deal with such problems, they can be transformed into
roughly equivalent decision problems by supplying a target/threshold value for the
quantity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages over a
finite alphabet, can be established as follows. Given a decision problem X =
(IX , θX), its associated language is LX = {w ∈ IX : θX(w) = 1}. Con-
versely, given a language L over an alphabet Σ, its associated decision problem is
XL = (IXL

, θXL
), where IXL

= Σ∗, and θXL
= {(x, 1) : x ∈ L}∪{(x, 0) : x /∈ L}.

The solvability of decision problems is defined through the recognition of the lan-
guages associated with them, by using languages recognizer devices.

In order to study the computational efficiency of membrane systems, the no-
tions from classical computational complexity theory are adapted for Membrane
Computing, and a special class of cell-like P systems is introduced in [23]: recog-
nizer P systems (called accepting P systems in a previous paper [22]). For tissue
P systems, with the same idea as recognizer cell-like P systems, recognizer tissue
P systems is introduced in [20].

Definition 3.2 A recognizer tissue P system with cell separation of degree q ≥ 1
is a tuple

Π = (Γ, Γ1, Γ2, Σ, E ,M1, . . . ,Mq,R, iin, iout)

where:

1. (Γ, Γ1, Γ2, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell separation of
degree q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but
none of them are present in E.

3. Σ is an (input) alphabet strictly contained in Γ , and E ⊆ Γ \Σ.
4. M1, . . . ,Mq are strings over Γ \Σ;
5. iin ∈ {1, . . . , q} is the input cell.
6. The output region iout is the environment.
7. All computations halt.
8. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts from
the configuration of the form (M1,M2, . . . ,Miin + w, . . . ,Mq; ∅), that is, the
input multiset w has been added to the contents of the input cell iin. Therefore,
we have an initial configuration associated with each input multiset w (over the
input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division, and a halting computation
C = {Ci}i<r+1 of Π (r ∈ N), we define the result of C as follows:

112 M.J. Pérez-Jiménez, P. Sośık

Output(C) =


yes, if Ψ{yes,no}(Mr,0) = (1, 0) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,0) = (0, 1) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1

where Ψ is the Parikh function, and Mi,0 is the multiset over Γ \E associated with
the environment at configuration Ci, in particular, Mr,0 is the multiset over Γ \ E
associated with the environment at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (respectively, Output(C) = no), that is, if
object yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non–halting configuration of C.

For each natural number k ≥ 1, we denote by TSC(k) the class of recognizer
tissue P systems with cell separation and communication rules of length at most k.
We denote by TSC the class of recognizer tissue P systems with cell separation and
without restriction on the length of communication rules. Obviously, TSC(k) ⊆
TSC for all k ≥ 1.

3.2 Polynomial Complexity Classes of Tissue P systems with Cell
Separation

Next, we define what means solving a decision problem in the framework of tissue
P systems efficiently and in a uniform way. Bearing in mind that they provide
devices with a finite description, a numerable family of tissue P systems will be
necessary in order to solve a decision problem.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in a uni-
form way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
tissue P systems with cell separation if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
(b) for each n ∈ IN, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of
Π(s(u)) with input cod(u) is halting and it performs at most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

Improving the Efficiency of Tissue P Systems with Cell Separation 113

(e) the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial time
by means of families of systems from R.

4 Computational Efficiency of Tissue P Systems with Cell
Separation

It is well known that tissue P systems with cell division are able to solve computa-
tionally hard problems efficiently. Specifically, NP–complete problems have been
solved in linear time [5] by using families of tissue P systems with cell division and
communication rules of length at most 3.

In [15] two important results related to the computational efficiency of tissue P
systems with cell separation were obtained. On the one hand, only tractable prob-
lems can be efficiently solved by using families of tissue P systems with cell separa-
tion and communication rules of length 1, that is, P = PMCTSC(1). On the other
hand, an efficient solution to the SAT problem has been given by means of a uniform
family of tissue P systems with cell separation and communication rules of length
at most 8, that is, SAT ∈ PMCTSC(8), hence NP ∪ co−NP ⊆ PMCTSC(8).
Therefore, passing the maximum length of communication rules of the systems
from 1 to 6 amounts to passing from non–efficiency to efficiency, assuming that
P ̸= NP. An interesting challenge is to refine that efficiency borderline, that is,
to provide new efficient solutions to computationally hard problems by means of
tissue P systems with cell separation by using communication with length under
6.

In the next Section, we improve the result from [15] by giving a family of tissue
P systems with cell separation and communication rules of length at most 3 which
solves the SAT problem in linear time.

5 Solving the SAT Problem by using TSC(3)

Let us recall that the SAT problem is the following: given a boolean formula in con-
junctive normal form (CNF), to determine whether or not there exists an assign-
ment to its variables on which it evaluates true. This is a well known NP-complete
problem [7].

In this Section, we propose a solution following a brute force algorithm imple-
mented in the framework of recognizer tissue P systems with cell separation. The
solution consists of the following stages:

114 M.J. Pérez-Jiménez, P. Sośık

• Generation Stage: All truth assignments associated with the input formula are
produced by using cell separation in an adequate way.

• Checking Stage: In each cell, it is checked whether or not the formula is satis-
fiable by the truth assignment encoded by that cell.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage.

Let us consider the polynomial–time computable function (the pair function)

⟨m,n⟩ = ((m+ n)(m+ n+ 1)/2) +m

which is also a primitive recursive and bijective function from IN× IN to IN.
Next, we define a family Π = {Π(t) : t ∈ IN} of recognizer tissue P system

with cell separation from TSC(3), such that each system Π(t) will process all
instances φ of SAT with n variables and m clauses, where t = ⟨m,n⟩, provided
that the appropriate input multiset cod(φ) is supplied to the system.

For each (m,n) ∈ IN× IN, we consider the recognizer tissue P system with cell
separation from TSC(3),

Π(⟨m,n⟩) = (Γ, Γ1, Γ2, Σ, E ,M1,M2,M3,R, iin, iout)

defined as follows:
• The input alphabet is

Σ = {xi,j , xi,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m}

• The working alphabet is Γ = Σ ∪ Γ1 ∪ Γ2, where:

Γ1 = {Ai, Bi : 1 ≤ i ≤ n+ 1} ∪ {ai, bi, Ti, Fi, yi, vi, wi : 1 ≤ i ≤ n} ∪
{ci, ti, fi, si, zi : 1 ≤ i ≤ n− 1} ∪ {Ej : 1 ≤ j ≤ m+ 1} ∪
{αi : 0 ≤ i ≤ 3n+ 2m+ 1} ∪ {βi : 0 ≤ i ≤ 3n+ 2m+ 2} ∪
{qi,j , ri,j , ui,j : 1 ≤ i, j ≤ n− 1} ∪
{xi,j , xi,j , ei,j , ei,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m} ∪
{di,j,k, di,j,k : 1 ≤ i ≤ n , 1 ≤ j ≤ m, 1 ≤ k ≤ n} ∪ {q0, S, yes, no}

Γ2 = {A′
i, B

′
i : 1 ≤ i ≤ n+ 1} ∪ {a′i, b′i, T ′

i , F
′
i : 1 ≤ i ≤ n}

• The alphabet of the environment is:

E = {S} ∪ {Ai, Bi, A
′
i, B

′
i : 2 ≤ i ≤ n+ 1} ∪ {Ti, Fi, F

′
i , yi, wi : 1 ≤ i ≤ n} ∪

{ai, a′i, bi, b′i, vi : 2 ≤ i ≤ n} ∪ {T ′
i , ci, ti, fi, si, zi : 1 ≤ i ≤ n− 1} ∪

{Ej : 1 ≤ j ≤ m+ 1} ∪ {αi : 1 ≤ i ≤ 3n+ 2m+ 1} ∪
{βi : 1 ≤ i ≤ 3n+ 2m+ 2} ∪
{qi,j , ri,j , ui,j : 1 ≤ i ≤ n− 1 , 2 ≤ j ≤ n− 1} ∪
{ei,j , ei,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m} ∪
{di,j,k, di,j,k : 1 ≤ i, k ≤ n , 1 ≤ j ≤ m}

• Initial multisets:

Improving the Efficiency of Tissue P Systems with Cell Separation 115

M1 = A1 B1

M2 = a1 a
′
1 b1 b

′
1 v1 q1,1 α0 yes no

M3 = β0

• The set R of rules consists of the following rules:

(1) (1 , Ai / ai a
′
i , 2), for 1 ≤ i ≤ n, and (1 , An+1 /E1 , 2).

(2) (1 , A′
i / ai a

′
i , 2), for 1 ≤ i ≤ n, and (1 , A′

n+1 /E1 , 2).
(3) (1 , Bi / bi b

′
i , 2), for 1 ≤ i ≤ n.

(4) (1 , B′
i / bi b

′
i , 2), for 1 ≤ i ≤ n.

(5) (1 , Ti / ti , 2), for 1 ≤ i ≤ n− 1.
(6) (1 , T ′

i / ti , 2), for 1 ≤ i ≤ n− 1.
(7) (1 , Fi / fi , 2), for 1 ≤ i ≤ n− 1.
(8) (1 , F ′

i / fi , 2), for 1 ≤ i ≤ n− 1.
(9) (1 , ti / Ti T

′
i , 0), for 1 ≤ i ≤ n− 1.

(10) (1 , fi /Fi F
′
i , 0), for 1 ≤ i ≤ n− 1.

(11) (1 , bi /Bi+1 S , 0), for 1 ≤ i ≤ n, and (1 , Bn+1 / λ , 0).
(12) (1 , b′i /B

′
i+1 , 0), for 1 ≤ i ≤ n, and (1 , B′

n+1 / λ , 0).
(13) (1 , ai / Ti Ai+1 , 0), for 1 ≤ i ≤ n.
(14) (1 , a′i /F

′
i A

′
i+1 , 0), for 1 ≤ i ≤ n.

(15) (2 , Ai / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , Ai / λ , 0), for n ≤ i ≤ n+ 1.
(16) (2 , A′

i / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , A′
i / λ , 0), for n ≤ i ≤ n+ 1.

(17) (2 , Bi / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , Bn / λ , 0).
(18) (2 , B′

i / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , B′
n / λ , 0).

(19) (2 , ci / bi+1 b
′
i+1 , 0), for 1 ≤ i ≤ n− 1.

(20) (2 , vi / y
2
i , 0), for 1 ≤ i ≤ n.

(21) (2 , yi / zi wi , 0), for 1 ≤ i ≤ n− 1, and (2 , yn /wn , 0).
(22) (2 , zi / vi+1 , 0), for 1 ≤ i ≤ n− 1.
(23) (2 , wi / ai+1 a

′
i+1 , 0), for 1 ≤ i ≤ n− 1, and (2 , wn /E1 , 0).

(24) (2 , q1,1 / r1,1 , 0).
(25) (2 , qi,j / r

2
i,j , 0), for 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1.

(26) (2 , ri,j / si ui,j , 0), for 1 ≤ i, j ≤ n− 1.
(27) (2 , si / ti fi , 0), for 1 ≤ i ≤ n− 1.
(28) (2 , u1,j / q1,j+1 q2,j+1 , 0), for 1 ≤ j ≤ n− 2.
(29) (2 , ui,j / qi+1,j+1 , 0), for 2 ≤ i, j ≤ n− 2.
(30) (2 , ui,n−1 / λ , 0), for 1 ≤ i ≤ n− 1.
(31) (2 , Ti / λ , 0), for 1 ≤ i ≤ n− 1.
(32) (2 , T ′

i / λ , 0), for 1 ≤ i ≤ n− 1.
(33) (2 , Fi / λ , 0), for 1 ≤ i ≤ n− 1.
(34) (2 , F ′

i / λ , 0), for 1 ≤ i ≤ n− 1.
(35) [S]1 −→ [Γ1]1 [Γ2]1
(36) (2 , αi /αi+1 , 0), for 0 ≤ i ≤ 3n+ 2m.
(37) (3 , βi / βi+1 , 0), for 0 ≤ i ≤ 3n+ 2m+ 1.
(38) (3 , xi,j / d

2
i,j,1 , 0), (3 , x̄i,j / d̄

2
i,j,1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m

116 M.J. Pérez-Jiménez, P. Sośık

(39) (3 , di,j,k / d
2
i,j,k+1 , 0), (3 , d̄i,j,k / d̄

2
i,j,k+1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

1 ≤ k ≤ n− 1.
(40) (3 , di,j,n / ei,j , 0), (3 , d̄i,j,n / ēi,j , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
(41) (1 , TiEj / ei,j , 3), (1 , FiEj / ēi,j , 3), (1 , T

′
iEj / ei,j , 3),

(1 , F ′
iEj / ēi,j , 3), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(42) (1 , ei,j / TiEj+1 , 0), (1 , ēi,j /FiEj+1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1.
(43) (1 , ei,m /Em+1 , 0), (1 , ēi,m /Em+1 , 0), for 1 ≤ i ≤ n.
(44) (3, Ti / λ , 0), (3 , Fi / λ , 0), (3 , T

′
i / λ , 0), (3 , F

′
i / λ , 0), for 1 ≤ i ≤ n.

(45) (3 , Ej / λ , 0), for 1 ≤ j ≤ m.
(46) (1 , Em+1 / yes α3n+1+2m , 2).
(47) (1 , yes / β3n+1+2m+1 , 3).
(48) (2 , α3n+1+2m / β3n+1+2m+1 , 3).
(49) (2 , no β3n+1+2m+1 / λ , 0).
(50) (3 , yes / λ , 0).

• The input cell is iin = 3.
• The output cell is the environment, iout = 0.

5.1 An Overview of the Computation

A family of recognizer tissue P systems with cell separation is constructed above.
For an instance of the SAT problem φ = C1 ∧ · · · ∧ Cm, consisting of m clauses
Cj = lj,1 ∨ · · · ∨ lj,rj , 1 ≤ j ≤ m, where V ar(φ) = {x1, · · · , xn}, lj,k ∈ {xi,¬xi |
1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ k ≤ rj . Let us assume that the number of variables,
n, and the number of clauses, m, of the input formula φ, are greater or equal to 2.

The size mapping on the set of instances is defined as s(φ) = ⟨m,n⟩, and the
encoding of the instance is the multiset

cod(φ) = {xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

That is, xi,j (respectively, xi,j) denotes variable xi (respectively, ¬xi) belongs to
clause Cj . Then the formula φ will be processed by the system Π(s(φ)) with input
multiset cod(φ).

Next, we informally describe how system Π(s(φ)) with input multiset cod(φ)
works, in order to process the instance φ of the SAT problem.

At the initial configuration we have objects A1, B1 in cell 1, objects a1, a
′
1, b1, b

′
1,

v1, q1,1, α0, yes, no in cell 2, and cod(φ), β0 in cell 3.
Let us start with the generation stage. This stage spends 3n+1 steps and has,

basically, two parallel processes. On the one hand, n loops are executed, each loop
spends 3 steps involving cells 1 and 2. After the loops are finished, an additional
step goes on. On the other hand, in cell 3 there is a counter β that evolves from
β0 to β3n+1 by applying rules of the type (37), and cod(φ) produces ((cod(φ))2

n

e

after the 3n+ 1 steps at this stage.
At the first step of the i–th loop (0 ≤ i ≤ n) involving cells 1 and 2, objects

Ai+1, A
′
i+1, Bi+1, B

′
i+1, Tj , T

′
j , Fj , F

′
j

Improving the Efficiency of Tissue P Systems with Cell Separation 117

in cell 1 exchange objects

ai+1a
′
i+1, ai+1a

′
i+1, bi+1b

′
i+1, bi+1b

′
i+1, tj , tj , fj , fj

with cell 2, where also vi+1 produces y2i+1, and q1,i+1, . . . qi+1,i+1 (q1,1 at step 1)
produce objects r21,i+1, . . . r

2
i+1,i+1 (r1,1 at step 1).

At the second step of the i–th loop (0 ≤ i ≤ n), objects

ai+1, a
′
i+1, bi+1, b

′
i+1, tj , fj

in cells 1 produce objects

Ti+1Ai+2, F
′
i+1A

′
i+2, Bi+2S,B

′
i+2, TjT

′
j , FjF

′
j

according to the rules (9), (10), (11), (12), (13), (14). Simultaneously, at this step
objects

Ai+1, A
′
i+1, Bi+1, B

′
i+1, Tj , T

′
j , Fj , F

′
j , yi+1, r1,i+1, . . . ri+1,i+1

in cell 2 produce objects

ci+1, ci+1, ci+1, ci+1, λ, λ, λ, λ, λ, zi+1wi+1, s1u1,i+1 . . . si+1ui+1,i+1

respectively, according to the rules (15), (16), (17), (18), (21), (26), (31), (32),
(33), (34).

At the third step of the i–th loop (1 ≤ i ≤ n − 1), object S triggers the
separation of objects of cells 1 in two new cells 1 by applying the separation rule
(35), according to Γ1 (objects without primes) and Γ2 (objects with primes). At
this step, objects

ci+1, zi+1, wi+1, s1, . . . , si+1, u1,i+1, . . . , ui+1,i+1

in cell 2 produce objects

bi+2b
′
i+2, vi+2, ai+2a

′
i+2, f1t1, . . . , fi+1ti+1, q1,i+2 . . . qi+1,i+2, qi+2,i+2

according to the rules (19), (22), (23), (27), (29), respectively.
After 3(n− 1) transition steps, we have

(a) 2n−1 cells 1 such that 2n−2 cells contain objects Tn−1, An, Bn and a differ-
ent truth assignment of σn−2,j of the set {x1, . . . , xn−2}, and 2n−2 cells con-
tain objects F ′

n−1, A
′
n, B

′
n and a different truth assignment of τn−2,j of the set

{x1, . . . , xn−2}.
(b)A cell 2 that contains objects

a2
n−1

n , a′2
n−1

n , b2
n−1

n , b′2
n−1

n , v2
n−1

n , f2n−2

1 , t2
n−2

1 , . . . , f2n−2

n−1 , t2
n−2

n−1

(c) A cell 3 which contains object β3(n−1) and (cod(φ))2
n

e .

118 M.J. Pérez-Jiménez, P. Sośık

By applying rules (1), (2), (3), (4), (5), (6), (7), (8), (20), (36), and (37) at step
3n − 2, and rules (9), (10), (11), (12), (13), (14), (15), (16), (17, (18), (31), (32),
(33), (34),(36), and (37) at step 3n − 1, and rules (1, Bn+1/λ, 0), (1, B

′
n+1/λ, 0)

(2, wn/E1, 0), (35), (36), and (37) at step 3n, we reach the following configuration
C3n+1:

• There are 2n cells 1 which contain object E1 and each of them encodes a
different truth assignment of the set {x1, . . . , xn}.

• There is a cell 2 which contains objects A2n+1

n+1 , A′2n+1

n+1 , α3n+1 , yes , no.

• There is a cell 3 which contains object β3n+1 and (cod(φ))2
n

e .

In this way, after the (3n + 1)–th step the generation stage finishes and the
checking stage starts. This stage spends 2m steps and consists of m loops each
of them spending 2 steps.

At the first step of the j–th loop (1 ≤ j ≤ m), objects ei,j and ei,j from cell
3 are traded for objects Ej from cell 1, in the case that cell 1 encodes a truth
assignment making clauses C1, . . . , Cj true. Simultaneously, in cell 2 counter α
continue evolving and objects yes and no remain unchanged. In cell 3, counter β
continue evolving, and object Ej appears kj times, where kj is the number of cells
labelled by 2 encoding a truth assignment making clauses C1, . . . , Cj true.

At the second step of the j–th loop (1 ≤ j ≤ m), rules (41) produce objects
Ti, Ej+1 in each cell 1 encoding a truth assignment making clauses C1, . . . , Cj

true. Simultaneously, in cell 2 counter α continue evolving and objects yes and no

remain unchanged. In cell 3, counter β, and objects Ej+1 are removed by applying
rule (5).

At the end of the checking stage, there are 2n cells labelled by 1 at configuration
C(3n+1)+2m, and the formula φ is satisfiable if and only if there is, at least, one
of such cell which contains object Em+1. Also, there is a cell labelled by 2 which
contains objects yes, no, α(3n+1)+2m, and a cell labelled by 3 which contains object
β(3n+1)+2m and some irrelevant objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ m.
Irrelevant objects are those which remain unchanged at the following computation
steps and do not take part in the application of any rule of the system.

The output stage starts at the ((3n + 1) + 2m + 1)-th step, and spends 3
steps.

– Affirmative answer : If a truth assignment encoded by a cell 1 makes the
formula φ true, then an object Em+1 appears in that cell. By applying rule
(46) one (and only one) object Em+1 is replaced by objects yes and α3n+1+2m

from cell 2. At the next step, object yes from cell 1 is exchanged for object
β3n+1+2m+1 from cell 2. Finally, at step 3n+ 1 + 2m+ 3 object yes from cell
3 is sent out to the environment by applying rule (50), and the computation
halts.

– Negative answer : If none of the truth assignments encoded by a cell 1 makes
the formula φ true, then object Em+1 does not appear at any cell labelled by
1. Thus, rule (46) is not applicable at configuration C(3n+1)+2m, and only rule

Improving the Efficiency of Tissue P Systems with Cell Separation 119

(37) is applicable and produces object β3n+1+2m+1 in cell 3. Then, only rule
(48) is applicable at configuration C(3n+1)+2m+1 and replaces object α3n+1+2m

from cell 2 by object β3n+1+2m+1 from cell 3. Finally, at step 3n+ 1+ 2m+ 3
objects no and β3n+1+2m+1 from cell 2 are sent out to the environment by
applying rule (49), and the computation halts.

6 A Formal Verification

The aim of this section is to present a formal proof that the family of recognizer
tissue P systems with cell separation constructed in the previous section solves in
a uniform way and polynomial time the SAT problem, according to Definition 1.

6.1 Polynomial Uniformity of the Family

In this subsection, we shall show that the family

Π = {Π(⟨m,n⟩) | m,n ∈ IN}

defined above is polynomially uniform by Turing machines. To this aim we prove
that Π(⟨m,n⟩) is built in polynomial time with respect to the size parameter m
and n of instances of the SAT problem.

It is easy to check that the rules of a system Π(⟨m,n⟩) of the family are
recursively defined from the values m and n. The amount of resources to build an
element of the family is of a polynomial order in the number n of the variables
and the number m of clauses, as shown below:

1. Size of the alphabet: 2mn2 + 5mn+ 3n2 + 5m+ 27n+ 12 ∈ Θ(mn2).
2. Initial number of cells: 3 ∈ Θ(1).
3. Initial number of objects: 12 ∈ Θ(1).
4. Number of rules: mn2 + 3mn+ 3n2 + 5m+ 30n+ 12 ∈ Θ(mn2).
5. Maximal length of a rule: 3 ∈ Θ(1).

Therefore, there exists a deterministic Turing machine that builds the system
Π(⟨m,n⟩) in a polynomial time with respect to m and n.

6.2 Soundness and Completeness of the Family

Let us start by fixing some notations that will allow us to describe the invariants,
appearing in the computation, in a simpler way.

Let {x1, . . . , xi} a set of propositional variables. A truth assignment of
{x1, . . . , xi} will be indistinctly denoted by:

• σi = (α1, . . . , αi), where αj ∈ {T, F}.
• τi = (β1, . . . , βi), where βj ∈ {T ′, F ′}.
• ϵi = (γ1, . . . , γi), where γj ∈ {t, f}.

120 M.J. Pérez-Jiménez, P. Sośık

The 2i truth assignment of the set {x1, . . . , xi} will be indistinctly denoted by
{σi,1, . . . , σi,2i}, {τi,1, . . . , τi,2i}, or {ϵi,1, . . . , ϵi,2i}, respectively. Notice that given
a truth assignment σi,j (1 ≤ j ≤ 2i) of {x1, . . . , xi}, we can briefly write the same
truth assignment with primes as τi,j , or in lowercase as ϵi,j .

Let φ = C1 ∧ · · · ∧ Cm, where Cj = lj,1 ∨ · · · ∨ lj,rj , 1 ≤ j ≤ m, and each lj,k
is an element of the set Var(φ) = {xi,¬xi | 1 ≤ i ≤ n}. We denote

cod(φ) = {xi,j : xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪
{xi,j : ¬xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

(cod(φ))e = {ei,j : xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪
{ei,j : ¬xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

(cod(φ))te = {eti,j : xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪
{eti,j : ¬xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

For each k (1 ≤ k ≤ n) we denote

(cod(φ))e,>k = (cod(φ))e − ({ei,j : xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j ≤ k} ∪
{ei,j : ¬xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j ≤ k})

(cod(φ))te,>k = (cod(φ))te − ({eti,j : xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j ≤ k} ∪
{eti,j : ¬xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j ≤ k})

For each i, j, k (1 ≤ i, k ≤ n, 1 ≤ j ≤ m) we denote

(cod(φ))di,j,k
= {di,j,k : xi ∈ Cj} ∪ {di,j,k : ¬xi ∈ Cj}

(cod(φ))tdi,j,k
= {dti,j,k : xi ∈ Cj} ∪ {dti,j,k : ¬xi ∈ Cj}

The 2n cells labelled by 1 generated by the system will be enumerated by
(1, 1), (1, 2), . . . , (1, 2n−1), (1, 2n−1+1), . . . , (1, 2n), in such a way that cells labelled
by (1, 1), (1, 2), . . . , (1, 2n−1) contain Tn and the values of the truth assignment
without primes σn−1,1, . . . , σn−1,2n−1 of the set {x1, . . . , xn−1}, and cells labelled
by (1, 2n−1 + 1), . . . , (1, 2n) contain F ′

n and the values of the truth assignment
with primes τn−1,1, . . . , τn−1,2n−1 of the set {x1, . . . , xn−1}. If C = (C0, C1, . . .) is a
computation of the tissue P system Π(⟨m,n⟩) and l is the label of a cell, then we
denote by Ci(l) the contents of cell l at configuration Ci.

Theorem 6.1 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). For every i (1 ≤ i ≤ n− 1), we have the following:

(1) At configuration C3i:
(a)There are 2i cells labelled by 1 from which:

⋆ 2i−1 cells contain objects Ti, , Ai+1 , Bi+1. Moreover, each of them con-
tains a different truth assignment σi−1,j of the set {x1, . . . , xi−1}.

⋆ 2i−1 cells contain objects F ′
i , , A

′
i+1 , B

′
i+1. Moreover, each of them con-

tains a different truth assignment τi−1,j of the set {x1, . . . , xi−1}.
(b) There is a cell labelled by 2. This cell contains objects α3i, yes, no, and

Improving the Efficiency of Tissue P Systems with Cell Separation 121

⋆ If i < n− 1 then it contains objects

a2
i

i+1, a
′2i
i+1, b

2i

i+1, b
′2i
i+1, v

2i

i+1, t
2i−1

1 f2i−1

1 , . . . , t2
i−1

i f2i−1

i ,

q2
i−1

1,i+1, . . . , q
2i−1

i+1,i+1

⋆ If i = n− 1 then it contains objects

a2
i

i+1, a
′2i
i+1, b

2i

i+1, b
′2i
i+1, v

2i

i+1, t
2i−1

1 f2i−1

1 , . . . , t2
i−1

i f2i−1

i

(c) There is a cell labelled by 3. This cell contains object β3i, and

⋆ If 3i ≤ n then it also contains (cod(φ))2
3i

di,j,3i

⋆ If 3i > n then it also contains (cod(φ))2
n

e

(2) At configuration C3i+1:

(a)There are 2i cells labelled by 1.
⋆ Each of them contains objects ai+1, a

′
i+1, bi+1, b

′
i+1.

⋆ Each of them contains a different truth assignment ϵi,j of the set
{x1, . . . , xi}.

(b) There is a cell labelled by 2. This cell contains objects

A2i−1

i+1 , A′2i−1

i+1 , B2i−1

i+1 , B′2i−1

i+1 , y2
i+1

i+1 , α3i+1, yes, no

T 2i−1

i σi−1,1 . . . σi−1,2i−1 F ′2i−1

i τi−1,1 . . . τi−1,2i−1

Moreover, if i < n− 1 then it also contains objects

r2
i

1,i+1 , . . . , r
2i

i+1,i+1

(c) There is a cell labelled by 3. This cell contains object β3i+1, and

⋆ If 3i+ 1 ≤ n then it also contains (cod(φ))2
3i+1

di,j,3i+1

⋆ If 3i+ 1 > n then it also contains (cod(φ))2
n

e

(3) At configuration C3i+2:

(a)There are 2i cells labelled by 1.
⋆ Each of them contains objects

Ai+2, A
′
i+2, Bi+2, B

′
i+2, S, Ti+1, F

′
i+1

⋆ Each of them contains a different truth assignment σi,j of the set
{x1, . . . , xi}, as well as an identical copy, τi,j, but for primes.

(b) There is a cell labelled by 2. This cell contains objects α3i+2, yes, no, and
such that:
⋆ If i < n− 1 then it also contains objects

c2
i+1

i+1 , z2
i+1

i+1 , w2i+1

i+1 , , s2
i

1 , . . . , s2
i

i+1 , u
2i

1,i+1 , . . . , u
2i

i+1,i+1

122 M.J. Pérez-Jiménez, P. Sośık

⋆ If i = n− 1 then it also contains objects w2i+1

i+1 .
(c) There is a cell labelled by 3. This cell contains object β3i+2, and such that:

⋆ If 3i+ 2 ≤ n then it also contains (cod(φ))2
3i+2

di,j,3i+2

⋆ If 3i+ 2 > n then it also contains (cod(φ))2
n

e

Proof: By induction on i. Let us start analyzing the basic case i = 1.
At the initial configuration we have:C0(1) = {A1, B1}

C0(2) = {a1, a′1, b1, b′1, v1, q1,1, α0, yes, no}
C0(3) = {β0} ∪ cod(φ)

Then, rules (1) and (3) allow to exchange objects A1, B1 from cell 1 for objects
a1, a

′
1, b1, b

′
1 from cell 2. Simultaneously, the application of rules (20), (24) and (36)

produce objects y21 , r1,1, α1 in cell 2. Rule (37) produces object β1 in cell 3, and

rule (38) produce objects d2i,j,1 if xi,j ∈ cod(φ), and objects d
2

i,j,1 if xi,j ∈ cod(φ),
in cell 3. Therefore,

C1(1) = {a1, a′1, b1, b′1}
C1(2) = {A1, B1, y

2
1 , r1,1, α1, yes, no}

C1(3) = {β1} ∪ {d2i,j,1 : xi,j ∈ cod(φ)} ∪ {d2i,j,1 : xi,j ∈ cod(φ)}

At configuration C1:

(a) Rules (11), (12), (13) and (14) produce objects B2S,B
′
2, T1A2, F

′
1A

′
2 in cell 1.

(b) Rules (15), (17), (21), (26) and (36) produce objects c1, c1, z
2
1w

2
1, s1u1,1, α2 in

cell 2.

(c) Rules (37) and (39) produce objects β2, d
22

i,j,2 with xi,j ∈ cod(φ), and d
22

i,j,2

with xi,j ∈ cod(φ) in cell 3.

That is,
C2(1) = {T1, A2, F

′
1, A

′
2, B2, S,B

′
2}

C2(2) = {c21, z21 , w2
1, s1, u1,1, α2, yes, no}

C2(3) = {β2} ∪ {d22i,j,2 : xi,j ∈ cod(φ)} ∪ {d2
2

i,j,2 : xi,j ∈ cod(φ)}

At configuration C2:

(a) Object S triggers separation rule (35) creating two new cells 1, one of them
(1,1) containing {A2, B2, T1}, and the other one (1,2) containing {A′

2, B
′
2, F

′
1}

.
(b) If 1 = i = n− 1 (that is, n = 2) rules (19), (22), (23), (27), and (36) produce

objects
b2b

′
2, v

2
2a

2
2a

′2
2 , t1f1, α3

in cell 2. Rule (30) remove object u1,1.

Improving the Efficiency of Tissue P Systems with Cell Separation 123

⋆ If 1 = i < n − 1 (that is, n > 2) rules (19), (22), (23), (27), (28) and (36)
produce objects

b2b
′
2, v

2
2 , a

2
2a

′2
2 , t1f1, q1,2q2,2, α3

in cell 2.
(c) If 3 = 3i ≤ n (that is, n > 2) rules (37), and (39) produce objects β3, d

23

i,j,3

with xi,j ∈ cod(φ), and d
23

i,j,3 with xi,j ∈ cod(φ) in cell 3.

⋆ If 3 = 3i > n (that is, n = 2) rules (37), and (40) produce objects β3, e
22

i,j with

xi,j ∈ cod(φ), and e2
2

i,j with xi,j ∈ cod(φ) in cell 3.

That is,

C3(1, 1) = {A2, B2, T1}
C3(1, 2) = {A′

2, B
′
2, F

′
1}

C3(2) = {a22, a′
2
2, b

2
2, b

′2
2, v

2
2 , t1, f1, α3, yes, no}, if n = 2

C3(2) = {a22, a′
2
2, b

2
2, b

′2
2, v

2
2 , t1, f1, q1,2, q2,2, α3, yes, no}, if n > 2

C3(3) = {β3} ∪ {e22i,j : xi,j ∈ cod(φ)} ∪ {e2
2

i,j : xi,j ∈ cod(φ)}, if n = 2

C3(3) = {β3} ∪ {d23i,j,3 : xi,j ∈ cod(φ)} ∪ {d2
3

i,j,3 : xi,j ∈ cod(φ)}, if n > 2

At configuration C3:
(a) Rules (1), (2), (3), (4), (5), and (8) replace objects

A2, A
′
2, B2, B

′
2, T1, F

′
1

from cell 1 by objects

a2, a
′
2, a2, a

′
2, b2, b

′
2, b2, b

′
2, t1, f1

from cell 2.
(b) Rules (20) and (36) produce objects y2

2

2 , α4 in cell 2. Moreover, if 1 = i < n−1
(that is, n > 2) then rule (25) produce objects r21,2, r

2
2,2.

(c) Rule (37) produces object β4 in cell 3. Moreover, if 4 = 3i + 1 ≤ n (that is,

3i ≤ n) then rule (39) produce objects d2
4

i,j,4 with xi,j ∈ cod(φ), and d
24

i,j,4 with
xi,j ∈ cod(φ) in cell 3.

⋆ If 4 = 3i+ 1 > n and n = 2, then objects e2
2

i,j , e
22

i,j in cell 3 do not evolve.

⋆ If 4 = 3i + 1 > n and n = 3, then rule (40) produce objects e2
3

i,j with xi,j ∈
cod(φ), and e2

3

i,j with xi,j ∈ cod(φ) in cell 3.

That is,

C4(1, 1) = {a2, a′2, b2, b′2, t1}
C4(1, 2) = {a2, a′2, b2, b′2, f1}
C4(2) = {A2, A

′
2, B2, B

′
2, T1, F

′
1, y

22

2 , α4, yes, no}, if n = 2

C4(2) = {A2, A
′
2, B2, B

′
2, T1, F

′
1, y

22

2 , α4, r
2
1,2, r

2
2,2, yes, no}, if n > 2

C4(3) = {β4} ∪ {e2ni,j : xi,j ∈ cod(φ)} ∪ {e2
n

i,j : xi,j ∈ cod(φ)}, if n = 2, 3

C4(3) = {β4} ∪ {d24i,j,4 : xi,j ∈ cod(φ)} ∪ {d2
4

i,j,4 : xi,j ∈ cod(φ)}, if n ≥ 4

124 M.J. Pérez-Jiménez, P. Sośık

At configuration C4:
(a) Rules (9), (11), (12), (13), and (14) produce objects

T1T
′
1, B3S,B

′
3, T2A3, F

′
2, A

′
3

in cell (1,1), and rules (10), (11), (12), and (13) produce objects

F1F
′
1, B3S,B

′
3, T2A3, F

′
2, A

′
3

in cell (1,2).
(b) Rule (36) produces object α5 in cell 2. Moreover, if 1 = i < n − 1 (that is,

n > 2) then rules (15), (16), (17), (18), (21), and (26) produce objects

c2, c2, c2, c2, z
22

2 w22

2 , s21u
2
1,2, s

2
2u

2
2,2

in cell 2.
⋆ If i = 1 = n − 1 (that is, n = 2), then rules (15), (16), (17), and (18) remove
objects A2, A

′
2, B2, B

′
2 from cell 2, and rule (21) produce objects w2

2. Rules
(31) and (34) remove objects T1, F

′
1 from cell 2.

(c) Rule (37) produces object β5 in cell 3. Moreover,

⋆ if 5 = 3i + 2 ≤ n (thus 3i + 1 < n) then rule (39) produce objects d2
5

i,j,5 with

xi,j ∈ cod(φ), and d
25

i,j,5 with xi,j ∈ cod(φ) in cell 3.

⋆ If 5 = 3i+ 2 > n and n = 2, 3, then objects e2
n

i,j , e
2n

i,j in cell 3 do not evolve.

⋆ If 5 = 3i + 2 > n and n = 4, then rule (40) produce objects e2
4

i,j with xi,j ∈
cod(φ), and e2

4

i,j with xi,j ∈ cod(φ) in cell 3.

That is,

C5(1, 1) = {A3, A
′
3, B3, B

′
3, S, T1, T

′
1, T2, F

′
2}

C5(1, 2) = {A3, A
′
3, B3, B

′
3, S, F1, F

′
1, T2, F

′
2}

C5(2) = {w22

2 , α5, yes, no}, if n = 2

C5(2) = {c222 , z2
2

2 , s21, u
2
1,2, s

2
2, u

2
2,2, w

22

2 , α5, yes, no}, if n > 2

C5(3) = {β5} ∪ {e2ni,j : xi,j ∈ cod(φ)} ∪ {e2
n

i,j : xi,j ∈ cod(φ)}, if n < 5

C5(3) = {β5} ∪ {d25i,j,5 : xi,j ∈ cod(φ)} ∪ {d2
5

i,j,5 : xi,j ∈ cod(φ)}, if n ≥ 5

Thus, the result of the theorem hold for i = 1.

By induction hypothesis, let i be such that 1 ≤ i < n − 1 and let us suppose
(1), (2), and (3) hold for i. Let us see that (1), (2), and (3) also hold for i+ 1.

Then we assume that:

C3i+2(1, 1) = {Ai+2, A
′
i+2, Bi+2, B

′
i+2, S, Ti+1, F

′
i+1, σi,1, τi,1}

. .
C3i+2(1, 2

i) = {Ai+2, A
′
i+2, Bi+2, B

′
i+2, S, Ti+1, F

′
i+1, σi,2i , τi,2i}

C3i+2(2) = {c2i+1

i+1 , z2
i+1

i+1 , w2i+1

i+1 , s2
i

1 , . . . , s2
i

i+1, u
2i

1,i+1, . . . u
2i

i+1,i+1, α3i+2, yes, no}
C3i+2(3) = {β3i+2} ∪ (cod(φ))2

3i+2

di,j,3i+2
, if 3i+ 2 ≤ n

C3i+2(3) = {β3i+2} ∪ (cod(φ))2
n

e , if 3i+ 2 > n

Improving the Efficiency of Tissue P Systems with Cell Separation 125

At configuration C3i+2:

(a) Object S triggers separation rule (35), creating 2i new cells 1 having a total
of 2i+1 cells labelled by 1 from which:
• 2i cells 1 contain objects Ai+2, Bi+2, Ti+1. Moreover, each of them contains

a different truth assignment σi,j of the set {x1, . . . , xi}.
• 2i cells 1 contain objects A′

i+2, B
′
i+2, F

′
i+1. Moreover, each of them contains

a different truth assignment τi,j of the set {x1, . . . , xi}.
(b) Rule (36) produces object α3i+3. Objects yes and no do not evolve at this

transition step.
⋆ If i+1 < n−1 (that is, n > i+2) rules (19), (22), (23), (27), and (25) produce
objects

b2
i+1

i+2 , b′
2i+1

i+2 , v2
i+1

i+2 , a2
i+1

i+2 , a′
2i+1

i+2 , t2
i

1 , f2i

1 , . . . , t2
i

i+1, f
2i

i+1, q
2i

1,i+2, . . . , q
2i

i+2,i+2

in cell 2.
⋆ If i + 1 = n − 1 (that is, n = i + 2) rules (19), (22), (23), and (27) produce
objects

b2
i+1

i+2 , b′
2i+1

i+2 , v2
i+1

i+2 , a2
i+1

i+2 , a′
2i+1

i+2 , t2
i

1 , f2i

1 , . . . , t2
i

i+1, f
2i

i+1

in cell 2. Rule (30) erases objects u2i

1,i+1, . . . , u
2i

i+1,i+1 from cell 2.
(c) Rule (37) produces object β3i+3. Moreover,

⋆ If 3i+ 3 ≤ n (that is, n > 3i+ 2) rule (39) produces (cod(φ))2
3i+3

di,j,3i+3
in cell 3.

⋆ If n < 3i+ 2, then objects from (cod(φ))2
n

e do not evolve.
⋆ If n = 3i + 2, then rule (40) produces (cod(φ))2

n

e from (cod(φ))2
n

di,j,n
in cell

labelled by 3.

Thus, the result holds for configuration C3(i+1).

At configuration C3(i+1):

(a) Rules (1), (2), (3), (4), (5), (6), (7), and (8) trade objects

Ai+2, A
′
i+2, Bi+2, B

′
i+2, T1, . . . , Ti+1, T

′
1, . . . , T

′
i+1, F1, . . . , Fi+1, F

′
1, . . . , F

′
i+1

from cell 1 for objects

ai+2, a
′
i+2, bi+2, b

′
i+2, f1, t1, . . . , fi+1, ti+1

from cell 2. Then, we have 2i+1 cells labelled by 1 such that each of them con-
tains objects ai+2, a

′
i+2, bi+2, b

′
i+2 and also contain a different truth assignment

ϵi+1,j of the set {x1, . . . , xi+1}.
(b) Rule (36) produces object α3i+4. Objects yes and no do not evolve at this

transition step. After the interchange of objects with cell 1, cell 2 contains
objects

A2i

i+2, A
′2i
i+2, B

2i

i+2, B
′2i
i+2, T

2i

i+1, F
′2i
i+1, σi,1, . . . , σi,2i , τi,1, . . . , τi,2i

126 M.J. Pérez-Jiménez, P. Sośık

⋆ If i + 1 < n − 1 (that is, n > i + 2) then rules (20) and (25) produce objects

y2
i+2

i+2 , r2
i+1

1,i+2, . . . , r
2i+1

i+2,i+2 in cell 2.

⋆ If i+ 1 = n− 1 (that is, n = i+ 2) rule (20) produces objects y2
i+2

i+2 in cell 2.
(c) Rule (37) produces object β3(i+1)+1. Moreover,

⋆ If n > 3(i+ 1), then rule (39) produces (cod(φ))2
3(i+1)+1

di,j,3(i+1)+1
in cell 3.

⋆ If n < 3(i+ 1), then objects from (cod(φ))2
n

e do not evolve.
⋆ If n = 3(i+1), then rule (40) produces (cod(φ))2

n

e from (cod(φ))2
n

di,j,n
in cell 3.

Hence, the result holds for the configuration C3(i+1)+1.

At configuration C3(i+1)+1:

(a) Rules (9), (10), (11), and (12) produce objects

Ti+2Ai+3, F
′
i+2A

′
i+3, F1F

′
1, T1T

′
1, . . . , Fi+1F

′
i+1, Ti+1T

′
i+1, Bi+3, S,B

′
i+3

in cell 1. Specifically, there are 2i+1 cells labelled by 1 such that each of them
contains objects Ai+3, A

′
i+3, Bi+3, S,B

′
i+3, Ti+2, F

′
i+2, and also contains a dif-

ferent truth assignment σi+1,j of the set {x1, . . . xi+1}, as well as an identical
copy τi+1,j of the set {x1, . . . xi+1} but for primes.

(b) Rule (36) produces object α3i+5. Objects yes and no do not evolve at this
transition step. Moreover,

⋆ If i+1 < n− 1 (that is, n > i+2) then rules (15), (16), (17) and (18) produce

objects c2
i

i+2, c
2i

i+2, c
2i

i+2, c
2i

i+2 (that is, c2
i+2

i+2) in cell 2. Also, rules (31), (32), (33)
and (34) erase objects Ti, T

′
i , Fi, F

′
i from cell 2. Rules (21) and (26) produce

objects

z2
i+2

i+2 , w2i+2

i+2 , s2
i+1

1 , u2i+1

1,i+2, . . . , s
2i+1

i+2 , u2i+1

i+2,i+2

⋆ If i+ 1 = n− 1 (that is, n = i+ 2) rules (15), (16), (17), (18), (31), (32), (33)
and (34) erase objects

Ai+2, A
′
i+2, Bi+2, B

′
i+2, Ti, T

′
i , Fi, F

′
i

from cell 2. Also rule (21) produces object w2i+2

i+2 ≡ w2n

n .
(c) Rule (37) produces object β3(i+1)+2 in cell 3. Moreover,

⋆ If n > 3(i+ 1) + 1, then rule (39) produces (cod(φ))2
3(i+1)+2

di,j,3(i+1)+2
in cell 3.

⋆ If n < 3(i+ 1) + 1, then objects from (cod(φ))2
n

e do not evolve.
⋆ If n = 3(i + 1) + 1, then rule (40) produces (cod(φ))2

n

e from (cod(φ))2
n

di,j,n
in

cell 3.

Hence, the result holds for configuration C3(i+1)+2.

Then the proof of the theorem completes. �

Theorem 6.2 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C3n, we have the following:

(a)There are 2n cells labelled by 1 from which:

Improving the Efficiency of Tissue P Systems with Cell Separation 127

⋆ 2n−1 cells contain objects Tn, , An+1. Moreover, each of them also contains
a different truth assignment σn−1,j of the set {x1, . . . , xn−1}.

⋆ 2n−1 cells contain objects F ′
n, , A

′
n+1. Moreover, each of them also contains

a different truth assignment τn−1,j, of the set {x1, . . . , xn−1}.
(b) There is a cell labelled by 2. This cell contains objects E2n

1 α3n yes no.
(c) There is a cell labelled by 3. This cell contains objects β3n, and (cod(φ))2

n

e .

Proof: From Theorem 6.1 for i = n−1 we deduce that at configuration C3(n−1)+2 =
C3n−1 we have:

• There are 2n−1 cells labelled by 1 such that:
(a) Each of them contains objects An+1, A

′
n+1, Bn+1, B

′
n+1, S, Tn, F

′
n.

(b) Each of them contains a different truth assignment σn−1,j of the set
{x1, . . . , xn−1} as well as an identical copy τn−1,j but for primes.

• There is a cell labelled by 2 which contains objects w2n

n , α3(n−1)+2 = α3n−1,
yes, no.

• There is a cell labelled by 3 which contains object β3(n−1)+2 = β3n−1, and

objects from (cod(φ))2
n

e (because 3(n− 1) + 2 > n)).

By applying rules (1, Bn+1/λ, 0) and (1, B′
n+1/λ, 0), objects Bn+1 and B′

n+1 are
removed from cell 1. By applying separation rule (35), each cell 1 creates two new
cells labelled by 1: one of them containing objects with primes, and the other
containing objects without primes. That is, at configuration C3n we have 2n cell 1
such that:

(a) 2n−1 cells contain objects Tn, An+1. Moreover, each of them contains a different
truth assignment σn−1,j of the set {x1, . . . , xn−1}.

(b) 2n−1 cells contain objects F ′
n, A

′
n+1. Moreover, each of them contains a different

truth assignment τn−1,j of the set {x1, . . . , xn−1}.

Rule (36) produces object α3n in cell 2. Rule (2, wn/E1, 0) produces objects E
2n

1

in cell 2. Neither objects yes or no evolve at this transition step. That is,

C3n(2) = {E2n

1 , α3n, yes, no}

Rule (37) produces object β3n in cell 2. Objects from (cod(φ))2
n

e do not evolve at
this transition step. That is,

C3n(3) = {β3n} ∪ (cod(φ))2
n

e

�

Theorem 6.3 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,nrangle). At configuration C3n+1, we have the following:

(a)There are 2n cells labelled by 1 which contain object E1. Besides,

128 M.J. Pérez-Jiménez, P. Sośık

⋆ 2n−1 of those cells, enumerated by (1, 1), . . . (1, 2n−1), contain object Tn,
and each of them contains a different truth assignment σn−1,j of the set
{x1, . . . , xn−1}.

⋆ 2n−1 of those cells, enumerated by (1, 2n−1 + 1), . . . (1, 2n), contain object
F ′
n, and each of them contains a different truth assignment τn−1,j of the set

{x1, . . . , xn−1}.
(b) There is a cell labelled by 2. This cell contains objects

α3n+1 yes noA
2n−1

n+1 A′2n−1

n+1 .

(c) There is a cell labelled by 3. This cell contains objects β3n+1, and (cod(φ))2
n

e .

Proof: At configuration C3n:

(a) Rules (1, An+1/E1, 2) and (1, A′
n+1/E1, 2) exchange objects An+1, A

′
n+1 from

cell 1 for objects E1 from cell 2. Hence, there are 2n cells labelled by 2 each of
them containing object E1. Besides:
⋆ 2n−1 of those cells, enumerated by (1, 1), . . . (1, 2n−1), contain object Tn,

and each of them contains a different truth assignment σn−1,j of the set
{x1, . . . , xn−1}.

⋆ 2n−1 of those cells, enumerated by (1, 2n−1 + 1), . . . (1, 2n), contain object
F ′
n, and each of them contains a different truth assignment τn−1,j of the set

{x1, . . . , xn−1}.
(b)Rule (36) produces object α3n+1 in cell 2. Objects yes and no do not evolve

at this transition step. That is,

C3n+1(2) = {A2n−1

n+1 , A
′2n−1

n+1 , α3n+1, yes, no}

(c) Rule (37) produces object β3n+1 in cell 2. Objects from (cod(φ))2
n

e do not
evolve at this transition step. That is,

C3n+1(3) = {β3n+1} ∪ (cod(φ))2
n

e

�

In this way, the generating stage finishes at step 3n+1 and the checking stage
would start at the next step.

Theorem 6.4 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C(3n+1)+1, the following holds:

(a)There are 2n cells labelled by 1. Besides,

⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤ t ≤ 2n,
makes the clause C1 true, then
– If 1 ≤ t ≤ 2n−1 then it contains ei,1 + (σn,s − {Ti}), for some i such

that xi ∈ C1, or it contains ei,1 + (σn,s − {Fi}), for some i such that
¬xi ∈ C1.

Improving the Efficiency of Tissue P Systems with Cell Separation 129

– If 2n−1 + 1 ≤ t ≤ 2n then it contains ei,1 + (τn,s − {T ′
i}), for some i

such that xi ∈ C1, or it contains ei,1 + (τn,s − {F ′
i}), for some i such

that ¬xi ∈ C1.
⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤ t ≤ 2n,

makes clause C1 false , then their contents coincide with the corresponding
contents in the previous configuration C3n+1. In particular, that cell does
not contain any object ei,1 nor ei,1.

(b) There is a cell labelled by 2. This cell contains objects α(3n+1)+1, yes, no.
(c) There is a cell labelled by 3. This cell contains:

⋆ k1 copies of object E1, being k1 the number of truth assignments making
clause C1 of φ true.

⋆ (cod(φ))2
n

e,>1 representing 2n copies of the objects ei,j and ei,j such that
j > 1 and xi ∈ Cj in the first case, and ¬xi ∈ Cj in the second one.

⋆ Object β(3n+1)+1.
⋆ Some irrelevant objects of the type Ti, T

′
i , Fi, F

′
i that will dissappear at the

next step.
⋆ Some irrelevant objects of the type ei,1, ei,1 that will not be considered any-

more.

Proof: At configuration C3n+1:

(a) Rules of type (41) are applied to cells labelled by 1 trading objects

E1, Ti, T
′
i , Fi, F

′
i

from cell 1 for objects ei,1, ei,1 from cell 3 according to the following conditions:
if a cell 1 encodes a truth assignment making clause C1 true, then it replaces
objects E1Ti or E1T

′
i (respectively, objects E1Fi or E1F

′
i) by objects ei,1 (re-

spectively, objects ei,1), if xi ∈ C1 (respectively, if ¬xi ∈ C1). This transition
step is non-deterministic because object E1 can choose different truth values
T, T ′, F or F ′ from cells labelled by 1 making clause C1 true.
Let us suppose that the truth assignment σn,s associated with a cell (1, t)
(1 ≤ t ≤ 2n) makes the clause C1 true (on the contrary, rule (41) is not
applicable to configuration C3n+1, so C(3n+1)+1(1, t) = C(3n+1)(1, t)).
⋆ Case 1: 1 ≤ t ≤ 2n−1.

If xi ∈ C1 then objects E1Ti from cell (1, t) are replaced by object ei,1 from
cell 3. So, the contents of cell (1, t) is ei,1 + (σn,s − {Ti}).
If ¬xi ∈ C1 then objects E1Fi from cell (1, t) are replaced by object ei,1
from cell 3. So, the contents of cell (1, t) is ei,1 + (σn,s − {Fi}).

⋆ Case 2: 2n−1 + 1 ≤ t ≤ 2n.
If xi ∈ C1 then objects E1T

′
i from cell (1, t) are exchanged for object ei,1

from cell 3. So, the contents of cell (1, t) is ei,1 + (τn,s − {T ′
i}).

If ¬xi ∈ C1 then objects E1F
′
i from cell (1, t) are exchanged for object ei,1

from cell 3. So, the contents of cell (1, t) is ei,1 + (τn,s − {F ′
i}).

(b)Rules (15) and (16) remove objects A2n−1

n+1 , A′2n−1

n+1 from cell 2. Rule (36) pro-
duces object α3n+2. Hence, C3n+2(2) = {α3n+2, yes, no}.

130 M.J. Pérez-Jiménez, P. Sośık

(c) Rule (37) produces object β3n+2 in cell 3 which also contains:
⋆ A number k1 of copies of object E1 equal to the number of truth assignment

making clause C1 true.
⋆ (cod(φ))2

n

e,>1.
⋆ Garbagge objects Ti, T

′
i , Fi, F

′
i which will be removed at the next step.

⋆ Garbagge objects ei,1, ei,1 which will not be considered anymore.

�

Theorem 6.5 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). For every j (1 ≤ j ≤ m− 1) we have:

(1) At configuration C(3n+1)+2j, the following holds:
(a)There are 2n cells labelled by 1. Besides,

⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤ t ≤
2n, makes C1 ∧ · · · ∧ Cj true, then it contains object Ej+1. Moreover,
– If 1 ≤ t ≤ 2n−1 then it contains object Ti, for some i such that xi ∈

Cj, or it contains object Fi, for some i such that ¬xi ∈ Cj. Besides,
objects Ti and Fi of that cell 1 at configuration C(3n+1)+2j−1 remain
at configuration C(3n+1)+2j.

– If 2n−1 + 1 ≤ t ≤ 2n then it contains Ti, for some i such that
xi ∈ Cj, or it contains Fi, for some i such that ¬xi ∈ Cj. Besides,
objects T ′

i and F ′
i of that cell 1 at configuration C(3n+1)+2j−1 remain

at configuration C(3n+1)+2j.
⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤ t ≤

2n, makes C1 ∧ · · · ∧ Cj false, then their contents coincide with the
corresponding contents in the previous configuration C(3n+1)+2j−1. In
particular, that cell does not contain object Ej+1.

(b) There is a cell labelled by 2. This cell contains objects α(3n+1)+2j , yes, no.
(c) There is a cell labelled by 3. This cell contains:

⋆ (cod(φ))2
n

e,>j representing 2
n copies of the objects ei,j′ and ei,j′ such that

j′ > j and xi ∈ Cj′ in the first case, and ¬xi ∈ Cj′ in the second one.
⋆ Object β(3n+1)+2j.
⋆ Some irrelevant objects of the type ei,j′ , ei,j′ , with 1 ≤ j′ ≤ j that will

not be considered anymore.
(2) At configuration C(3n+1)+2j+1, the following holds:

(a)There are 2n cells labelled by 1. Besides,
⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤ t ≤

2n, makes C1 ∧ · · · ∧ Cj+1 true, then
– If 1 ≤ t ≤ 2n−1 then it contains ei,j+1 + (σn,s − {Ti}), for some i

such that xi ∈ Cj+1, or it contains ei,j+1 + (σn,s − {Fi}), for some
i such that ¬xi ∈ Cj+1.

– If 2n−1+1 ≤ t ≤ 2n then it contains ei,j+1+(τn,s−{T ′
i}), for some

i such that xi ∈ Cj+1, or it contains ei,j+1+(τn,s−{F ′
i}), for some

i such that ¬xi ∈ Cj+1.

Improving the Efficiency of Tissue P Systems with Cell Separation 131

⋆ If the truth assignment σn,s associated with a cell (1, t), where 1 ≤
t ≤ 2n, makes C1 ∧ · · · ∧ Cj+1 false, then their contents coincide with
the corresponding contents in the previous configuration C(3n+1)+2j. In
particular, that cell does not contain any object ei,j+1 nor ei,j+1.

(b) There is a cell labelled by 2. This cell contains objects α(3n+1)+2j+1, yes, no.
(c) There is a cell labelled by 3. This cell contains:

⋆ kj+1 copies of object Ej+1, being kj+1 the number of truth assignment
making clauses C1, . . . , Cj+1 of φ true.

⋆ (cod(φ))2
n

e,>(j+1) representing 2n copies of the objects ei,j′ and ei,j′ such

that j′ > j + 1 and xi ∈ Cj′ in the first case, and ¬xi ∈ Cj′ in the
second one.

⋆ Object β(3n+1)+2j+1.
⋆ Some irrelevant objects of the type Ti, T

′
i , Fi, F

′
i that will dissappear at

the next step.
⋆ Some irrelevant objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ j + 1 that

will not be considered anymore.

Proof: By induction on j. Let us start analyzing the basic case j = 1.
At configuration C(3n+1)+1:

(a) Rule (42) produces objects TiE2 in a cell 1 which contains object ei,1, and
produces objects FiE2 in a cell 1 which contains object ei,1. So, there are 2n

cells labelled by 1 such that:
⋆ If the truth assignment associated with a cell (1, t) makes clause C1 true,

then it contains objects E2. Moreover, it contains object Ti for some i such
that xi ∈ C1, or object Fi for some i such that xi ∈ C1. Besides, the
remaining objects at configuration C3n+2 stay unchanged at this transition
step.

⋆ If the truth assignment associated with a cell (1, t) makes clause C1 false,
then their contents coincide with the corresponding contents of the previous
configuration C(3n+1)+1.

(b)Only rule (36) is applicable to cell 2 at configuration C3n+2. So,

C3n+3(2) = {α(3n+1)+2, yes, no}

(c) Rule (37) produces object β3n+3 in cell 3. Rules (44) and (45) remove objects
E1, Ti, T

′
i , Fi, F

′
i from cell 3.

At configuration C(3n+1)+2:

(a) If the truth assignment σn,s associated with a cell (1, t) makes clause C2 true,
then
⋆ If 1 ≤ t ≤ 2n−1, rules (41) replace objects TiE2 from cell 1 by objects ei,2

from cell 3, for some i such that xi ∈ C2, or objects FiE2 from cell 1 by
objects ei,2 from cell 3, for some i such that xi ∈ C2. Hence, such a cell 1
contains

132 M.J. Pérez-Jiménez, P. Sośık{
ei,2 + (σn,s − {Ti}), if objects TiE2 have been exchanged
ei,2 + (σn,s − {Fi}), if objects FiE2 have been exchanged

⋆ If 2n−1 +1 ≤ t ≤ 2n, rule (41) either replaces objects TiE2 or objects T ′
iE2

by objects ei,2 from cell 3, for some i such that xi ∈ C2, either objects FiE2

or objects F ′
iE2 by objects ei,2 from cell 3, for some i such that xi ∈ C2.

Hence, such a cell 1 contains
ei,2 + (τn,s − {Ti}), if objects TiE2 have been exchanged
ei,2 + (τn,s − {T ′

i}), if objects T ′
iE2 have been exchanged

ei,2 + (τn,s − {Fi}), if objects FiE2 have been exchanged
ei,2 + (τn,s − {F ′

i}), if objects F ′
iE2 have been exchanged

(b)Only rule (36) is applicable to cell 2 at configuration C(3n+1)+2. So,

C3n+4(2) = {α(3n+1)+3, yes, no}

(c) Also rule (37) is applicable to cell 3 producing object β3n+4. Then, cell 3
contains:
– k2 copies of object E2, being k2 the number of truth assignment making

clauses C1, C2 of φ true.
– (cod(φ))2

n

e,>2 representing 2n copies of the objects ei,j′ and ei,j′ such that
j′ > 2 and xi ∈ Cj′ in the first case, and ¬xi ∈ Cj′ in the second one.

– Object β(3n+1)+3.
– Garbagge objects of the type Ti, T

′
i , Fi, F

′
i that will dissappear at the next

step.
– Garbagge objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ j + 1 that will not be

considered anymore.

By induction hypothesis, let j such that 1 ≤ j < m − 1 and let us the result
holds for j. Let us see that the result also holds for j + 1.

At configuration C(3n+1)+2j+1:

(a) Rule (42) produces objects TiEj+2 in a cell 1 which contains object ei,j , and
produces objects FiEj+2 in a cell 1 which contains object ei,j . So, there are 2

n

cells labelled by 1 such that:
⋆ If the truth assignment associated with a cell (1, t) makes C1 ∧ · · · ∧ Cj+2

true, then it contains objects Ej+2. Moreover, it contains object Ti for some
i such that xi ∈ Cj+2, or object Fi for some i such that xi ∈ Cj+2. Besides,
the remaining objects at configuration C(3n+1)+2j+1 stay unchanged at this
transition step.

⋆ If the truth assignment associated with a cell (1, t) makes C1 ∧ · · · ∧ Cj+2

false, then their contents coincide with the corresponding contents of the
previous configuration C(3n+1)+2j+1.

(b)Only rule (36) is applicable to cell 2 at configuration C(3n+1)+2j+1. So,

C(3n+1)+2j+2(2) = {α(3n+1)+2j+2, yes, no}

Improving the Efficiency of Tissue P Systems with Cell Separation 133

(c) Rule (37) produces object β(3n+1)+2j+2 in cell 3. Rules (44) and (45) remove
objects E1, Ti, T

′
i , Fi, F

′
i from cell 3.

At configuration C(3n+1)+2j+2:

(a) If the truth assignment σn,s associated with a cell (1, t) makes C1 ∧ · · · ∧Cj+2

true, then
⋆ If 1 ≤ t ≤ 2n−1, rules (41) replace objects TiEj+2 from cell 1 by objects

ei,j+2 from cell 3, for some i such that xi ∈ Cj+2, or objects FiEj+2 from
cell 1 by objects ei,j+2 from cell 3, for some i such that xi ∈ Cj+2. Hence,
such a cell 1 contains{

ei,j+2 + (σn,s − {Ti}) , if objects TiEj+2 have been exchanged
ei,j+2 + (σn,s − {Fi}) , if objects FiEj+2 have been exchanged

⋆ If 2n−1 + 1 ≤ t ≤ 2n, rules (41) either replace objects TiEj+2 or objects
T ′
iEj+2 from cell 1 by objects ei,j+2 from cell 3, for some i such that xi ∈

Cj+2, either objects FiEj+2 or objects F ′
iEj+2 from cell 1 by objects ei,j+2

from cell 3, for some i such that xi ∈ Cj+2. Hence, such a cell 1 contains
ei,j+2 + (τn,s − {Ti}), if objects TiEj+2 have been exchanged
ei,j+2 + (τn,s − {T ′

i}), if objects T ′
iEj+2 have been exchanged

ei,j+2 + (τn,s − {Fi}), if objects FiEj+2 have been exchanged
ei,j+2 + (τn,s − {F ′

i}), if objects F ′
iEj+2 have been exchanged

(b)Only rule (36) is applicable to cell 2 at configuration C(3n+1)+2j+2. So,

C(3n+1)+2j+3(2) = {α(3n+1)+2j+3, yes, no}

(c) Also rule (37) is applicable to cell 3 producing object β(3n+1)+2j+3. Then, cell
3 contains:
– kj+2 copies of object Ej+2, being kj+2 the number of truth assignment

making C1 ∧ · · · ∧ Cj+2 true.
– (cod(φ))2

n

e,>j+2 representing 2n copies of the objects ei,j′ and ei,j′ such that
j′ > j + 2 and xi ∈ Cj′ in the first case, and ¬xi ∈ Cj′ in the second one.

– Object β(3n+1)+2j+3.
– Garbagge objects of the type Ti, T

′
i , Fi, F

′
i that will dissappear at the next

step.
– Garbagge objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ j + 2 that will not be

considered anymore.

Hence, the result is also true for j + 1. Then the proof of the theorem completes.
�

Theorem 6.6 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C(3n+1)+2m, the following holds:

134 M.J. Pérez-Jiménez, P. Sośık

(a)There are 2n cells labelled by 1, and the formula φ is satisfiable if and only if
there is, at least, one of such cell which contains object Em+1.

(b) There is a cell labelled by 2. This cell contains objects α(3n+1)+2m, yes, no.
(c) There is a cell labelled by 3. This cell contains object β(3n+1)+2m, and some ir-

relevant objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ m that will not be considered
anymore.

Proof: From Theorem 6.5, at configuration C(3n+1)+2(m−1)+1 we have:
(a) There are 2n cells labelled by 1 each such that:

⋆ Let σn,s a truth assignment associated with a cell (1, t), where 1 ≤ t ≤ 2n,
making C1 ∧ · · · ∧ Cm true. Then
– If 1 ≤ t ≤ 2n−1 then it contains ei,m + (σn,s − {Ti}), for some i such

that xi ∈ Cm, or ei,m + (σn,s − {Fi}), for some i such that ¬xi ∈ Cm.
– If 2n−1+1 ≤ t ≤ 2n then it contains ei,m+(τn,s−{T ′

i}), for some i such
that xi ∈ Cm, or ei,m + (τn,s − {F ′

i}), for some i such that ¬xi ∈ Cm.
⋆ Let σn,s a truth assignment associated with a cell (1, t), where 1 ≤ t ≤ 2n,

making C1 ∧ · · · ∧ Cm false. Then their contents coincide with the corre-
sponding contents in the previous configuration C(3n+1)+2(m−1). In partic-
ular, that cell does not contain any object ei,m nor ei,m.

(b)There is a cell labelled by 2 which contains objects α(3n+1)+2(m−1)+1, yes, no.
(c) There is a cell labelled by 3 which contains object β(3n+1)+2(m−1)+1, and:

– km copies of object Em, being km the number of truth assignments making
clauses C1, . . . , Cm true, that is, km is the number of truth assignment
making true the formula φ.

– Some irrelevant objects of the type Ti, T
′
i , Fi, F

′
i that will dissappear at the

next step.
– Some irrelevant objects of the type ei,j′ , ei,j′ with 1 ≤ j′ ≤ m that will not

be considered anymore.

Then

(a) Rule (43) produces objects Em+1 in every cell 1 which encodes a truth assign-
ment making the formula φ true. Moreover, if a cell labelled by 1 encodes a
truth assignment making the formula φ false, then it does not contain object
Em+1.

(b)Rule (36) produces object α(3n+1)+2m in cell 2. Thus,
C(3n+1)+2m(2) = {α(3n+1)+2m, yes, no}

(c) Rules (44) and (45) remove objects Em+1, Ti, T
′
i , Fi, F

′
i from cell 3. In addition,

rule (37) is applicable to cell 3 producing object β(3n+1)+2m. Cell 3 also contains
irrelevant objects of the type ei,j′ , ei,j′ , with 1 ≤ j′ ≤ m, that appear at the
previous configuration. �

Theorem 6.7 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C(3n+1)+2m+1, the following holds:

(a)There are 2n cells labelled by 1. Besides,

Improving the Efficiency of Tissue P Systems with Cell Separation 135

⋆ If the formula φ is satisfiable, then there is one (and only one) cell labelled
by 1 which contains objects α(3n+1)+2m, yes.

⋆ If the formula φ is not satisfiable, then their contents coincide with the
contents in the previous configuration C(3n+1)+2m.

(b) There is a cell labelled by 2. Besides,
⋆ If the formula φ is satisfiable, then it contains objects Em+1, no.
⋆ If the formula φ is not satisfiable, then it contains objects

α(3n+1)+2m, yes, no.
(c) There is a cell labelled by 3. The contents of this cell is the same that in

the previous configuration C(3n+1)+2m, except object β(3n+1)+2m that evolves to
β(3n+1)+2m+1.

Proof: At configuration C(3n+1)+2m+1:

(a) There are 2n cells labelled by 1, and
⋆ If the formula φ is satisfiable, then there are cells labelled by 1 which contain

objects Em+1. Then, one (and only one) of these objects can be used to
apply rule (46), allowing its trade for objects α(3n+1)+2m, yes from cell 2.

⋆ If the formula φ is not satisfiable, then their contents coincide with the
contents in the previous configuration C(3n+1)+2m. In particular, rule (46)
can not be applied to any cell labelled by 1, because any such cell encodes
a truth assignment making the formula φ true.

(b)There is a cell labelled by 2 such that
⋆ If the formula φ is satisfiable, then

C(3n+1)+2m+1(2) = {Em+1, no}

⋆ If the formula φ is not satisfiable, then no rule of the system is applicable
to that cell 2. Therefore,

C(3n+1)+2m+1 = {α(3n+1)+2m, yes, no}

(c) There is a cell labelled by 3. Only rule (37) is applicable at this cell and produces
object β(3n+1)+2m+1.

�

Theorem 6.8 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C(3n+1)+2m+2, the following holds:

(a)There are 2n cells labelled by 1. Besides,

⋆ If the formula φ is satisfiable, then there is one (and only one) cell labelled
by 1 which contains objects α(3n+1)+2m and β(3n+1)+2m+1.

⋆ If the formula φ is not satisfiable, then their contents coincide with the
contents in the previous configuration C(3n+1)+2m+1.

(b) There is a cell labelled by 2. Besides,

136 M.J. Pérez-Jiménez, P. Sośık

⋆ If the formula φ is satisfiable, their contents coincide with the contents in
the previous configuration C(3n+1)+2m+1.

⋆ If the formula φ is not satisfiable, then it contains objects yes, no,
β(3n+1)+2m+1.

(c) There is a cell labelled by 3. Besides,
⋆ If the formula φ is satisfiable, then it contains object yes.
⋆ If the formula φ is not satisfiable, then it contains object α(3n+1)+2m.

Proof: At configuration C(3n+1)+2m+1:

(a) There are 2n cells labelled by 1, and
⋆ If the formula φ is satisfiable, there is one (and only one) such cell 1 which

contains objects α(3n+1)+2m, yes. By applying rule 47, object yes from such
cell is traded for object β(3n+1)+2m+1 from cell 3. Thus, there is one (and
only one) cell 1 which contains objects α(3n+1)+2m and β(3n+1)+2m+1.

⋆ If the formula φ is not satisfiable, then their contents coincide with the
contents at the previous configuration C(3n+1)+2m+1. In particular, rule (47)
cannot be applied to any cell labelled by 1.

(b)There is a cell labelled by 2. This cell verifies:
⋆ If the formula φ is satisfiable, then any rule is applicable to such cell. There-

fore,
C(3n+1)+2m+2(2) = {Em+1, no}

⋆ If the formula φ is not satisfiable, then rule (48) is applicable allowing the
exchange of object α(3n+1)+2m from cell 2 for object β(3n+1)+2m+1 from cell
3. Hence,

C(3n+1)+2m+2(2) = {β(3n+1)+2m+1, yes, no}

(c) There is a cell labelled by 3. This cell verifies:
⋆ If the formula φ is satisfiable, then rule (47) produces object yes in this

cell.
⋆ If the formula φ is not satisfiable, then rule (48) produces object α(3n+1)+2m

in this cell.

�

Theorem 6.9 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(⟨m,n⟩). At configuration C(3n+1)+2m+3, the following holds:

(a) If the formula φ is satisfiable, then yes ∈ C(3n+1)+2m+3(0).
(b) If the formula φ is not satisfiable, then no ∈ C(3n+1)+2m+3(0).
(c) The configuration C(3n+1)+2m+3 is a halting configuration.

Proof:

(a) Let us suppose that formula φ is satisfiable. Then no rule is applicable to
any cell labelled by 1 at configuration C(3n+1)+2m+2. Bearing in mind that
C(3n+1)+2m+2(2) = {Em+1, no}, and yes ∈ C(3n+1)+2m+2(3), only rule (50) is
applicable to configuration C(3n+1)+2m+2. Hence, yes ∈ C(3n+1)+2m+3(0).

Improving the Efficiency of Tissue P Systems with Cell Separation 137

(b) Let us suppose that formula φ is not satisfiable. Then no rule is applicable
to any cell labelled by 1 at configuration C(3n+1)+2m+2. Bearing in mind that
C(3n+1)+2m+2(2) = {β3n+1+2m+1, yes, no}, and α3n+1+2m ∈ C(3n+1)+2m+2(3),
only rule (49) is applicable to configuration C(3n+1)+2m+2. Hence, no ∈
C(3n+1)+2m+3(0).

(c) From (a) and (b), it is easy to check that no rule of the system is applicable to
configuration C(3n+1)+2m+3.

�

Corollary 6.10 The family Π is polynomially bounded.

Proof: From Theorem 6.9 we deduce that any computation C of the tissue P
system Π(⟨m,n⟩) spends (3n+1)+2m+3 = 3n+2m+4 transition steps exactly.

�
6.3 Computational Efficiency of TSC(3)

The family of tissue P systems with cell separation constructed in Section 5 verifies
the following:

(a) The defined family Π is consistent, in the sense that all systems of the family
are recognizer tissue P systems with cell separation: (1) the working alphabet Γ
has two distinguished objects yes and no, at least one copy of them present in
some initial multisets but none of them are present in E ; (2) the output region
iout is the environment; (3) all computations halt; and (4) if C is a computation
of a system, then either object yes or object no (but not both) has been released
into the environment, and only at the last step of the computation. Besides,
these systems use communication rules with length at most 3.

(b)The family Π is polynomially uniform by Turing machines (Subsection 5.1).
(c) (cod, s) is a pair of polynomial–time computable functions.
(d)The family Π is polynomially bounded with regard to (SAT, cod, s) (Corollary

5.10).
(e) The family Π is sound and complete with regard to (SAT, cod, s) (Subsection

5.2).

Therefore, according to Definition 1, the uniform family Π of tissue P systems
constructed in Section 5 solve the SAT problem in polynomial time with respect to
the number of variables and the number of clauses.

Hence, we have the following result:

Theorem 6.11 SAT ∈ PMCTSC(3).

Corollary 6.12 NP ∪ co−NP ⊆ PMCTSC(3).

Proof: It suffices to notice that the SAT problem is NP-complete, SAT∈
PMCTSC(3), and this complexity class is closed under polynomial-time reduction
and under complement.

�

138 M.J. Pérez-Jiménez, P. Sośık

7 Conclusions and Future Work

The space-time tradeoff method is used to efficiently solve computationally hard
problems in the framework of Membrane Computing. The efficiency of tissue P
systems with cell division for solving NP-complete problems has been previously
studied [4, 5, 20]. Cell division rules allow the duplication of all objects in the new
created cells except the object that activate the cell division operation. Therefore,
the cell division can be used to generate an exponential workspace, expressed in
terms of the number of cells and the number of objects, in linear time.

In the framework of tissue P systems with cell division, the length of commu-
nication rules provide a frontier for the tractability of decision problems. In [8] the
limitation on the efficiency of tissue P systems with cell division and communi-
cation rules of length 1 it has been established that only tractable problems can
be solved efficiently in that framework. Nevertheless, in [5] a linear time solution
to Vertex Cover problem by using a family of tissue P systems with cell division
and communication rules of length at most 3 has been provided. Hence, in tis-
sue P systems with cell division, passing from communication rules of length 1 to
communication rules of length at most 3 amounts to passing from non–efficiency
to efficiency, assuming that P ̸= NP.

Recently [15], cell separation rules have been introduced into tissue P systems,
inspired by the cellular fission, and its computational efficiency was investigated.
This kind of rules allows the creation of two new cells from one cell although
there is no replication of objects between the new cells, that is, the contents of
the cell is distributed between the new created cells, except the object triggering
the rule which is consumed. Therefore, by using cell separation it is possible to
construct an exponential workspace, expressed only in terms of the number of
cells, in linear time. In [15] two important results were obtained in that framework:
(a) only tractable problems can be efficiently solved by using cell separation and
communication rules with length at most 1, and (b) a uniform and linear time
solution to the SAT problem by using cell separation and communication rules
with length at most 8 was presented.

In this paper, the previous result has been improved by showing a family of tis-
sue P systems with cell separation and communication rules with length at most 3,
solving the SAT problem in a uniform way and linear time. Hence, with regard to
tissue P systems with cell separation, a similar result concerning the frontier of
tractability can be formulated in the new framework: by using families of tissue
P systems with cell separation, passing from communication rules of length 1 to
communication rules of length at most 3, amounts to passing from non–efficiency
to efficiency, assuming that P ̸= NP. It is worth to highlight that separation
rules seem weaker than division rules from the point of view of computational
complexity.

Next, we propose several open problems related to the efficiency of tissue P
systems:

Improving the Efficiency of Tissue P Systems with Cell Separation 139

(a) What is the computational efficiency of tissue P systems with cell separation or
with cell division, and communication rules with length at most 2 are allowed?

(b)What happens if only symport (respectively, only antiport) rules are allowed
in tissue P systems with cell division or cell separation?

(c) In [4] tissue P systems with cell division and without environment were intro-
duced, that is, tissue P systems where the alphabet E of the environment is
empty. In this kind of P systems there are no objects appearing in the sys-
tem in arbitrary copies each. What is the relationship between the polynomial
complexity classes of tissue P systems with cell division (respectively, with cell
separation) and the corresponding tissue P systems without environment?

Acknowledgements
The work of the first author was supported by Project TIN2009-13192 of the Minis-
terio de Ciencia e Innovación of Spain and Project of Excellence with Investigador
de Reconocida Vaĺıa, from Junta de Andalućıa, grant P08 – TIC 04200. The work
of the second author was supported by the Silesian University in Opava under the
Student Funding Scheme, project no SGS/7/2011.

This work was also supported by the European Regional Development Fund in
the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

References

1. Alhazov, A., Freund, R. and Oswald, M. Tissue P Systems with Antiport Rules ans
Small Numbers of Symbols and Cells. Lecture Notes in Computer Science 3572,
(2005), 100–111.

2. Bernardini, F. and Gheorghe, M. Cell Communication in Tissue P Systems and Cell
Division in Population P Systems. Soft Computing 9, 9, (2005), 640–649.

3. Ciobanu, G, Păun, Gh. and Pérez-Jiménez, M.J. Applications of Membrane Com-
puting, Natural Computing Series, Springer, 2006.

4. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A. and Pérez-Jiménez, M.J.
Tissue-like P systems without environment. In M.A. Mart́ınez-del-Amor, Gh. Păun,
I. Pérez-Hurtado, A. Riscos-Núñez (eds.) Proceedings of the Eight Brainstorming
Week on Membrane Computing, Sevilla, Spain, February 1-5, 2010, Fénix Editora,
Report RGNC 01/2010, pp. 53–64.

5. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez , A.
and Romero–Campero, F.J. Computational efficiency of cellular division in tissue-
like P systems. Romanian Journal of Information Science and Technology 11, 3,
(2008), 229–241.

6. Freund, R., Păun, Gh. and Pérez-Jiménez, M.J. Tissue P Systems with channel
states. Theoretical Computer Science 330, (2005), 101–116.

7. Garey, M.R. and Johnson, D.S. Computers and Intractability A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, (1979).

8. Gutiérrez-Escudero, R., Pérez-Jiménez, M.J. and Rius–Font, M. Characterizing
tractability by tissue-like P systems. Lecture Notes in Computer Science 5957,
(2010), 289–300.

140 M.J. Pérez-Jiménez, P. Sośık

9. Ito, M., Mart́ın Vide, C. and Păun, Gh. A characterization of Parikh sets of ET0L
laguages in terms of P systems. In M. Ito, Gh. Păun, S. Yu (eds.) Words, Semigroups
and Transducers, World Scientific, Singapore, 2001, 239-254.

10. Krishna, S.N., Lakshmanan K. and Rama, R. Tissue P Systems with Contextual and
Rewriting Rules. Lecture Notes in Computer Science 2597, (2003), 339–351.

11. Lakshmanan K. and Rama, R. On the Power of Tissue P Systems with Insertion and
Deletion Rules. In A. Alhazov, C. Mart́ın-Vide and Gh. Păun (eds.) Preproceedings
of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, (2003),
pp. 304–318.

12. Mart́ın Vide, C. Pazos, J. Păun, Gh. and Rodŕıguez Patón, A. A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science
2387, (2002), 290–299.

13. Mart́ın Vide, C. Pazos, J. Păun, Gh. and Rodŕıguez Patón, A. Tissue P systems.
Theoretical Computer Science, 296, (2003), 295–326.

14. Pan, L. and Ishdorj, T.-O. P systems with active membranes and separation rules.
Journal of Universal Computer Science, 10, 5, (2004), 630–649.

15. Pan, L. and Pérez-Jiménez, M.J. Computational complexity of tissue–like P systems.
Journal of Complexity, 26, 3 (2010), 296–315.

16. Păun, Gh. Computing with membranes. Journal of Computer and System Sciences,
61, 1, (2000), 108–143. Also in Turku Center for Computer Science–TUCS, Report
208, November 1998.

17. Păun, Gh. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, pp. 94-115.

18. Păun, Gh. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).
19. Păun, A. and Păun, Gh. The power of communication: P systems with sym-

port/antiport. New Generation Computing, 20, 3, (2002), 295–305.
20. Păun, Gh., Pérez-Jiménez, M.J. and Riscos-Núñez, A. Tissue P System with cell

division. In. J. of Computers, Communications and Control, 3, 3, (2008), 295–303.
21. Gh. Păun, G. Rozenberg and A. Salomaa. The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
22. Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. Complexity

classes in models of cellular computing with membranes. Natural Computing, 2, 3
(2003), 265–285.

23. Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. A polynomial
complexity class in P systems using membrane division. Journal of Automata, Lan-
guages and Combinatorics, 11, 4, (2006), 423-434.

24. Prakash, V.J. On the Power of Tissue P Systems Working in the Maximal-One Mode.
In A. Alhazov, C. Mart́ın-Vide and Gh. Păun (eds.). Preproceedings of the Workshop
on Membrane Computing, Tarragona, Report RGML 28/03, (2003), pp. 356–364.

25. ISI web page http://esi-topics.com/erf/october2003.html

26. P systems web page http://ppage.psystems.eu/

An Optimal Frontier of the Efficiency of
Tissue P Systems with Cell Division

Antonio E. Porreca1, Niall Murphy2,3, Mario J. Pérez-Jiménez4

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano–Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

2 Departamento de Inteligencia Artificial
Universidad Politécnica de Madrid
Campus de Montegancedo s/n, Boadilla del Monte, 28660 Madrid, Spain

3 CEI Campus Moncloa, UCM-UPM, Madrid, Spain
4 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: porreca@disco.unimib.it, niall.murphy@upm.es, marper@us.es

Summary. In the framework of tissue P systems with cell division, the length of com-
munication rules provides a frontier for the tractability of decision problems. On the
one hand, the limitation on the efficiency of tissue P systems with cell division and
communication rules of length 1 has been established. On the other hand, polynomial
time solutions to NP–complete problems by using families of tissue P systems with cell
division and communication rules of length at most 3 has been provided.

In this paper, we improve the previous result by showing that the HAM-CYCLE problem
can be solved in polynomial time by a family of tissue P systems with cell division by
using communication rules with length at most 2. Hence, a new tractability boundary is
given: passing from 1 to 2 amounts to passing from non–efficiency to efficiency, assuming
that P ̸= NP.

1 Preliminaries

An alphabet, Σ, is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Σ, then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by λ.
The set of all strings over an alphabet Σ is denoted by Σ∗. In algebraic terms, Σ∗

is the free monoid generated by Σ under the operation of concatenation. Subsets,
finite or infinite, of Σ∗ are referred to as languages over Σ.

142 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

The Parikh vector associated with a string u ∈ Σ∗ with respect to alphabet
Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes the number of
ocurrences of symbol ai in string u. This is called the Parikh mapping associated
with Σ. Notice that, in this definition, the ordering of the symbols from Σ is
relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ, then we define ΨΣ1(u) = (|u|ai1

, . . . , |u|ais
),

for each u ∈ Σ∗.
A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If

m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. Throughout this paper, we speak
about “the finite multiset m” where m is a string, meaning “the finite multiset
represented by the string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union of
m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2, that is, g(a) = f1(a) + f2(a),
for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows:

A \B = {x ∈ A | x /∈ B}

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [9].

2 Introduction

Several different models of cell-like P systems have been successfully used to solve
computationally hard problems efficiently by trading space for time. An exponen-
tial workspace is created in polynomial time by using some kind of rules, and then
massive parallelism is used to simultaneously check all the candidate solutions.
Inspired by living cells, several ways for obtaining exponential workspace in poly-
nomial time were proposed: membrane division (mitosis) [8], membrane creation
(autopoiesis) [4], and membrane separation (membrane fission) [6]. These three
ways have given rise to the following models: P systems with active membranes, P
systems with membrane creation, and P systems with membrane separation.

A new type of P systems, the so-called tissue P systems, was considered in [5].
Instead of considering a hierarchical arrangement, membranes/cells are placed in
the nodes of a virtual graph. This variant has two biological justifications: intercel-
lular communication and cooperation between neurons. The common mathemat-
ical model of these two mechanisms is a net of processors dealing with symbols

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 143

and communicating these symbols along channels specified in advance. Commu-
nication among cells is based on symport/antiport rules, which were introduced
to P systems in [10]. One of the most interesting variants of tissue P systems was
presented in [11], where the definition of tissue P systems is combined with aspects
of the definition of P systems with active membranes, yielding tissue P systems
with cell division. In these models [11], cells may replicate, that is, the two new
cells generated by a division rule have exactly the same objects except for at most
one differing pair of objects.

2.1 Tissue P Systems with communication rules

Definition 2.1 A tissue P system with symport/antiport rules of degree q ≥ 1 is
a tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. M1, . . . ,Mq are strings over Γ .
4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈

{0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗, |uv| > 0.
5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system with symport/antiport rules Π = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labelled by 1, . . . , q, with an
environment labelled by 0 such that: (a) M1, . . . ,Mq are strings over Γ repre-
senting the finite multisets of objects (elements in Γ) initially placed in the q
cells of the system; (b) E is the set of objects located initially in the environment
of the system, all of them appearing in an arbitrary number of copies; and (c)
iout ∈ {0, 1, 2, . . . , q} represents a distinguished cell or the environment which will
encode the output of the system.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v are
sent from region j to region i. The length of the communication rule (i, u/v, j) is
defined as |u|+ |v|, that is, the total number of objects which appear in the rule.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has
an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

The rules of a system like the one above are used in a non-deterministic maxi-
mally parallel manner as it is customary in Membrane Computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step

144 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

we apply a multiset of rules which is maximal, no further applicable rule can be
added).

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the
cells present in the system, and the multiset of objects over Γ − E associated
with the environment at that moment. Bearing in mind that the objects from E
have infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, · · · ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say that
configuration C1 yields configuration C2 in one transition step, denoted C1 ⇒Π C2,
if we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that:

1. the first term of the sequence is an initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying the rules of the system in a maximally parallel man-
ner with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation), then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region (a cell or the environment) iout in the halting configuration.
Notation: If C = {Ci}i<r+1 (r ∈ N) is a halting computation of Π, then the
length of C is r, that is, the number of non-initial configurations which appear in
the finite sequence C. We denote it by |C|. We also denote by Ci(j) the contents of
cell j at configuration Ci.

2.2 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based on
the cell-like model of P systems with active membranes [8]. In these models, the

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 145

cells are not polarized; the cells obtained by division have the same labels as the
original cell, and if a cell is divided, its interaction with other cells or with the
environment is locked during the division process. In some sense, this means that
while a cell is dividing it closes its communication channels.

Definition 2.2 A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. M1, . . . ,Mq are strings over Γ .
4. R is a finite set of rules of the following forms:

(a)Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗,
|u · v| ̸= 0;

(b)Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i ̸= iout and a, b, c ∈
Γ .

5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division is a tissue P system with symport/antiport
rules where division rules of cells are allowed.

When applying a division rule [a]i → [b]i[c]i, under the influence of object a,
the cell with label i is divided into two cells with the same label; in the first copy,
object a is replaced by object b, in the second one, object a is replaced by object
c; all the other objects are replicated and copies of them are placed in the two new
cells. The output cell iout cannot be divided.

The rules of a tissue P systems with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane comput-
ing. At each step, all cells which can evolve must evolve in a maximally parallel
way (at each step we apply a multiset of rules which is maximal, no further rule
can be added), with the following important remark: if a cell divides, only the
division rule is applied to that cell at that step; the objects inside that cell do
not evolve by means of communication rules. In other words, we can think that
before division a cell interrupts all its communication channels with the other cells
and with the environment. The new cells resulting from division will only interact
with other cells or with the environment at the next step – providing they do not
divide once again. The label of a cell identifies the rules which can be applied to
it precisely.

2.3 Recognizer Tissue P Systems with Cell Division

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . There are many different ways to describe instances of a decision
problem, but we assume that each problem has associated with it a fixed reasonable
encoding scheme (in the sense of [2], page 10) which provides a string associated

146 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

with each problem instance. The size of an instance u ∈ IX is the length of the
string associated with it by means of a reasonable encoding scheme.

Many abstract problems are not decision problems, for example, in combina-
torial optimization problems some value must be optimized (minimized or maxi-
mized). In order to deal with such problems, they can be transformed into roughly
equivalent decision problems by supplying a target/threshold value for the quan-
tity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages over a
finite alphabet, can be established as follows. Given a decision problem X =
(IX , θX), its associated language is LX = {w ∈ IX : θX(w) = 1}. Con-
versely, given a language L over an alphabet Σ, its associated decision problem is
XL = (IXL

, θXL
), where IXL

= Σ∗, and θXL
= {(x, 1) : x ∈ L}∪{(x, 0) : x /∈ L}.

The solvability of decision problems is defined through the recognition of the lan-
guages associated with them by means of languages recognizer devices.

In order to study the computational efficiency of membrane systems, the no-
tions from classical computational complexity theory are adapted for Membrane
Computing, and a special class of cell-like P systems is introduced in [13]: recog-
nizer P systems (called accepting P systems in a previous paper [12]). Similarly,
recognizer tissue P systems are introduced in [11].

Definition 2.3 A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. (Γ, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell division of degree
q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but
none of them are present in E.

3. Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
4. M1, . . . ,Mq are strings over Γ \Σ.
5. iin ∈ {1, . . . , q} is the input cell.
6. iout = 0, that is, the output region is the environment.
7. All computations halt.
8. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each multiset m over Σ, the computation of the system Π with input m starts
from the configuration of the form (M1,M2, . . . ,Miin+m, . . . ,Mq; ∅), that is, the
input multiset m has been added to the contents of the input cell iin. Therefore,
we have an initial configuration associated with each input multiset m (over the
input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division Π, and a halting compu-
tation C = {Ci}i<r+1 of Π (r ∈ N), we define the result of C as follows:

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 147

Output(C) =


yes, if Ψ{yes,no}(Mr,0) = (1, 0) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,0) = (0, 1) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1

where Ψ is the Parikh function, and Mi,0 is the multiset over Γ \E associated with
the environment at configuration Ci. In particular, Mr,0 is the multiset over Γ \ E
associated with the environment at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (respectively, Output(C) = no), that is, if
object yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non–halting configuration of C.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and communication rules with length at most
k.

2.4 Polynomial Complexity Classes of Tissue P systems with Cell
Division

Now, we define what it means to solve a decision problem in the framework of
tissue P systems efficiently and in a uniform way. Since we define each tissue P
system to work on a finite number of inputs, to solve a decision problem we define
a numerable family of tissue P systems.

Definition 2.4 We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
tissue P systems with cell division if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
(a) for each instance u ∈ IX , s(u) is a natural number5and cod(u) is an input

multiset of the system Π(s(u));
(b) for each n ∈ IN, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

5 Note, for this definition to be compatible with the notion of uniformity in Boolean
circuit complexity [15] we restrict s(u) to be some function on |u|, the length of u.

148 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

(e) the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the
set of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [12].

3 Computational Efficiency of Tissue P Systems with Cell
Division

It is well known that tissue P systems with cell division are able to solve computa-
tionally hard problems efficiently. Specifically, NP–complete problems have been
solved in linear time [1] by using families of tissue P systems with cell division and
communication rules of length at most 3. Thus, NP ∪ co−NP ⊆ PMCTDC(3).
In [3] has been proved P = PMCTDC(1), that is, only tractable problems can
be efficiently solved by using families of tissue P systems with cell division and
communication rules of length 1. Therefore, in the framework of tissue P systems
with cell division, passing the maximum length of communication rules of the sys-
tems from 1 to 3 amounts to passing from non–efficiency to efficiency, assuming
that P ̸= NP. An interesting challenge is to provide new efficient solutions to
computationally hard problems by means of tissue P systems with cell division by
using communication rules of length at most 2.

In the next Section, we give a family of tissue P systems with cell division and
communication rules of length at most 2 which solves the HAM-CYCLE problem, a
well known NP–complete problem, in polynomial time.

4 On efficiency of TDC(2)

We start by giving some concepts and notations related to graph theory that we
will use throughout this paper.

4.1 Hamiltonian cycles in directed graphs

First of all, let us recall some concepts related to graph theory which are relevant
in this paper.

Definition 4.1 Let G = (V,E) be a directed graph. Let V = {1, . . . , n}, E =
{(u1, v1), . . . , (up, vp)} ⊂ V × V . A finite sequence γ = (uα1 , uα2 , . . . , uαr , uαr+1)
of nodes of G is a simple path of G of length r ≥ 1 if the following holds:

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 149

• ∀i (1 ≤ i ≤ r → (uαiuαi+1) ∈ E).
• |{uα1 , uα2 , . . . , uαr}| = r.

If uαr+1 /∈ {uα1 , uα2 , . . . , uαr}, then we say that γ is a simple path of length r from
uα1 to uαr+1 . If uαr+1 = uα1 , then we say that γ is a simple cycle of length r (in this
case, we assume r ≥ 2). A Hamiltonian path of G from a ∈ V to b ∈ V (a ̸= b) is a
simple path γ = (uα1 , uα2 , . . . , uαr , uαr+1) from a to b such that a = uα1 , b = uαr+1 ,
and V = {uα1 , uα2 , . . . , uαr , uαr+1}. A Hamiltonian cycle of G is a simple cycle
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of G such that V = {uα1 , uα2 , . . . , uαr}.

If γ = (uα1 , uα2 , . . . , uαr , uαr+1) is a simple path of G then we also denote it by
the set {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαr , uαr+1)r}. That is, (uαk

, uαk+1
)k can be

interpreted as the k-th arc of the path γ, for each k (1 ≤ k ≤ r).
Given a directed graph G = (V,E), throughout this paper we denote

AG = {(u, v)k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}
A′

G = {(u, v)′k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}
A′′

G = {(u, v)′′k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}

Proposition 4.2 Let G = (V,E) be a directed graph. Let V = {1, . . . , n} and
AG = {(u, v)k| u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}. If B ⊆ AG then the following
assertions are equivalent:

1. B is a Hamiltonian cycle.
2. |B| = n and the following holds: for each ∀u, u′, v, v′, k, k′ ∈ {1, . . . , n},

(a) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → k ̸= k′]
(b) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → u ̸= u′]
(c) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → v ̸= v′]
(d) [(u, v)k ∈ B ∧ (u′, v′)k+1 ∈ B → v = u′]

Proof: Let B = {(uα1 , uα2)1, (uα2 , uα3)2 . . . , (uαm , uαr+1)n} be a Hamiltonian cy-
cle of G. Then, |B| = n and the conditions (a), (b), (c) and (d) from (2) hold.

Let B ⊆ AG such that |B| = n and the conditions (a), (b), (c) and (d) from
(2) hold. Then, from (a) the set B must to be of the form

B = {(uα1 , vα1)1, (uα2 , vα2)2 . . . , (uαn , vαn)n}

where:

• From (d) we deduce that ∀i (1 ≤ i ≤ n− 1 → vαi = uαi+1).
• From (b) we have V = {uα1 , uα2 , . . . , uαn}.

Finally, on the one hand we have vαn ∈ {uα1 , uα2 . . . , uαn}. On the other hand,
by condition (c) we deduce that vαn /∈ {vα1 , . . . , vαn−1} = {uα2 , . . . , uαn}. Thus
vαn = uα1 .

�
Remark 1: If B ⊆ AG is a Hamiltonian cycle of G, then it cannot have different
pairs of elements of the types (i, j)k and (i, j′)k′ , or of the types (i, j)k and (i′, j)k′ ,
or (i, j)k and (i′, j′)k, or (i, j)k and (i′, j′)k+1 with j ̸= i′.

150 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

Remark 2: Let us notice that if (uα1 , uα2 , . . . , uαn , uα1) is a Hamiltonian cycle of
G of length n, then we can describe it by the following subset of AG:

B1 = {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαn , uα1)n}

But (uα2 , uα3 , . . . , uαm , uα1 , uα2) is also a Hamiltonian cycle of G of length m. It
can be described as follows:

B2 = {(uα2 , uα3)1, (uα3 , uα4)2, . . . , (uα1 , uα2)n}

Thus, given a Hamiltonian cycle γ of G, there are exactly n different subsets of
AG codifying exactly the cycle γ.
Remark 3: Let us supose that the total number of Hamiltonian cycles of G is q.
Then, the number of different subsets B of AG verifying conditions (a), (b), (c),
and (d) of the previous Proposition is exactly n · q.

4.2 An efficient, uniform solution of HAM-CYCLE in TDC(2)

In this Section we provide a uniform and polynomial time solution for the
HAM-CYCLE problem by using a family of tissue P systems with cell division and
communication rules of length at most 2.

Let us recall that the HAM-CYCLE problem is the following: given a directed
graph, to determine whether or not there exists a Hamiltonian cycle in the graph.
This is a well known NP-complete problem [2].

The proposed solution follows a brute force algorithm implemented in the
framework of recognizer tissue P systems with cell division. The solution consists
of the following stages:

• Generation Stage: From the input cell labelled by in, all possible combinations
of arcs including a code of their position in potential paths, are generated in
those cells and by using cell division in an adequate way.

• Checking Stage: In each cell labelled by in, it is checked whether or not the
different combinations of arcs encode Hamiltonian cycles of the graph.

• Output Stage: The system sends the right answer to the environment according
to the results of the previous stage.

Then, we define a family Π = {Π(n) : n ∈ IN} of recognizer tissue P system with
cell division from TDC(2), such that each system Π(n) will process all instances
G of HAM-CYCLE with n nodes.

For each n ∈ IN, we consider the recognizer tissue P system with cell division
from TDC(2),

Π(n) = (Γ,Σ, E ,Min,Mh,My,Myes,Mno,Mout,
Mei,j,k(1 ≤ i, j, k ≤ n),Mci(1 ≤ i,≤ n),R, iin, iout)

defined as follows:

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 151

• The input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}.
• The working alphabet is

Γ = {(i, j)k, (i, j)′k, (i, j)′′k , (i, j)k,r, (i, j)′k,r, (i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧
1 ≤ r ≤ n3} ∪
{wi | 1 ≤ i ≤ n3 + 6} ∪ {cr, hr, yr | 1 ≤ r ≤ n3} ∪
{w, c, c′, c′′, h, h′, h′′, h′′′, y, y′y′′, y′′′, y′′′′, x, yes, no,#}

• The alphabet of the environment is:

E = {wi | 1 ≤ i ≤ n3 + 5} ∪ {w, c′′, y′′, h′′, y′′′, h′′′, y′′′′}

• Initial multisets: 

Min = cn y h
Mei,j,k = (i, j)′′k,n3 , 1 ≤ i, j, k ≤ n

Mci = cn3 , 1 ≤ i ≤ n
Mh = hn3

My = yn3

Myes = yes
Mno = wn3+6 no
Mout = x

• The set R of rules consists of the following rules:

(1) (no , wr /wr−1 , 0), for 2 ≤ r ≤ n3 + 6 .
(2) (no , w1 /w , 0).
(3) [(i, j)k]in → [(i, j)′k]in [#]in, for 1 ≤ i, j, k ≤ n.
(4) [(i, j)′′k,r]ei,j,k → [(i, j)′′k,r−1]ei,j,k [(i, j)′′k,r−1]ei,j,k , for 1 ≤ i, j, k ≤ n and 2 ≤ r ≤ n3.
(5) [(i, j)′′k,1]ei,j,k → [(i, j)′′k]ei,j,k [(i, j)′′k]ei,j,k , for 1 ≤ i, j, k ≤ n.

(6) [cr]ci → [cr−1]ci [cr−1]ci , for 1 ≤ i ≤ n ∧ 1 ≤ r ≤ n3.
(7) [yr]y → [yr−1]y [yr−1]y, for 1 ≤ r ≤ n3.
(8) [hr]h → [hr−1]h [ar−1]h, for 1 ≤ r ≤ n3.
(9) (in , (i, j)′k / (i, j)

′′
k , ei,j,k), for 1 ≤ i, j, k ≤ n.

(10) (in , c / c′ , ci), for 1 ≤ i ≤ n.
(11) (in , y / y′, y).
(12) (in , h / h′, h).
(13) (in, (i, j)′′k (i, j

′)′′k′ / λ, 0), for 1 ≤ i, j, j′, k, k′ ≤ n.
(14) (in, (i, j)′′k (i

′, j)′′k′ / λ, 0), for 1 ≤ i, i′, j, k, k′ ≤ n.
(15) (in, (i, j)′′k (i

′, j′)′′k+1 / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n, and j ̸= i′.
(16) (in, (i, j)′′k (i

′, j′)′′k / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n.
(17) (in , c′ / c′′ , 0).
(18) (in , y′ / y′′ , 0).
(19) (in , h′ / h′′ , 0).
(20) (in , (i, j)′′k c

′′ / λ , 0) for 1 ≤ i, j, k ≤ n.
(21) (in , y′′ / y′′′ , 0).

152 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

(22) (in , h′′ / h′′′ , 0).
(23) (in , c′′ h′′′ / λ , 0).
(24) (in , y′′′ / y′′′′ , 0).
(25) (in , h′′′ y′′′′ / λ , yes).
(26) (yes , y′′′′ yes / λ , out).
(27) (out , x yes / λ , 0).
(28) (no , w no / λ , out).
(29) (out , x no / λ , 0).

• The input cell is iin = in.
• The output region is the environment, iout = 0.

4.3 An Overview of the Computations

A family of recognizer tissue P systems with cell division is constructed above. Let
G = (V,E), with V = {1, . . . , n} and E = {(u1, v1), . . . , (up, vp)}, be an arbitrary
instance of the HAM-CYCLE problem.

The size mapping6on the set of instances is defined as s(G) = n, and the
encoding of the instance is the multiset

cod(G) = {(ui, vi)k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

That is, (ui, vi)k denotes arc (ui, vi) “placed” in “position k”. Then the graph G
will be processed by system Π(s(G)) with input multiset cod(G).

Then, we informally describe how system Π(s(G)) with input multiset cod(G)
works, in order to process the instance G of the HAM-CYCLE problem.

At the initial configuration of Π(s(G)) + cod(G) we have the following:

• n copies of object c, objects y, h, and (ui, vi)j , for (ui, vi) ∈ E, 1 ≤ k ≤ n, in
cell labelled by in,

• Objects (i, j)′′k,n3 in cell labelled by ei,j,k.
• Objects cn3 in each cell labelled by ci, for 1 ≤ i ≤ n.
• Object hn3 in cell labelled by h, object yn3 in cell labelled by y, object yes in

cell labelled by h, objects no and wn3+6 in cell labelled by no, and object x in
cell labelled by out.

Let us start with the generation stage. This stage spends n3 steps. At this
stage, we try to generate all the possible subsets of arcs of the graph which contain
their potential positions in a path according the notations introduced in Section
4.1 (in fact, subsets of A′

G).
If C = (C0, C1, . . .) be a computation of the tissue P system Π(n), then at

configuration Cn3 :

6 Note, for this family to be considered uniform in the sense of Boolean circuit fami-
lies [15] we may modify s so that its mapping to the number n depends only on the
length of of G. For example, if the graph G is encoded as a binary adjacency matrix,
then s(u) =

√
|u| = n.

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 153

1. There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} as well as

object y, object h and n copies of object c.
2. For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k, each of
them only containing object (i, j)′′k .

3. For each i (1 ≤ i ≤ n) there are 2n
3

cells labelled by ci, 2
n3

cells labelled by

h, and 2n
3

cells labelled by y, only containing object c′, object h′, object y′

respectively.
4. There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3(no) = {w6, no}, Cn3(yes) = {yes}, Cn3(out) = {x}.

Now, the checking stage starts. This stage spends 3 steps. At this stage, we
try to determine whether or not there exists a cell labelled by in which contains
a subset of A′′

G that encodes a Hamiltonian cycle of G. For that purpose, we will
use rules of types (13), (14), (15), and (16) in order to select possible paths of the
graph. After that, rules of type (20), (21), and (22) allow us to determine cells
labelled by in at configuration Cn3+3 which encode Hamiltonian cycles.

Finally, the output stage spends 3 steps if the answer is affirmative and 4 if
it is negative. At configuration Cn3+3, the existence of Hamiltonian cycles in the
graph is characterized by the absence of objects c′′ in some cell labelled by in. At
configuration Cn3+4, the previous condition is expressed by the existence of some
cell labelled by in which contains object h′′′. At configuration Cn3+5, the existence
of Hamiltonian cycles in the graph is characterized by the presence of some object
y′′′′ in cell labelled by yes. Rules of type (26), (27), (28), and (29) produce the
right answer.

5 A Formal Verification

The aim of this section is to present a formal proof on the fact that the family of
recognizer tissue P systems with cell division constructed in the previous section
solves the HAM-CYCLE problem in a uniform way and polynomial time, according
to Definition 2.4.

5.1 Polynomial Uniformity of the Family

Then, we will show that the family Π = {Π(n) | n ∈ IN} defined above is poly-
nomially uniform by Turing machines. To this aim we prove that Π(n) is built
in polynomial time with respect to the number of nodes of the instance G of the
HAM-CYCLE problem.

It is easy to check that the rules of a system Π(n) of the family are recursively
defined from n. The amount of resources needed to build an element of the family
is of a polynomial order in n, as shown below:

1. Size of the alphabet: 3n4 + 7n3 + 23 ∈ Θ(n4).

154 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

2. Initial number of cells: n3 + n+ 6 ∈ Θ(n3).
3. Initial number of objects: |E|+ n3 + 2n+ 8 ∈ Θ(n3).
4. Number of rules: n6 + 4n5 − n4 + 7n3 + n+ 20n ∈ Θ(n6).
5. Maximal length of a rule: 2 ∈ Θ(1).

Therefore, there exists a deterministic Turing machine that builds the system
Π(n) in time polynomial with respect to n.

5.2 Soundness and Completeness of the Family

In order to show the soundness and completeness of the family Π with respect
to (HAM-CYCLE, cod, s), we describe the full contents of any cells in any instant of
each computation of the tissue Π(s(G)) + cod(G) that processes instance G.

Theorem 5.1 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
For every t (1 ≤ t ≤ n · p), the configuration Ct verifies the following properties:

(1) There are 2t cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} of size lower

than or equal than t, as well as object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2t cells labelled by ei,j,k each of them

only containing object (i, j)′′k,n3−t.

(3) For each i (1 ≤ i ≤ n) there are 2t cells labelled by ci, 2
t cells labelled by h, and

2t cells labelled by y, only containing object cn3−t, object hn3−t, object yn3−t

respectively.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Ct(no) = {wn3−t+6, no}, Ct(yes) = {yes}, Ct(out) = {x}.

Proof: By induction on t. Let us start analyzing the basic case t = 1.

(1) At the first step of computation C, a rule of the form [(u0, v0)k0]in →
[(u0, v0)

′
k0

]in [#]in, with (u0, v0) ∈ E, will be applied to cell labelled by
in. Then, two new cells labelled by in will be created, each of them containing
a subset of A′

G of size lower than or equal to 1: one is (u0, v0)
′
k0

and the another
is ∅. The initial objects y, h and n copies of object c remain unchanged.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), at the first step of computation C, the rule
[(i, j)′′k,n3]e → [(i, j)′′k,n3−1]e [(i, j)′′k,n3−1]e will be applied to cell labelled by
ei,j,k. Then, two new cells labelled by ei,j,k will be created, each of them only
containing object (i, j)′′k,n3−1.

(3) For each i (1 ≤ i ≤ n), at the first step of computation C, a rule of the type
(6) is applied to cell labelled by ci. It produces two new cells labelled by ci,
each of them only containing object cn3−1.
At the first step of computation C, a rule of the type (7) is applied to the
cell labelled by y, and a rule of the type (8) is applied to cell labelled by h.
They produce two new cells labelled by y, each of them only containing object
yn3−1, and two new cells labelled by h each of them only containing the object
hn3−1.

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 155

(4) At the first step of computation C, a rule of the type (1) is applied to the cell
labelled by no. The new content of that cell labelled by no is {wn3−1 no}. No
rule is applied neither to cell yes nor cell out.

By induction hypothesis, let t be such that 1 ≤ t < n · p and let us suppose the
result holds for t. Let us see that the result also holds for t+ 1. For this purpose,
let us notice that configuration Ct+1 is obtained from configuration Ct by applying:

• A rule of the type (3) [(u0, v0)k]in → [(u0, v0)
′
k]in [#]in which is selected

in a nondeterministic manner among all possible applicable rules to each cell
labelled by in (there exist such rules because of t < n · p).

• For each i, j, k (1 ≤ i, j, k ≤ n), rules of the type (4) corresponding to r = n3−t
in each cell labelled by ei,j,k:

[(i, j)′′k,n3−t]ei,j,k → [(i, j)′′
k,n3−t−1

]ei,j,k [(i, j)′′k,n3−t−1]ei,j,k

• For each i (1 ≤ i ≤ n), rules of the type (6) corresponding to r = n3 − t in
each cell labelled by ci: [cn3−t]ci → [cn3−t−1]ci [cn3−t−1]ci .

• Rules of the type (7) corresponding to r = n3 − t in each cell labelled by y:

[yn3−t]y → [yn3−t−1]y [yn3−t−1]y

• Rules of the type (8) corresponding to r = n3 − t in each cell labelled by h:

[hn3−t]h → [hn3−t−1]h [hn3−t−1]h

• A rule of the type (1) corresponding to r = n3 − t in cell labelled by no:

(no , wn3−t /wn3−t−1 , 0)

Therefore, the following conclusions are reached at:

(1) By induction hypothesis, in Ct there are 2t cells labelled by in, each of them
containing object y, object h, object n copies of object c, and a different subset
of A′

G with size ≤ t. Thus, when applying a rule of the type [(u0, v0)k]in →
[(u0, v0)

′
k]in [#]in, with (u0, v0) ∈ E, we will have 2t+1 cells labelled by in

such that 2t of that cells have the same content that they had at configuration
Ct, and the rest of 2t objects (u0, v0)

′
k are added. That is, at configuration Ct+1,

we will have 2t+1 cells labelled by in, each of them containing object y, object
h, n copies of object c, and a different subset of A′

G with size ≤ t+ 1.
(2) By induction hypothesis, for each i, j, k (1 ≤ i, j, k ≤ n) in Ct there are 2t cells

labelled by ei,j,k, each of them only containing object (i, j)′′k,n3−t. By applying

rule [(i, j)′′k,n3−t]ei,j,k → [(i, j)′′
k,n3−t−1

]ei,j,k [(i, j)′′k,n3−t−1]ei,j,k , we will have

2t+1 cells labelled by ei,j,k, each of them only containing object (i, j)′′k,n3−t−1.

(3) By induction hypothesis, for each i (1 ≤ i ≤ n) in Ct there are 2t cells labelled
by ci, each of them only containing object cn3−t. By applying rule [cn3−t]ci →
[cn3−t−1]ci [cn3−t−1]ci we will have 2

t+1 cells labelled by ci, each of them only
containing object cn3−t−1.

156 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

By induction hypothesis, in Ct there are 2t cells labelled by h, each of them only
containing object hn3−t, and 2t cells labelled by y, each of them only containing
object yn3−t. By applying the rules [hn3−t]h → [hn3−t−1]h [hn3−t−1]h and
[yn3−t]y → [yn3−t−1]y [yn3−t−1]y we will have 2t+1 cells labelled by h, each
of them only containing object hn3−t−1, and 2t+1 cells labelled by y, each of
them only containing object yn3−t−1.

(4) By induction hypothesis, in Ct there is a cell labelled by no which contains ob-
ject wn3−t+6 and object no. By applying rule (no , wn3−t /wn3−t−1 , 0), it will
contain object wn3−(t+1)+6 and object no. By the way, no rules are applicable
to cells yes or out at configuration Ct.

�
From the previous proposition, we can describe the configuration Cn·p of each

computation C of Π(n).

Corollary 5.2 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn·p verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n·p cells labelled by ei,j,k each of

them only containing object (i, j)′′k,n3−n·p.

(3) For each i (1 ≤ i ≤ n) there are 2n·p cells labelled by ci, 2
n·p cells labelled by

h, and 2n·p cells labelled by y, only containing object cn3−n·p, object hn3−n·p,
object yn3−n·p respectively.

(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn·p(no) = {wn3−n·p+6, no}, Cn·p(yes) = {yes}, Cn·p(out) = {x}.

Theorem 5.3 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
For every t (n · p+ 1 ≤ t ≤ n3), configuration Ct verifies the following:

(1) There are 2n·p cells labelled by in whose content is equal to the content of those
cells in configuration Cn·p.

(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2t cells labelled by ei,j,k, each of them
only containing object (i, j)′′k,n3−t (by considering (i, j)′′k,0 = (i, j)′′k).

(3) For each i (1 ≤ i ≤ n) there are 2t cells labelled by ci, 2
t cells labelled by h,

and 2t cells labelled by y, only containing object cn3−t (by considering c0 = c′),
object hn3−t (by considering h0 = h′), object yn3−t (by considering y0 = y′)
respectively.

(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Ct(no) = {wn3−t+6, no}, Ct(yes) = {yes}, Ct(out) = {x}.

Proof: First of all, let us notice that at configuration Cn·p no rule is applicable to
any cell labelled by in, and no rule is applicable to cell labelled by yes or to cell
labelled by out.

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 157

Now, let us show (2), (3) and (4) by induction on t. Let us start analyzing the
basic case t = n · p+ 1.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), at configuration Cn·p there are 2n·p cells labelled
by ei,j,k, each of them only containing object (i, j)′′k,n3−n·p. By applying a

rule of the type (4) we will have 2n·p+1 cells labelled by ei,j,k each of them
containing (i, j)′′k,n3−n·p−1.

(3) For each i (1 ≤ i ≤ n), at configuration Cn·p there are 2n·p cells labelled by ci,
each of them only containing object cn3−n·p. By applying a rule of the type (6)
we will have 2 · 2n·p = 2n·p+1 cells labelled by ci whose content is cn3−n·p−1.
At configuration Cn·p, there are 2n·p cells labelled by h, each of them only con-
taining object hn3−n·p, and 2n·p cells labelled by y each of them only containing
object yn3−n·p. By applying a rule of type (8) we will have 2 · 2n·p = 2n·p+1

cells labelled by h whose content is hn3−n·p−1. By applying a rule of type (7)
we will have 2 · 2n·p = 2n·p+1 cells labelled by y whose content is yn3−n·p−1.

(4) At configuration Cn·p, there is a cell labelled by no which contains object
wn3−n·p+6 and object no. By applying a rule of type (1), the new content of
that cell will be objects wn3−n·p−1+6 and no.

By induction hypothesis, let t be such that n ·p+1 ≤ t < n3 and let us suppose
the result holds for t. Let us see that the result also holds for t+ 1.

First of all, let us notice that at configuration Ct no rule is applicable to any cell
labelled by in, and no rule is applicable to cell labelled by yes nor to cell labelled
by out neither.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), according to induction hypothesis at configu-
ration Ct, there are 2t cells labelled by ei,j,k, and each of them only containing
object (i, j)′′k,n3−t. By applying a rule of type (4) we will have 2t+1 cells labelled

by ei,j,k whose content is object (i, j)′′k,n3−t−1.

(3) For each i (1 ≤ i ≤ n), by induction hypothesis at configuration Ct there are 2t
cells labelled by ci, each of them only containing object cn3−t. By applying a
rule of the type (6) we will have 2 ·2t = 2t+1 cells labelled by ci whose content
is cn3−t−1.
By induction hypothesis, at configuration Ct there are 2t cells labelled by h,
each of them only containing object hn3−t, and 2t cells labelled by y, each of
them only containing object yn3−t. By applying a rule of type (8) we will have
2 ·2t = 2t+1 cells labelled by h whose content is object hn3−t−1. By applying a
rule of the type (7) we will have 2 · 2t = 2t+1 cells labelled by y whose content
is object yn3−t−1.

(4) By induction hypothesis, at configuration Ct there is a cell labelled by no which
contains object wn3−t+6 and object no. By applying a rule of the type (1) the
new content of that cell is object wn3−t−1+6 and object no.

�

158 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

Corollary 5.4 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn3 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k each of
them only containing object (i, j)′′k.

(3) For each i (1 ≤ i ≤ n) there are 2n
3

cells labelled by ci, 2
n3

cells labelled by

h, and 2n
3

cells labelled by y, only containing object c′, object h′, object y′

respectively.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3(no) = {w6, no}, Cn3(yes) = {yes}, Cn3(out) = {x}.

Theorem 5.5 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn3+1 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′′

G = {(ui, vi)
′′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k with the
same content that at configuration Cn3 except whose cells evi,vj ,k in Cn3 which
contains objects (ui, vi)

′′
k ∈ A′′

G. At configuration Cn3+1 these objects are re-
placed by (ui, vi)

′
k respectively.

(3) For each i (1 ≤ i ≤ n) (a) there are 2n
3

cells labelled by ci from which 2n·p

only contains object c, and the rest only contains object c′, (b) there are 2n
3

cells labelled by h from which 2n·p only contains object h, and the rest only
contains object h′, and (c) there are 2n

3

cells labelled by y from which 2n·p

only contains object y, and the rest only contains object y′.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3+1(no) = {w5, no}, Cn3+1(yes) = {yes}, Cn3+1(out) = {x}.

Proof: It is enough to notice that configuration Cn3+1 is reached from Cn3 by
applying:

• Rules of type (9) (from this follows (1) and (2)).
• Rules of type (10), (11), (12) and (1) (from this follows (3) and (4)).

1. Let us remark that at the (n3 + 1)th step, we have replaced objects (ui, vi)
′
k,

with 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n, from cells labelled by in, by the respective objects
(ui, vi)

′′
k from cells labelled by eui,vi,k. Let us recall that at configuration Cn3

we had 2n·p−1 copies of objects (ui, vi)
′
k, for each 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n

in cells labelled by in. Therefore, we need 2n·p−1 copies of objects (ui, vi)
′′
k in

cells labelled by eui,vi,k, but at configuration Cn3 we had 2n
3

copies of cells
labelled by eui,vi,k, each of them only containing object (ui, vi)

′′
k .

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 159

2. Let us remark that at the (n3 +1)th step we have replaced m copies of object
c in cell labelled by in by m respective copies of object c′ from cells labelled
by ci (1 ≤ i ≤ n). Then we need n · 2n·p copies of object c′ in cells labelled

by ci. Let us recall that in total we had n · 2n3

cells labelled by ci, each of
them only containing object c′. The same applies to objects h′ and y′ in cells
labelled by h and y respectively.

�

Theorem 5.6 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn3+2 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains object y′′,
object h′′, n copies of object c′′, and a different subset of

A′′
G = {(ui, vi)

′′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

of the form {(uα1 , vα1)
′′
q1 , (uα2 , vα2)

′′
q2 , . . . , (uαr , vαr)

′′
qr}, where

q1 < q2 < . . . < qr ∧ r ≤ n ∧ (qi+1 = qi + 1 ⇒ vαi = uαi+1)

Moreover, each subset of A′′
G verifying the previous conditions is contained

inside some cell labelled by in.
(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration

Cn3+1.
(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3+2(no) = {w4, no}, Cn3+2(yes) = {yes}, Cn3+2(out) = {x}.

Proof: It is enough to notice that configuration Cn3+1 yields Cn3+2 by applying
rules of types (13), (14), (15), (16) and (1).

The first four rules are symport rules. Thus,at configuration Cn3+2 we will have
2n·p cells labelled by in in such manner that the subsets B of A′′

G contained in
each of them must verify the following conditions:

(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ u ̸= u′ (rule (13)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ v ̸= v′ (rule (14)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ k ̸= k′ (rule (16)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k+1 ∈ B ⇒ v = u′ (rule (15)).

Moreover, let us recall that at configuration Cn3+1, every subset B of A′′
G is con-

tained inside a different cell labelled by in. Therefore, each subset B of A′′
G verifying

the previous conditions will be contained inside one unique cell labelled by in at
configuration Cn3+2.

�
Remark: From Proposition 4.2, we deduce that a subset B from A′′

G represents
a Hamiltonian cycle of G if and only if |B| = n and B satisfies the conditions
(α), (β), (γ), (δ). Thus, to determine whether or not graph G has a Hamiltonian
cycle will be equivalent to determine whether or not in some cell of configuration
Cn3+2 labelled by in there exists a subset B from A′′

G whose cardinality is n.

160 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

Theorem 5.7 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn3+3 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a copy of ob-
ject y′′′ and a copy of object h′′′. Besides, if a subset B ⊆ A′′

G = {(ui, vi)
′′
k | 1 ≤

i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} contained in a cell labelled by in has exactly
n elements, then no object c′′ appears inside that cell. Otherwise, inside any
cell labelled by in which contains a subset B ⊆ A′′

G, some objects c′′ (exactly
n− t1 copies, where t1 is the size of the subset B) will remain.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.

(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn3+3(no) = {w3, no}, Cn3+3(yes) = {yes}, Cn3+3(out) = {x}.

Proof: It is enough to notice that configuration Cn3+2 yields Cn3+3 by applying
rules of types (20), (21), (22), and (1).

By applying rules of types (21) and (22), objects h′′ and y′′ evolve to h′′′ and
y′′′ respectively.

By applying rules of type (20), for each element (u, v)′′k in the set encoded by
that cell, one object c′′ will be consumed.

By applying a rule of type (1), object w4 evolves to object w3.
�

Corollary 5.8 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+3, there is, at least, a cell labelled by in such that it does

not contain any object c′′.

Proof: It suffices to notice that, at configuration Cn3+2, Hamiltonian cycles are
characterized by membranes labelled by in which contain a subset of A′′

G of size
n. Then, by using a rule of type (20), at configuration Cn3+3 Hamiltonian cycles
are characterized by membranes labelled by in such that they do not contain any
object c′′.

Theorem 5.9 Let C = (C0, C1, . . .) be a computation of the tissue P system Π(n).
Configuration Cn3+4 verifies the following properties:

(1) There are 2n·p cells labelled by in such that each of them contains one copy of
objects y′′′′. Besides, if object c′′ appeared in some cell labelled by in at con-
figuration Cn3+3, then that copy of c′′ and object h′′′ are released out to the
environment. Otherwise, object h′′′ will remain inside that cell in at configu-
ration Cn3+4.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 161

(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn3+4(no) = {w2, no}, Cn3+4(yes) = {yes}, Cn3+4(out) = {x}.

Proof: It is enough to notice that configuration Cn3+3 yields Cn3+4 by applying
rules of types (23), (24), and (1).

By applying rules of type (23), object h′′ and a copy of object c′′ (if any in a
cell labelled by in) will be released to the environment.

By applying a rule of type (24), object y′′′ evolves to object y′′′′.
By applying a rule of type (1), object w3 evolves to object w2.

�

Corollary 5.10 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+4, there is, at least, a cell labelled by in at configuration

Cn3+4 such that it contains an object h′′′.

Besides, graph G has exactly q Hamiltonian cycles if and only if there are exactly
n · q cells labelled by in such that at configuration Cn3+4, it contains an object h′′′.

Proof: It suffices to notice that, at configuration Cn3+3, Hamiltonian cycles are
characterized by membranes labelled by in such that they do not contain any
object c′′. Then, a rule of type (23) will be applicable to each cell labelled by in
that contains some object c′′. In this case, at configuration Cn3+4, object h

′′′ will
only appear at membranes labelled by in which encode Hamiltonian cycles.

Theorem 5.11 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). Configuration Cn3+5 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains one copy of
objects y′′′. Besides, if object h′′′ appeared in some cell labelled by in at config-
uration Cn3+4, then object h′′′ together with object y′′′ are sent to cell labelled
by yes. Otherwise, that cell in remain unchanged at the next configuration.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.

(3) There is a cell labelled by no such that: Cn3+5(no) = {w1, no}.
(4) There is a cell labelled by yes which contains either only object yes, or n · q

copies of objects y′′′′ and n · q copies of objects h′′′, and object yes, being q the
total number of Hamiltonian cycle of G. Besides, there is a cell labelled by out
which contains only object x.

Proof: It is enough to notice that configuration Cn3+4 yields Cn3+5 by applying
rules of types (23), (24), and (1).

By applying rules of type (25) to each cell labelled by in that encodes a Hamil-
tonian cycle, object h′′′ and a copy of object c′′ will be released to the environment.
If G has exactly q Hamiltonan cycles, then there are exactly n · q cells labelled by

162 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

in that encodes a Hamiltonian cycle. In this case, the contents of cell labelled by
yes will be n · k copies of object y′′′′, n · k copies of object h′′′ and object yes.

By applying a rule of type (1), object w2 evolves to object w1 in cell labelled
by no.

�

Corollary 5.12 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+5, cell labelled by yes has, at least, a copy of object y′′′′

and a copy of object yes.

Besides, graph G has exactly q Hamiltonian cycles if and only if at configuration
Cn3+5, the cell labelled by yes has exactly n · q copies of objects y′′′ and a copy of
object yes.

Proof: It suffices to notice that, at configuration Cn3+4, Hamiltonian cycles are
characterized by membranes labelled by in which contain object h′′′. Then, a rule
of type (25) will be applicable to these cell, producing object h′′′′ in the cell labelled
by yes.

Theorem 5.13 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). Configuration Cn3+6 verifies the following:

(1) Cells labellled by in, ei,j,k, ci, h, and y have the same content than at config-
uration Cn3+5.

(2) There is a cell labelled by no which contains object w and object no.
(3) There is a cell labelled by yes which contains either only object yes (in this

case there is a cell labelled by out which contains only object x), or contains
n · q − 1 copies of objects y′′′′ and n · q copies of objects h′′′, being q the total
number of Hamiltonian cycles of G (in this case, there is a cell labelled by out
which contains object y′′′′, object yes and object x).

Proof: It is enough to notice that configuration Cn3+5 yields Cn3+6 by applying
rules of types (26) and (2).

If there is, at least, an object y′′′′ in cell labelled by yes, then by applying
rule (26), a copy of object y′′′′ and object yes are sent to the cell labelled by out.
Otherwise, that rule is not applicable to cell yes.

In any case, by applying rule (2) to cell labelled by no, object w1 evolves to
object w.

�

Corollary 5.14 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 163

• At configuration Cn3+6, cell labelled by out has a copy of object yes and a copy
of object x.

Proof: It suffices to notice that, at configuration Cn3+5, Hamiltonian cycles are
characterized by the following condition: cell labelled by yes contains objects h′′′′

and yes. Then, a rule of type (26) is applicable to cell labelled by yes sending
these objects to the celll labelled by out.

Theorem 5.15 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). Configuration Cn3+7 verifies the following properties:

(1) Cells labelled by in, ei,j,k, ci, h, y, and yes have the same content than at
configuration Cn3+6.

(2) If G has a Hamiltonian cycle, then Cn3+7(no) = ∅, Cn3+7(yes) = {h′′′},
Cn3+7(out) = {y′′′′, w, no}, and yes, x ∈ Cn3+7(0). The configuration Cn3+7

is a halting configuration. Moreover, it is an accepting configuration.
(3) If G doesn’t have a Hamiltonian cycle, then Cn3+7(no) = ∅, Cn3+7(yes) =

{yes}, Cn3+7(out) = {w, no, x}.

Proof: It is enough to notice that configuration Cn3+6 yields Cn3+7 by applying
rules of the type (27), in the case that G has a Hamiltonian cycle, and (28) in
any case. Besides, by applying rule of type (27) objects x and yes are sent to the
environment. Thus, x /∈ Cn3+7(out) and the rule of type (29) will not be applicable
at the next step. Hence, configuration Cn3+7 is an accepting configuration.

�

Theorem 5.16 Let C = (C0, C1, . . .) be a computation of the tissue P system
Π(n). Let us suppose that G doesn’t have a Hamiltonian cycle, then configuration
Cn3+8 verifies the following:

(1) Cells labelled by in, ei,j,k, ci, h, y, no and yes, have the same content than at
configuration Cn3+7.

(2) Cn3+8(no) = ∅, Cn3+8(yes) = {yes}, Cn3+8(out) = {w}, and no, x ∈ Cn3+8(0).
The configuration Cn3+8 is a halting configuration. Moreover, it is a rejecting
configuration.

Proof: It is enough to notice that if G doesn’t have a Hamiltonian cycle, then
configuration Cn3+8 is reached from Cn3+7 by applying the rule of type (29).

�

Corollary 5.17 The family Π defined at Section 4.2 is polynomially bounded with
regard to (HAM-CYCLE, cod, s).

Proof: From Theorem 5.15 and Theorem 5.16, we deduce that any computation
C of the tissue P system Π(n) spends n3 + 7 or n3 + 8 transition steps, for each
n ∈ IN.

�

164 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

Corollary 5.18 The family Π defined at Section 4.2 is sound and complete with
regard to (HAM-CYCLE, cod, s)

Proof: Let G be a directed graph that has a Hamiltonian cycle. Let C be an
arbitrary computation of Π(s(G)) + cod(G). From Theorem 5.15, we deduce that
C is an accepting computation.

Now, let G be a directed graph such that there exists an accepting computation
C of Π(s(G))+cod(G). Then, G has a Hamiltonian cycle. Otherwise, computation
C must be a rejecting computation according to Theorem 5.16.

�

Theorem 5.19 HAM-CYCLE ∈ PMCTDC(2).

Proof: The family of tissue P systems with cell division constructed in Subsection
4.2 verifies the following:

(a) Every system of the family Π is a recognizer tissue P system with cell division
and communication rules with length at most 2.

(b)The family Π is polynomially uniform by Turing machines (Subsection 5.1).
(c) The pair (cod, s) of polynomial–time computable functions defined in Subsec-

tion 4.3 verifies: for each instance G of HAM-CYCLE, s(G) is a natural number,
cod(G) is an input multiset of the system Π(s(G)), and for each n ∈ IN, s−1(n)
is a finite set.

(d)The family Π is polynomially bounded with regard to (HAM-CYCLE, cod, s)
(Corollary 5.17).

(e) The family Π is sound and complete with regard to (HAM-CYCLE, cod, s) (Corol-
lary 5.18).

Therefore, according to Definition 2.4, the uniform family Π of tissue P systems
constructed in Section 4 solves the HAM-CYCLE problem in polynomial time with
respect to the number of variables and the number of clauses.

�

Corollary 5.20 NP ∪ co-NP ⊆ PMCTDC(2).

Proof: It suffices to notice that the HAM-CYCLE problem is NP-complete,
HAM-CYCLE∈ PMCTDC(2), and this complexity class is closed under polynomial-
time reduction and under complement.

�

6 Conclusions

The length of communication rules plays a relevant role for tissue P systems with
cell division from the efficiency point of view. A uniform and efficient solution to the
Vertex Cover problem by using a family of tissue P systems with cell division and
communication rules of length at most 3 was given in [1]. By using the dependency

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 165

graph technique of cell–like P systems, it was shown that only tractable problems
can be efficiently solved by using families of tissue P systems with cell division
and communication rules of length 1 [3]. Hence, assuming that P ̸= NP, in the
framework of tissue P systems with cell division, passing from communication rules
of length 1 to communication rules of length at most 3 amounts to passing from
non–efficiency to efficiency.

In this paper, that borderline of efficiency has been optimized by proving that
a well known NP–complete problem, the HAM-CYCLE problem, can be solved in a
uniform and efficient way, by using a family of tissue P systems with cell division
and communication rules of length at most 2.

In [7], cell separation rules were introduced into tissue P systems (inspired
by the cellular fission) and their computational efficiency was investigated. Two
important results were obtained in that framework: (a) only tractable problems can
be efficiently solved by using cell separation and communication rules with length
at most 1, and (b) a uniform and linear time solution to the SAT problem by using
cell separation and communication rules with length at most 8 was presented.
Recently [14] this result was improved by showing a family of tissue P systems
with cell separation and communication rules with length at most 3, solving the
SAT problem in a uniform way and linear time.

Now, we propose three open problems related to the efficiency of tissue P
systems:

(a) What is the computational efficiency of tissue P systems with cell separation
which allow communication rules with length at most 2?

(b)What happens if only symport (or only antiport) rules are allowed in tissue P
systems with cell division or cell separation?

(c) At the initial configuration of a tissue P system the symbols of the alphabet E
appear in the environment in an arbitrary number of copies. We can consider
tissue P systems without environment, that is, tissue P systems where alpha-
bet E is empty. What is the relationship between the polynomial complexity
classes of tissue P systems with cell division (or with cell separation) and the
corresponding tissue P systems without environment?

Acknowledgements

The work was supported by TIN2009-13192 Project of the Ministerio de Ciencia
e Innovación of Spain and Project of Excellence with Investigador de Reconocida
Vaĺıa, from Junta de Andalućıa, grant P08 – TIC 04200. Antonio E. Porreca
was partially supported by Università degli Studi di Milano-Bicocca, Fondo di
Ateneo per la Ricerca (FAR) 2011. Research by Niall Murphy was partly supported
by a PICATA postdoctoral fellowship of the Moncloa Campus of International
Excellence (UCM-UPM)

166 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

References

1. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J.
Romero–Campero. Computational efficiency of cellular division in tissue-like P sys-
tems. Romanian Journal of Information Science and Technology 11, 3, (2008), 229–
241.

2. M.R. Garey, D.S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, (1979).

3. R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius–Font. Characterizing tractabil-
ity by tissue-like P systems. Lecture Notes in Computer Science 5957, (2010), 289–
300.

4. M. Ito, C. Mart́ın Vide, Gh. Păun. A characterization of Parikh sets of ET0L laguages
in terms of P systems. In M. Ito, Gh. Păun, S. Yu (eds.) Words, Semigroups and
Transducers, World Scientific, Singapore, 2001, 239-254.

5. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón. A New Class of Symbolic
Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science 2387,
(2002), 290–299.

6. L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5, (2004), 630–649.

7. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems.
Journal of Complexity, 26, 3 (2010), 296–315.

8. Gh. Păun. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, pp. 94-115.

9. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).
10. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport.

New Generation Computing, 20, 3, (2002), 295–305.
11. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P System with cell division.

In. J. of Computers, Communications and Control, 3, 3, (2008), 295–303.
12. M.J. Pérez-Jiménez, A. Romero-Jiménez, Sancho-Caparrini. Complexity classes in

models of cellular computing with membranes. Natural Computing, 2, 3 (2003), 265–
285.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics, 11, 4, (2006), 423-434.

14. M.J. Pérez-Jiménez, P. Sośık. Improving the efficiency of tissue P systems with cell
separation. Submitted, 2012.

15. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer–
Verlag, New York, (1999).

Cell Complexes and Membrane Computing
for Thinning 2D and 3D Images

Raúl Reina-Molina1, Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics
University of Sevilla
raureimol@alum.us.es, sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
magutier@us.es

Summary. In this paper, we show a new example of bridging Algebraic Topology,
Membrane Computing and Digital Images. In [24], a new algorithm for thinning multi-
dimensional black and white digital images by using cell complexes was presented. Such
cell complexes allow a discrete partition of the space and the algorithm preserves topolog-
ical and geometrical properties of the image. In this paper, we present a parallel adapta-
tion of such algorithm to P systems, by introducing some concepts of Algebraic Topology
in the Membrane Computing framework. The chosen model for the implementation is
tissue-like P systems with promoters, inhibitors and priorities.

1 Introduction

Computer vision [36] is one of the challenges for Computer Science in the next
years. From a biological point of view, vision is an extremely complex process
involving the transformation of the light energy into a signal which leaves the eye
by way of the optic nerve and arrives to the brain, where is interpreted. From
the computational side, a 2D digital image can be roughly defined as a function
from a two dimensional surface which maps each point from the surface onto a
set of attributes as bright or color. Analogously, a 3D image maps a region of
a tridimensional space onto a set of attributes. The different treatments of such
mappings provide a big amount of current applications in computer vision as
biometrics [1], surveillance [11] or medical imaging [2].

Many problems in the processing of 2D or 3D digital images have features
which make it suitable for techniques inspired by nature. The subset of the integer
plane or space taken to be the support of the image and the set of possible features

168 R. Reina-Molina et al.

associated to each 2D or 3D point can be considered finite and hence, the trans-
formation of an image into another can be made in a discrete way. Other of such
features is that the treatment of the image can be parallelized and locally modi-
fied. Regardless how large is the picture, the process can be performed in parallel
in different local areas of it. Another interesting feature is that the information
of the image can also be easily encoded in the data structures used in Natural
Computing.

In the literature, we can find many examples of the use of Natural Computing
techniques for dealing with such problems. One of the classic examples is the use
of cellular automata [33, 35]. Other efforts are related to artificial neural networks
as in [18, 38].

In Membrane Computing, there is a large tradition in the study of dealing
information structured as two dimensional objects (see, e.g., [5, 6, 12, 23]). The
main motivation for these studies is to bring together Membrane Computing and
Picture Grammars. From a technical point of view, arrays are two-dimensional
objects placed inside the membranes as strings are one-dimensional objects in the
model of P systems with string objects [19, 31].

Recently, a new research line has been open by applying well-known membrane
computing techniques for solving problems from digital imagery. For example, the
segmentation problem, [8, 10, 13, 14], thresholding [7] or smoothing [29]. Special
attention deserves Gimel’farb et al. [20], where the symmetric dynamic program-
ming stereo (SDPS) algorithm [21] for stereo matching was implemented by using
simple P modules with duplex channels.

In this paper, we focus on the problem of skeletonizing a 2D or 3D image. Skele-
tonization is one of the approaches for representing a shape with a small amount
of information by converting the initial image into a more compact representation
and keeping the meaning features. The conversion should remove redundant in-
formation, but it should also keep the basic structure. There are many different
definitions of the skeleton of a black and white image and many skeletonizing al-
gorithms1, but in general, the image B is a skeleton of the image A, if it has fewer
black pixels than A, preserves its topological properties and, in some sense, keeps
its meaning. The most important features concerning a shape are its topology (rep-
resented by connected components, holes, etc.) and its geometry (elongated parts,
ramifications, etc.), thus these terms have to be preserved. When the skeletonizing
process is made by the iterative removal of non-significant elements of the image,
the process is known as thinning.

In this paper, we present an implementation of the Liu’s algorithm [24] for
thinning images based on Membrane Computing techniques. The basic notion of
this algorithm is the cell complex. It can be seen as a mathematical abstraction of
a space unit. This space unit is built in some n dimensional space and embedded
in a space of higher dimension, as a 2-dimensional square can be embedded in a
3D space. All these concepts will be formalized below.

1 A detailed description of skeletonizing algorithms is out of the scope of this paper. For
a survey in this topic, see e.g., [34].

Cell Complexes and Membrane Computing for Thinning Images 169

In Liu’s work [24], a cell complex is processed in order to obtain another com-
plex with the same topology, and the same geometry. We will start from a black
and white 2D or 3D digital image by building a cell complex from it. This com-
plex will be, then, processed by consecutive parallel removal of certain cells. The
removal process does not change the topology nor the geometry of the starting cell
complex. At the end of this process, the set of non-removed cells will make the
skeleton.

For implementing these ideas in the Membrane Computing framework, we
present a family of tissue-like P systems endowed with priorities among rules,
promoters and inhibitors. This paper follows the research line open with [9], but,
to the best of our knowledge, this is the first work which put together Membrane
Computing, Cells Complexes and thinning processes.

The paper is organized as follows. In the first section, all technical require-
ments of Algebraic Topology are reviewed. Next, the basics for understanding the
proposed algorithm are introduced, followed by the presentation of the Membrane
Computing framework and the bioinspired 2D and 3D black and white image thin-
ning algorithm. Next, an overview of the computation is presented, finishing with
conclusions and future work.

2 Cubical Complexes

As pointed above, cubical complexes are mathematical abstractions to handle
structured portions of a n dimensional space. On such abstractions, we can define
several operators as the border one, which associates, for example, a 3D cell (cube)
with six 2D cells (squares), or properties to define free cells or isolated cells.

We follow T. Kaczyński, K. Mischaikow and M. Mrozek [22] in the description
of a kind of combinatorial structure on a topological space.

Definition 1. [22] An elementary interval is a closed interval I ⊂ R of the form
I = [l, l + 1] or I = [l, l] for some l ∈ Z. The former are called nondegenerated,
while the latter are called degenerated. The interval [l, l] that contains only one
point will be denoted by [l].

Degenerated elementary intervals are simply points with 0 dimensions. Nonde-
generated elementary intervals are segments (objects with one dimension). Next,
we generalize this notion to any dimension.

Definition 2. An elementary cube σ is a finite product of elementary intervals:

σ = I1 × I2 × · · · × Id ⊂ Rd

where each Ij is an elementary interval, j ∈ {1, . . . , d}. The set of all elementary
cubes in Rd is denoted by Kd. The set of all elementary cubes is

K =

∞⋃
d=1

Kd

170 R. Reina-Molina et al.

For example {(0, 0, 0)}, {(x, 0, 0) | 0 ≤ x ≤ 1}, {(x, y, 0) | 0 ≤ x, y ≤ 1} and
{(x, y, z) | 0 ≤ x, y, z ≤ 1} are elementary cubes. Given an elementary cube σ =
I1×I2×· · ·×Id in Rd, its embedding number d is denoted by emb σ. The dimension
of σ is defined to be the number of nondegenerated intervals in its definition and is
denoted by dimσ. In this way, for the elementary cube Q ≡ {(x, y, 0) | 0 ≤ x, y ≤
1}, emb Q is 3 and dim Q is 2.

The set of all elementary cubes with dimension p is denoted by Kp. The set of
all elementary cubes in Rd with dimension p is denoted by Kdp.

The following definition gives sense to the decomposition of elementary cubes
into lower-dimensional objects.

Definition 3. Let δ and σ be two elementary cubes of any dimension. If δ ⊂ σ,
then δ is a face of σ. If δ is a face of σ and δ 6= σ, then δ is a proper face of
σ. δ is a primary face of σ if it is a face of σ and dim δ = dimσ − 1. Given an
elementary cube σ ∈ Kdp, the set of all primary faces of σ is called the border of σ
and it is denoted by ∂ σ.

For example, let us consider the elementary cubes σ1 = {(x, 0, 0) | 0 ≤ x ≤ 1},
σ2 = {(x, y, 0) | 0 ≤ x, y ≤ 1} and σ3 = {(x, y, z) | 0 ≤ x, y, z ≤ 1}. Notice that
σ1 ⊆ σ2 ⊆ σ3 holds, and hence σ1, σ2 and σ3 are faces of σ3; σ1 and σ2 are
proper faces of σ3; σ1 is a primary face of σ2 and σ2 is a primary face of σ3.
We also have that ∂ σ2 = {σ1, σ

′
1, σ
′′
1 , σ
′′′
1 } with σ′1 = {(x, 1, 0) | 0 ≤ x ≤ 1},

σ′′1 = {(0, x, 0) | 0 ≤ x ≤ 1}, σ′′′1 = {(1, x, 0) | 0 ≤ x ≤ 1}.

Definition 4. Let I be an elementary interval. The associated elementary cell is

I =

{
(l, l + 1) if I = [l, l + 1],
[l] if I = [l].

Let σ = I1×I2×· · ·×Id ⊂ Rd be an elementary cube, the associated elementary
cell is

σ = I1 × I1 × · · · × Id

The dimension of an elementary cell σ is defined as dimσ, i.e., the dimension
of the associated elementary cube. The border for an elementary cell σ can also
be defined as the set ∂ σ = {δ : δ ∈ ∂ σ}.

Definition 5. A cubical complex is a set of elementary cells such that, given an
elementary cell σ in the complex, all of its principal faces (the cells in ∂ σ) are in
the complex.

For the sake of simplicity, hereafter we will say cells instead of elementary cells,
bearing in mind that we refer to such kind of objects.

For example, Figure 1 (left) shows the cubical complex

K = {ABCD,AC,CD,BD,AB,BE,A,B,C,D,E}

Cell Complexes and Membrane Computing for Thinning Images 171

This cubical complex has 1 cell of dimension 2 (ABCD), 5 cells of dimension 1
(AC,CD,BD,AB,BE) and 5 cells of dimension 0 (A,B,C,D,E).

When a cell is not a proper face of any cell in a given cell complex, it will be
called isolated cell. A cell that is a proper face of exactly one cell in the complex is
called free face. The following proposition links the concepts of free faces, proper
faces and dimension. The proof can be found in [22].

Proposition 1. Let δ be a free face in a cell complex and assume δ is a proper
face of σ. Then σ is an isolated cell and dim δ = dimσ − 1.

As we are interested in obtaining a simpler representation for a cell complex
whilst the topology is preserved. In the following definition, a way to reduce the
number of cells in a cell complex is presented. This process reduces the number of
cells by two and it does not change the topology of the cell complex.

For example, let us consider the cell complex of Figure 1 (left). The cells ABCD
and BE are isolated. The cells AC, CD, BD AB and E rare free faces, but A,
B, C and D are not free faces, since they are proper faces of more than 1 cell
complex.

Definition 6. Let K be a cubical complex and δ a free cell in K. Let σ be the only
cell in K such that δ is a proper face of σ. Let K ′ = K \ {δ, σ}. K ′ is obtained
from K via a process called elementary collapse of σ by δ.

Let us consider again the cell complex K of Figure 1 (left). The cell E is a
free face of BE and, hence, we can consider the elementary collapse of BE by E.
The effect of such elementary collapse is the removal of E and BE from the cell
complex K. Analogously, AC is a free face of ABCD. The elementary collapse of
ABCD by AC is the removal of both cells (ABCD and AC) from K. Figure 1
(right) shows the final cubical complex obtained after both collapses.

Definition 7. Let K be a cubical complex. A pair of cells 〈δ, σ〉 is said to be a
simple pair if following conditions hold:

• δ is a free cell in K.
• σ is the only cell such that δ ∈ ∂ σ.

The cell σ is called the facet of the simple pair.

As shown in related literature [22, 37], simple pairs removal does not change
the topology of the given cell complex.

3 Cell Complex Thinning

Skeletonization is usually considered as a pre-process in pattern recognition al-
gorithms, but its study is also interesting by itself for the analysis of line-based

172 R. Reina-Molina et al.

Fig. 1. Elementary collapse example: E collapses onto BE and AC collapses onto ABDC
in the image at the left, producing the image at the right.

images as texts, line drawings, human fingerprints or cartography. Skeletoniza-
tion is a common transformation in Image Analysis. The concept of skeleton was
introduced by Blum in [3], under the name of medial axis transform.

Let K be a cubical2 cell complex and let ∂ be its border operator. As seen in
the previous section, if only simple pairs of cells are removed, the topology is kept.
For geometry preservation it is necessary to require some additional properties to
those cells to be removed.

The basic idea of the algorithm is to define an iterative process where outer
cells are removed. Here, the idea of outer cells makes reference to simple pairs,
since in a simple pair 〈δ, σ〉 the cell δ is a “terminal” cell as it does not lie in the
border of any other one rather than σ.

In the process of iterative thinning, given a cell σ, we will denote the later
iteration when σ is the facet of a simple pair by R(σ). The earlier iteration when
σ becomes isolated will be denoted by I(σ). Liu et al. describe in [25] the relation
between I(σ) and R(σ), and the maximum isotropic elongation in p + 1 and p

2 In the original work by Liu, [24], the thinning algorithm is designed for cell complexes
of any kind, however we restrict to cubical complexes.

Cell Complexes and Membrane Computing for Thinning Images 173

directions, respectively, since dimσ = p. Thus, if σ is a p-cell in a cell complex,
I(σ) measures the shortest discrete distance from σ to the object boundary. This
gives an idea of the size of the maximum disk centered at σ and inscribed in the
object. On the other hand, R(σ) measures the longest distance from σ to the object
boundary going along the skeleton (p− 1)-cells.

From the observation of the behaviour of previous measures, Liu defined two
difference measures. The absolute one, R(σ)− I(σ), is called absolute medial per-
sistence and is denoted by MPabs. On the other hand, relative medial persistence

is defined as 1− I(σ)
R(σ) and denoted by MPrel. Both of them measure the duration

in which a cell remains isolated during thinning process.
The cell complex thinning algorithm is shown in algorithm 1. It starts by

initializing the isolated cells. Next, the thinning iterations start. In each iteration,
all simple pairs are selected, all the pairs where the facet cell has one of the medial
persistence measures less than given thresholds are chosen. Finally, the cells in
selected simple pairs are removed from the cell complex. Otherwise, the cells are
removed and the thinning iterations stop, else, the iteration counter increases
and the thinning iterations continue. When the algorithm halts, a cell complex
representing the skeleton for the initial one is obtained.

Algorithm 1 Cell complex thinning algorithm

Require: K cell complex, εa, εr > 0
for all σ ∈ K isolated do
I(σ)← 0

end for
iter← 1
repeat

Let S = {〈δ, σ〉 : 〈δ, σ〉 is a simple pair}
for all σ ∈ π2(S) do
R(σ)← iter

end for
Let S′ = {〈δ, σ〉 ∈ S : MPabs(σ) < εa ∧MPrel(σ) < εr}
K = K \ {σ, δ : 〈δ, σ〉 ∈ S′}
for all σ ∈ K new isolated cell do
I(σ)← iter

end for
iter← iter + 1

until S′ = ∅
Here π2(〈δ, σ〉) = σ is the second projection for the pair 〈δ, σ〉.

4 Formal Framework

The chosen P system model for a Membrane Computing implementation of the
algorithm is the tissue-like P systems model endowed with some extra ingredients.

174 R. Reina-Molina et al.

As it is well-known, the biological inspirations of this model are intercellular
communication and cooperation between neurons [26, 27]. The communication
among cells is based on symport/antiport rules3. Tissue-like P systems have been
widely used to solve computational problems in other areas (see e.g. [15, 16]),
but recently, they have been also used in the study of digital images (e.g., [4, 8,
10, 17, 28, 29]). In this paper, we use a variant of tissue-like P systems where the
application of the rules are regulated by promoters and inhibitors. These promoters
have a clear biological inspiration. The rule is applied if the reactants are present,
but it is also necessary the presence of all the promoters and none of the inhibitors
in the corresponding cell. The promoters are not consumed nor produced by the
application of the rule, but if they are not in the cell, the rule cannot be applied. In
one step, each reactant in a membrane can only be used for one rule, but if several
rules need the presence of the same promoter, then the presence of one unique copy
of the promoter suffices for the application of the rules. In the general case, if there
are several possibilities, the rule is non-deterministically chosen, but sometimes we
will consider a priority relation between rules, so we need the concept of priority
in our P systems. Next, we recall the formal definition of these P systems.

Definition 8. A tissue-like P system with promoters, inhibitors and priorities of
degree q ≥ 1 is a tuple of the form

Π = (Γ,Σ, E , w1, . . . , wq,R, P ri, iin, iout)

where q is the number of cells (or membranes) of the P system and

1. Γ is a finite alphabet, whose symbols will be called objects. These objects can
be placed in the cells or in the surrounding space (called the environment).

2. Σ ⊆ Γ is the input alphabet. The input of the computation performed by the
P system is encoded by using this alphabet.

3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment.
Following a biological inspiration, the objects in the environment are available
in an arbitrary large amount of copies;

4. w1, . . . , wq are strings over Γ representing the multisets of objects placed inside
the cells at the starting of the computation;

5. R is a finite set of rules of the following form:

(pro¬inh | i, u/v, j), for 0 ≤ i 6= j ≤ q, pro, inh, u, v ∈ Γ ∗

6. Pri is a finite set of relations Ri > Rj, where Ri and Rj are rules from R. It
means that if Ri and Rj can be applied, then the application of Ri has priority
on the application of Rj.

7. iin ∈ {1, 2, . . . , q} denotes the input cell, i.e., the cell where the input of the
computation will be placed.

8. iout ∈ {1, 2, . . . , q} denotes the output cell, i.e., the cell where the output of the
computation will be placed.

3 Introduced in Membrane Computing in [30].

Cell Complexes and Membrane Computing for Thinning Images 175

Informally, a tissue-like P system with promoters, inhibitors and priorities of
degree q ≥ 1 can be seen as a set of q cells labeled by 1, 2, . . . , q. The cells are the
nodes of a virtual graph, where the edges connecting the cells are determined by
the communication rules of the P system, i.e., as usual in tissue-like P systems,
the edges linking cells are not provided explicitly: If a rule (pro¬inh | i, u/v, j)
is given, then cells i and j are considered linked. The application of a rule
(pro¬inh | i, u/v, j) consists of trading the multiset u (initially in the cell i) against
the multiset v (initially in j). After the application of the rule, the multiset u dis-
appears from the cell i and it appears in the cell j. Analogously, the multiset v
disappears from the cell j and it appears in the cell i. The trade can also be be-
tween one cell and the environment, labeled by 0. The rule is applied if in the cell
with label i the objects of pro are present in the cell i (promoters), while any of
the objects in inh do not appear in the cell (inhibitors). The promoters or the
inhibitors are not modified by the application of the rule. If the promoters and
inhibitors are empty, we will write (i, u/v, j) instead of (∅¬∅| i, u/v, j). Finally, we
write (pro |i, u/v, j) or (¬inh |i, u/v, j) when only promoters or inhibitors appear,
respectively.

As usual, we also consider that some objects not belonging to E can arrive
to the environment during a computation. So, in a configuration (not initial) we
could find two types of objects in the environment: Firstly, those which belong
to the environment and appear in an arbitrary large number of copies. Secondly,
those which not belong to the environment but are been sent to the environment
by the application of a rule.

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). A configuration is
an instantaneous description of the P system and it is represented as a tuple
(w0, w1, . . . , wq), where ‘W0 is the multiset of objects from Γ − E placed in the
environment (initially, w0 = ∅). Given a configuration, we can perform a com-
putation step and obtain a new configuration by applying the rules in a parallel
manner as it is shown above. A configuration is halting when no rules can be ap-
plied to it. A computation is a sequence of computation steps such that either it
is infinite or it is finite and the last step yields a halting configuration (i.e., no
rules can be applied to it). Then, a computation halts when the P system reaches
a halting configuration. The output of a computation is collected from its halting
configuration by reading the objects contained in the output cell.

4.1 Image Algebra

Next, we recall some basic definitions from Image Algebra used in thi paper4.
For a point set X ⊂ Z2, a neighborhood function is a function N : X → 2Z

2

.
For each point x ∈ X, N(x) ⊂ Z2. The set N(x) is called a neighborhood for
x. There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore

4 A detailed introduction can be found in [32].

176 R. Reina-Molina et al.

neighborhood. The first one, N : X → 2Z
2

, is defined by N(x) = {y : y =
(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.

While the Moore neighborhood M : X → 2Z
2

is defined by M(x) = {y : y =
(x1 ± j, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann
and Moore neighborhood are also called the four neighborhood (4-adjacency) and
eight neighborhood (8-adjacency), respectively.

Fig. 2. Neighbors of a voxel in a cube

In Z3 two voxels are said to be 26-adjacent if they are distinct and each co-
ordinate of one differs from the corresponding coordinate of the other by at most
1. Two voxels are 18-adjacent if they are 26-adjacent and differ in at most two of
their coordinates; and two voxels are 6-adjacent if they are 26-adjacent and differ
in at most one coordinate. That is to say each voxel has three kinds of neighbors:
6-neighbors which are also called face neighbors, 18-neighbors which are face and
edge neighbors and 26-neighbors which are face, edge, and vertex neighbors, as
they are shown in Figure 2. For n = 4; 8; 6; 18 or 26 an n-neighbor of a voxel p is
a point that is n-adjacent to p.

The point sets with the usual operations has an algebra structure (see [32]).
A Z-valued image on X is any element of ZX . Given a Z-valued image I :

X → Z, we will refer to Z as the set of possible range values of I, and to X as
the spatial domain of I. The graph of an image is also referred to as the data
structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
resel5. The first coordinate x of a resel is called the resel location or image point,
and the second coordinate I(x) is called the resel value of I at location x.

For example,X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N, N3, etc. We call to the image set of the function I
with domain X the set of colors or alphabet of colors and the image point of each
resel is called associated color.

5 The elements of a two-dimensional image are usually called pixels; the elements of
a three dimensional image are usually called voxels, and the elements of a four-
dimensional image are usually called doxels (resel in general).

Cell Complexes and Membrane Computing for Thinning Images 177

5 Description of the Algorithm

In previous sections two kinds of objects has been reviewed. On one side, cell com-
plexes achieves an useful link between continuous spaces and discrete structures
where combinatorial algorithms may be developed using well-established proper-
ties and results by continuous topology. On the other hand, it has been settled
a theoretical framework for working with images, considering them as a function
from a topological discrete space to a set of “colors”.

Our main goal is, starting from a k-dimensional binary image, build another
image which represents a skeleton for the original one. In this process we will get a
cell complex from the original image, skeletonize it and build back an image from
the last skeleton. In this process no topological or shape information will be lost.

The set of points for our source images will be the set [0, n)k = {0, 1, . . . , n −
1}k ⊂ Zk equipped with a cubic neighbourhood function, described as follows: Two
resels i = (i1, . . . , ip, . . . , ik) and j = (j1, . . . , jp, . . . , jk) are to be said 2k-adjacent
if il = jl for l 6= p and |ip − jp| = 1. More formally, the neighbourhood function is
given by

N(i1, . . . , ik) =

{
(j1, . . . , jk) ∈ [0, n)k : jl =

{
il if l 6= p
il ± 1 if l = p

; 1 ≤ p ≤ k
}

This neighborhood function, when restricted to k = 2, gives the 4-adjacency, and
8-adjacency when k = 3.

Let I : [0, n)k → {0, 1} be a k-D binary image of size nk, where the set of points
in the object (or black points) is I−1(1). Let K = K(I) be the cubic cell complex
built from I. In K, the 0-cells represent points in the object, the 1-cells represent
pairs of 2k-adjacent points, the 2-cells represent unit squares where its edges are
pairs of 2k-adjacent points, and so on. In general, each p-cell is a p-dimensional
unit hypercube whose edges are pairs of 2k-adjacent points.

The cubical complex K built from an image I can be encoded using tuples in
[0, 2n− 1)k. The 0-cell (i1, . . . , ip) is encoded using the tuple (2i1, . . . , 2ip). Higher
dimension cells are encoded using tuples in [0, 2n−1)k with many odd coordinates
as the dimension of the cell. The way a p-cell is encoded using only one tuple is
based in the idea of barycenter. Exactly, let σ be a p-cell with vertices given by
i1, . . . , i2p, and let us suppose that the vertices are sorted by lexicographic order.
The set {vj = ij − i1 : 2 ≤ j ≤ 2p} can be thought as a set of vectors in Rk.
From this set, we can extract a basis formed by vectors from the canonical one.
Let {u1, . . . ,up} be that basis. In such situation, the cell σ is encoded by the tuple

2i1 +

p∑
j=1

up

As the vectors uj have all the coordinates 0, except one of them with value 1,
and all of them are linearly independent, the dimension of cell σ is the number of
odd coordinates in its encoded tuple, as we have said before.

178 R. Reina-Molina et al.

The operator ∂ : [0, 2n− 1)k → 2[0,2n−1)
k

given by

∂(i1, . . . , ik) =

=

{
(j1, . . . , jk) ∈ [0, 2n− 1)k : jl =

{
il ± 1 if il ≡ 1(mod 2) ∧ l = p
il in other case

; 1 ≤ p ≤ k
}

gives all the possible cells in the border of the one represented by (i1, . . . , ik).
When we would like to find the border cells for one in a complex K, we may use
the restricted border operator given by

∂|K i = ∂ i ∩K

In the definition of the rules for the family of tissue-like P systems which solves
the proposed skeletonization problem, the use of the inverse border operator will
be useful. It is defined as follows.

∂−1(i1, . . . , ik) =

=

{
(j1, . . . , jk) ∈ [0, 2n)k : jl =

{
il ± 1 if il ≡ 0(mod 2) ∧ l = p
il in other case

; 1 ≤ p ≤ k
}

There is no difficult in observing that, for any j ∈ ∂i is i ∈ ∂−1j. So the use of
the name “inverse border operator” is plenty justified.

The tissue-like P systems presented in this paper have six membranes. The
first membrane is used as input and for marking the isolated cells before starting
the thinning iterations. The second membrane is used to mark simple pairs. The
third membrane selects the cells to be removed. The fourth membrane marks new
isolated cells and update the counter I. The fifth membrane updates counter R
and the sixth one is used as output membrane. Next, the P system is formally
described.

Let I be a k-D binary image of size nk, let K be the cubical cell built from I,
let εabs ∈ {1, 2, . . . , n} and εrel ∈ {τ1, . . . , τm} ⊂ (0, 1) ∩ Q, where τj < τj+1 for
1 ≤ j < m. For every tuple 〈n, εabs, εrel〉 we will define a tissue-like P system with
promoters, inhibitors, priorities and input, denoted by Π(n, εabs, εrel) and defined
as follows:

Π(n, εabs, εrel) = (Γ,Σ, E , w1, . . . , w6,R, P ri, iin, io)

where:

• Γ = {i : i ∈ [0, 2n− 1)k} ∪ {(I, i) : i ∈ [0, 2n− 1)k}∪
{(R, i, d) : i ∈ [0, 2n−1)k, 1 ≤ d ≤ n}∪{(I, i, D) : i ∈ [0, 2n−1)k, 0 ≤ D ≤ n}∪
{Si : i ∈ [0, 2n− 1)k}∪ {Ui : i ∈ [0, 2n− 1)k} ∪ {R}

• Σ = {i ∈ [0, 2n− 1)k : i ∈ K}
• w1 = {(R, i, 1) : i ∈ K} ∪ {(I, i, 0) : i ∈ K}
• w2 = . . . = w6 = ∅
• E = Γ \Σ
• R is the set of rules:

Cell Complexes and Membrane Computing for Thinning Images 179

– R1 ≡
(
{i}¬∂−1i|1, λ/(I, i), 0

)
for i ∈ [0, 2n− 1)k

These rules mark isolated cells before starting thinning iterations.
– R2 ≡ (1, i (R, i, 1) (I, i, 0)/λ, 2)

for i ∈ [0, 2n− 1)k

– R3 ≡ (1, (I, i)/λ, 2)
for i ∈ [0, 2n− 1)k

These rules move objects to the second membrane for starting the thinning
iterations.

– R4 ≡
(
{i, j}¬

(
∂−1j \ {i} ∪ {Si, Sj}

)
|2, λ/Si Sj, 0

)
for i ∈ [0, 2n− 1)k and j ∈ ∂i.
These rules mark simple pairs.

– R5 ≡ (2, i (R, i, d) (I, i, D)/λ, 3)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R6 ≡ (2, (I, i)/λ, 3)
for i ∈ [0, 2n− 1)k.

– R7 ≡ (2, Si Sj/λ, 3)
for i, j ∈ [0, 2n− 1)k.
These rules move objects to the third membrane for marking cells to be
removed.

– R8 ≡ ({Si, Sj, (R, i, d), (I, i, D)}¬{Ri, Rj}|3, λ/RRiRj, 0)
for i ∈ [0, 2n− 1)k, j ∈ ∂i,
0 ≤ d,D ≤ n, d 6= 0,
d−D < εabs and 1− D

d < εrel
These rules will mark for removal only those simple pairs whose higher
dimension cell has not enough shape signification. Shape signification is
calculated using medial persistence measures from [24, 25] . A cell is sig-
nificant enough if both medial persistence measures are greater than some
thresholds, given by εabs and εrel for MPabs and MPrel, respectively.

– R9 ≡ ({Ri}|3, i (R, i, d) (I, i, D)/λ, 0)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R10 ≡ ({Ri}|3, (I, i)/λ, 0)
for i ∈ [0, 2n− 1)k.

– R11 ≡ ({Ri, Rj}|3, S Si Sj/λ, 0)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules remove those simple pairs which are not significant enough.

– R12 ≡ (¬{Ri}|3, i (R, i, d) (I, i, D)/λ, 4)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R13 ≡ (¬{Ri}|3, (I, i)/λ, 4)
for i ∈ [0, 2n− 1)k.

– R14 ≡ (¬{Ri, Rj}|3, Si Sj/λ, 4)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules send objects to the fourth membrane for marking new isolated
cells.

180 R. Reina-Molina et al.

– R15 ≡
(
{i, (R, i, d)}¬(∂−1i ∪ {(I, i)}|4, (I, i, D)/(I, i) (I, i, d), 0

)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.
These rules mark new isolated cells and update counter I.

– R16 ≡ (4, i (R, i, d) (I, i, D)/λ, 5)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R17 ≡ (4, (I, i)/λ, 5)
for i ∈ [0, 2n− 1)k.

– R18 ≡ (4, S Si Sj/λ, 5)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules send objects to the fifth membrane for updating counter R.

– R19 ≡ ({R}¬{Ui}|5, (R, i, d)/(R, i, d+ 1)Ui, 0)
for i ∈ [0, 2n− 1)k and 1 ≤ d ≤ n
These rules update counter R.

– R20 ≡ ({Ui}|5, i (R, i, d) (I, i, D)/λ, 2)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R21 ≡ ({Ui}|5, (I, i)/λ, 2)
for i ∈ [0, 2n− 1)k.
These rules move objects back to the second membrane for starting the
next thinning iteration.

– R22 ≡ ({Ui, Uj}|5, R Si Sj/λ, 0)
for i ∈ [0, 2n− 1)k and j ∈ ∂i.

– R23 ≡ (5, Ui/λ, 0)
for i ∈ [0, 2n− 1)k.
These rules remove unnecessary objects.

– R24 ≡ (¬{R}|5, i/λ, 6)
for i ∈ [0, 2n− 1)k.
These rules send the skeletonized cell complex to the output membrane,
when no cell has been removed in prior steps.

• Pri = {R1 > Rp : p = 2, 3} ∪ {R4 > Rp : 5 ≤ p ≤ 7}∪
{R15 > Rp : 16 ≤ p ≤ 18} ∪ {Rp > R23 : 19 ≤ p ≤ 22}∪
{R8 > Rp : 12 ≤ p ≤ 14}

• iin = 1 is the input cell.
• iout = 6 is the output cell.

6 Overview of the Computation

Let K ⊂ [0, 2n− 1)k be a cubical cell complex encoded as described above. Next,
we will describe the behaviour of the P systems in the family Π when the input is
set to K with thresholds set to εabs and εrel respectively. From now, Cc will denote
the c-th configuration for the P system.

In order to make this overview more understandable, the process will be illus-
trated by the thinning process of image shown in figure 3.

Cell Complexes and Membrane Computing for Thinning Images 181

Fig. 3. Example image to show the thinning process, on the left. On the right is the cell
complex representation for the image. Blue squares represent 2-cells, green lines represent
1-cells and red dots represent 0-cells.

In the initial state C0, the first membrane stores one object i for each cell in K.
The initial values for counters R and I, given by objects (R, i, 1) and (I, i, 0), are
also stored in the first membrane. In this situation, only rules R1, R2 or R3 can be
applied. For priority reasons, the rules R1 are the only one that can be selected.
After apply the selected rules from R1, in C1, the first membrane contains objects
i (for cells in K), counters R and I, and isolation marks (I, i) for each isolated
cell i.

In the configuration C1, only the rules R2 and R3 can be selected, moving the
cell objects i, along with the isolation marks (I, i) and counters (R, i, 1) and (I, i, 0),
to the second membrane. The application of these rules gives as result the next
configuration, C2. In this situation, only the rules establishing communications
with the second membrane can be selected. Hence, the P system must select rules
from {R4, R5, R6, R7}. However, for priority reasons, only the rules R4 can be
selected and applied, arising to the next configuration, where simple pairs 〈j, i〉
are marked by the presence of objects Sj and Si in the second membrane.

In the current configuration, C3, only rules R5, R6 and R7 can be selected.
The application of them gives as result the configuration C4, where objects have
been moved from the second to the third membrane. In the third membrane the
simple pairs are going to be examined in order to detect those to be marked for
removal, when they were not significant enough. In this situation, only rules R8

can be selected and their application arises to the next configuration, C5, where
those simple pairs 〈j, i〉 that can be removed are marked by Rj and Ri.

In the previous configuration, only rules Rp, for 9 ≤ p ≤ 14, can be selected.
The application of these rules makes the P system evolve to the configuration C6,

182 R. Reina-Molina et al.

where selected simple pairs have been removed, along with the auxiliary objects,
and the remaining objects have been moved from the third to the fourth membrane.

In the configuration C6, for priority reasons again, only the rules R15 can be
selected, and their application marks the new isolated cells and updates the counter
(I, i, D). Now, all available objects are updated in the fourth membrane, in the
configuration C7. Then, only rules R16, R17 and R18 can be applied, resulting in
the configuration C8 where all the objects in the fourth membrane are moved to
the fifth one.

If no simple pairs have been marked for removal in configuration C9, there is
no marker R in the fifth membrane. In this situation, the only rules that can be
applied are those in R24. The application of these rules leaves the P system in the
configuration C10 which also is a halting configuration.

Let us Ssppose there have been some simple pairs marked for removal in con-
figuration C8, which ensures the presence of marker R in the P system. Then, the
application of rules in R19 updates the counter R, leaving the P system in the
configuration C9. In this situation, only rules in R20, R21 and R22 can be applied.
The former move objects to the second membrane, where the thinning iterations
restart, the latter removes auxiliary objects from the fifth membrane. In this situ-
ation, the P system is in the configuration C10. The result for the example image
is shown in Figure 4 (Right).

Fig. 4. (Left) Cell complex representation for cells in membrane 2 after the first thinning
iteration. (Right) The thinned cell complex.

In previous situation, only the rules in R4 and R23 can be applied. The former
marks simple pairs in the second membrane, while the latter remove auxiliary re-
maining objects in the fifth membrane, leaving the P system in the configuration
C11. From this point, the P system will evolve as above until it reaches the con-
figuration C16 whether the halting condition may be reached in next configuration

Cell Complexes and Membrane Computing for Thinning Images 183

C17, or not, depending on the presence of marker R. In the first case, the P system
will start a new thinning iteration. In the second situation, the P system sends
out the skeleton to the output membrane.

In any case, the P system will reach the halting configuration in 7t + 3 steps,
where t stands for the thinning iterations performed. If we start from a k-D binary
image of size nk where all the resels are black, and we do not pay attention to the
shape significance, we perform a full thinning in a number of thinning iterations
which, in addition, is the maximum. We have found that, in situation above, the
greater number of thinning iterations is given by k(n + 1). Hence, we can ensure
that the P system halts in, at most, 7k(n+ 1) + 3 computation steps.

In Figure 4 (Right), the resulting image, representing the cell complex in the
sixth membrane when the halting condition is reached, is shown.

The required computational resources for the family of tissue-like P systems
defined in this paper is given in the table 1.

k-D binary image thinning problem

Complexity

Number of steps of computation ≤ 7k(n+ 1) + 3

Resources needed

Size of the alphabet O(nk+1)
Initial number of cells 6
Initial number of objects 3|K|
Number of rules O(nk+2)
Upper bound for the length of the rules 3

Table 1. Complexity aspects, where the size of the input data is O(nk), |K| is the
number of cells in the input cell complex K.

7 Conclusions and Future Work

In this paper, we bring together Membrane Computing and Cell Complexes. Both
disciplines deal with compartments of the Euclidean space on their foundations,
but their inspiration and motivation are quite different. The former is a computa-
tion model inspired in the functioning of living cells and tissues and the latter is
born as a tool for handle concepts of Algebraic Topology.

In this paper, we use Membrane Computing techniques to implement a cell
complex based algorithm for thinning images and show a new proof that the Mem-
brane Computing framework is flexible enough to adapt to unexpected situations.
In this way, this is a pioneer work that open a new research line that can be
followed at different levels.

Firstly, we can study if other P system models (cell-like P systems, SN P
systems, a most restrictive model of tissue-like P systems, . . .) are better than

184 R. Reina-Molina et al.

the one used in this paper to implement the Liu’s algorithm in the Membrane
Computing framework. Better should be considered here in a broad sense, since it
can mean with a lower amount of resources, with less ingredients in the P system
model o more efficient in some sense.

Another line to follow is to study if other problems in Algebraic Topology al-
ready studied with Cells Complexes can be considered in the framework of Mem-
brane Computing. This research line can open a flow of inquiries and solutions in
both directions enriching both disciplines with new points of view.

Finally, a more general question is the study of links on the foundations of
Membrane Computing and Cell Complexes. As pointed out above, both disciplines
shares a compartmental view of the Euclidean space and this can be a starting
point for a deeper study of their common properties.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200.

References

1. Adeoye, O.S.: A survey of emerging biometric technologies. International Journal of
Computer Applications 9(10), 1–5 (November 2010)

2. Ayache, N.: Medical image analysis and simulation. In: Shyamasundar, R.K., Ueda,
K. (eds.) ASIAN. Lecture Notes in Computer Science, vol. 1345, pp. 4–17. Springer
(1997)

3. Blum, H.: An associative machine for dealing with the visual field and some of its
biological implications. In: Bernard, E.E., Kare, M.R. (eds.) Biological Prototypes
and Synthetic Systems. vol. 1, pp. 244–260. Plenum Press, New York (1962)

4. Carnero, J., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A.: Designing tissue-like P sys-
tems for image segmentation on parallel architectures. In: del Amor, M.A.M., Păun,
Gh., de Mendoza, I.P.H., Romero-Campero, F.J., Cabrera, L.V. (eds.) Ninth Brain-
storming Week on Membrane Computing. pp. 43–62. Fénix Editora, Sevilla, Spain
(2011)

5. Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–
328 (2003)

6. Ceterchi, R., Mutyam, M., Păun, Gh., Subramanian, K.G.: Array-rewriting P sys-
tems. Natural Computing 2(3), 229–249 (2003)

7. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
Thresholding of 2D images with cell-like P systems. Romanian Journal of Infor-
mation Science and Technology 13(2), 131–140 (2010)

Cell Complexes and Membrane Computing for Thinning Images 185

8. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture
Notes in Computer Science, vol. 5856, pp. 169–176. Springer (2009)

9. Christinal, H.A., Dı́az-Pernil, D., Real, P.: P systems and computational algebraic
topology. Mathematical and Computer Modelling 52(11-12), 1982 – 1996 (2010)

10. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Region-based segmentation of 2D and 3D
images with tissue-like P systems. Pattern Recognition Letters 32(16), 2206 – 2212
(2011)

11. Collins, R., Lipton, A., Kanade, T.: Introduction to the special section on video
surveillance. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22(8),
745 –746 (2000)

12. Dersanambika, K.S., Krithivasan, K.: Contextual array P systems. International
Journal of Computer Mathematics 81(8), 955–969 (2004)

13. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired
software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K.,
Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications BIC-TA. vol. 2, pp. 1377 –
1381. IEEE Computer Society, Beijing, China (2010)

14. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: Designing a
new software tool for digital imagery based on P systems. Natural Computing pp.
1–6 (2011)

15. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A linear-time tissue P system based solution for the 3-coloring problem. Electronic
Notes in Theoretical Computer Science 171(2), 81–93 (2007)

16. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
Solving subset sum in linear time by using tissue P systems with cell division. In:
Mira, J., Álvarez, J.R. (eds.) IWINAC (1). Lecture Notes in Computer Science, vol.
4527, pp. 170–179. Springer (2007)

17. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Real, P., Sánchez-Canales, V.: Computing
homology groups in binary 2D imagery by tissue-like P systems. Romanian Journal
of Information Science and Technology 13(2), 141–152 (2010)

18. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural
networks - a review. Pattern Recognition 35(10), 2279–2301 (2002)

19. Ferretti, C., Mauri, G., Zandron, C.: P systems with string objects. In: Păun, Gh.,
Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing,
pp. 168 – 197. Oxford University Press, Oxford, England (2010)

20. Gimel’farb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real,
P., Dı́az-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) Computer
Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 6855, pp.
285–292. Springer (2011)

21. Gimel’farb, G.L.: Probabilistic regularisation and symmetry in binocular dynamic
programming stereo. Pattern Recognition Letters 23(4), 431–442 (2002)

22. Kaczyński, T., Mischaikow, K., Mrozek, M.: Computational homology. Applied math-
ematical sciences, Springer (2004)

23. Krishna, S.N., Rama, R., Krithivasan, K.: P systems with picture objects. Acta
Cybernetica 15(1), 53–74 (2001)

24. Liu, L.: 3D thinning on cell complexes for computing curve and surface skeletons.
Washington University (2009)

186 R. Reina-Molina et al.

25. Liu, L., Chambers, E.W., Letscher, D., Ju, T.: A simple and robust thinning algo-
rithm on cell complexes. Computer Graphics Forum 29(7), 2253–2260 (2010)

26. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

27. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

28. Peña-Cantillana, F., Dı́az-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A par-
allel implementation of the thresholding problem by using tissue-like P systems. In:
Real, P., Dı́az-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W.G. (eds.)
CAIP (2). Lecture Notes in Computer Science, vol. 6855, pp. 277–284. Springer
(2011)

29. Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Im-
plementation on CUDA of the smoothing problem with tissue-like P systems. Inter-
national Journal of Natural Computing Research 2(3), 25–34 (2011)

30. Păun, A., Păun, Gh.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–306 (2002)

31. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

32. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Computer
Vision, Graphics, and Image Processing 49(3), 297–331 (1990)

33. Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on
Image Processing 15(7), 2076–2087 (2006)

34. Saeed, K., Tabedzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for
image skeletonization and a review of thinning techniques. Applied Mathematics and
Computer Science 20(2), 317–335 (2010)

35. Selvapeter, P.J., Hordijk, W.: Cellular automata for image noise filtering. In: NaBIC.
pp. 193–197. IEEE (2009)

36. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)

37. Zhou, Q.Y., Ju, T., Hu, S.M.: Topology repair of solid models using skeletons. IEEE
Transactions on Visualization and Computer Graphics 13(4), 675–685 (2007)

38. Zhou, Y., Chellappa, R.: Artificial neural networks for computer vision. Research
notes in neural computing, Springer-Verlag (1992)

Asynchronous Spiking Neural P Systems
with Local Synchronization

Tao Song1, Linqiang Pan1, Gheorghe Păun2

1 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
parallel computing devices inspired from the way neurons communicate by means of
spikes. Asynchronous SN P systems are non-synchronized systems, where the use of spik-
ing rules (even if they are enabled by the contents of neurons) is not obligatory. In this
paper, with a biological inspiration (in order to achieve some specific biological func-
tioning, neurons from the same functioning motif or community work synchronously to
cooperate with each other), we introduce the notion of local synchronization into asyn-
chronous SN P systems. The computation power of asynchronous SN P systems with
local synchronization is investigated. Such systems consisting of general neurons (resp.
unbounded neurons) and using standard spiking rules are proved to be universal. Asyn-
chronous SN P systems with local synchronization consisting of bounded neurons and
using standard spiking rules characterize the semilinear sets of natural numbers. These
results show that the local synchronization is useful, it provides some “programming
capacity” useful for achieving a desired computational power.

1 Introduction

Membrane computing is one of the recent branches of natural computing. It was
initiated in [9] and has developed rapidly (already in 2003, ISI considered mem-
brane computing as a “fast emerging research area in computer science”, see
http://esi-topics.com). The aim is to abstract computing ideas (data struc-
tures, operations with data, ways to control operations, computing models, etc.)
from the structure and the functioning of a single cell and from complexes of

188 T. Song, L. Pan, Gh. Păun

cells, such as tissues and organs, including the brain. The obtained models are dis-
tributed and parallel computing devices, usually called P systems. There are three
main classes of P systems investigated: cell-like P systems (based on a cell-like
(hence hierarchical) arrangement of membranes delimiting compartments where
multisets of chemicals evolve according to given evolution rules) [9], tissue-like P
systems (instead of hierarchical arrangement of membranes, one considers arbi-
trary graphs as underlying structures, with membranes placed in the nodes, and
with the edges corresponding to communication channels) [7], and neural-like P
systems. Many variants of all these systems have been considered; an overview
of the field can be found in [10] and [11], with up-to-date information available
at the membrane computing website (http://ppage.psystems.eu). For an intro-
duction to membrane computing, one may consult [10] and [11]. The present work
deals with a class of neural-like P systems, called spiking neural P systems (SN P
systems, for short), introduced in [5].

SN P systems are a class of distributed and parallel computing models inspired
by spiking neurons. As we know, neurons are one of the most interesting cell-types
in the human body. A large number of neurons working in a cooperative manner
are able to perform tasks (such as thought, self-awareness, intuition) that are not
yet matched by the tools we can build with our current technology. However, we
believe that the distributed manner in which the brain processes information is
important in obtaining better performance for electronic computers, that is why
we are interested in SN P systems defined as a computation model. We stress
that in this work SN P systems are a subject of a theoretical computer science
investigation, without any intention to propose a platform for modeling biological
processes.

Briefly, an SN P system consists of a set of neurons placed in the nodes of
a directed graph, where neurons send signals (called spikes and denoted by the
symbol a in what follows) along synapses (arcs of the graph). Spikes evolve by
means of standard spiking rules, which are of the form E/ac → a; d, where E is
a regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The
meaning is that if a neuron contains k spikes such that ak ∈ L(E) and k ≥ c, then
it can consume c spikes and produce one spike after a delay of d steps. This spike
is sent to all neurons connected by an outgoing synapse starting in the neuron
where the rule was applied. There are also standard forgetting rules, of the form
as → λ, with the meaning that s ≥ 1 spikes are forgotten if the neuron contains
exactly s spikes. Extended rules were considered in [3]: these rules are of the form
E/ac → ap; d, with the meaning that when using this rule, c spikes are consumed
and p spikes are produced. Because p can be 0 or greater than 0, we obtain a
generalization of both standard spiking and forgetting rules.

A rule is bounded if it is of the form ai/ac → ap; d, where 0 < c ≤ i, 0 < p ≤ c,
d ≥ 0. A neuron is bounded if it contains only bounded rules. A rule is called
unbounded if it is of the form ai(aj)∗/ac → ap; d, with i ≥ 0, j ≥ 1, c ≥ p > 0,
d ≥ 0. (Note that also rules of the form ai(aj)+/ac → ap; d are covered, as they
can be rewritten in the form ai+j(aj)∗/ac → ap; d.) A neuron is unbounded if it

Asynchronous SN P Systems with Local Synchronization 189

contains only unbounded rules. A neuron is general if it contains both bounded
and unbounded rules. An SN P system is bounded if all neurons in the system
are bounded. It is unbounded if it has both bounded and unbounded neurons. An
SN P system is general if it contains at least one general neuron (i.e., a neuron
containing both bounded and unbounded rules).

An SN P system works in a synchronized manner. A global clock is assumed,
and in each time unit, the rule to be applied in each neuron is non-deterministically
chosen; one rule must be applied in each neuron with applicable rules. The work
of the system is sequential in each neuron: only (at most) one rule is applied in
each neuron. One of the neurons is considered to be the output one, and its spikes
are also sent to the environment. The moments of time when a spike is emitted by
the output neuron are marked with 1, and the other moments are marked with 0.
This binary sequence is called the spike train of the system; it might be infinite if
the computation does not stop. Various numbers can be associated with a spike
train, which can be considered as computed (or generated) by an SN P system.

Synchronized SN P systems using standard rules were proved to be computa-
tionally complete both in the generating and the accepting case [5]. In the proof
of these results, the synchronization plays a crucial role. However, both from a
mathematical point of view and from a neuro-biological point of view, it is rather
natural to consider non-synchronized systems, where the use of rules is not oblig-
atory. Even if a neuron has a rule enabled in a given time unit, this rule is not
obligatorily used. The neuron may remain unfired, maybe receiving spikes from the
neighboring neurons. If the unused rule may be used later, it is used later, without
any restriction on the interval when it has remained unused. If further spikes made
the rule non-applicable, then the computation continues in the new circumstances
(maybe other rules are enabled now). With this motivation, asynchronous SN P
systems were introduced in [2]. It was proved that asynchronous general SN P
systems with extended rules are equivalent with Turing machines; asynchronous
unbounded SN P systems with extended rules are not universal. However, it re-
mains open whether asynchronous general SN P systems with standard rules are
universal.

In a biological neural system, motifs with 4-5 neurons and communities with
12-15 neurons, associated with some specific functioning, are rather common [1].
The neurons from the same motif or community will work synchronously to co-
operate with each other. That is, in a biological neural system, neurons work
asynchronously at the global level, but neurons from the same functioning motif
or community work synchronously at the local level. With this biological inspira-
tion, we introduce asynchronous SN P systems with local synchronization, where
a family of sets of neurons (we call them ls-sets) is specified; if one of the neurons
from an ls-set fires, then all neurons from this set should fire, provided that they
have enabled rules. Of course, it is possible that all neurons from an ls-set remain
unfired even if they have enabled rules, because of the global asynchronous mode.

190 T. Song, L. Pan, Gh. Păun

In this work, we prove that asynchronous general or unbounded SN P systems
with local synchronization using standard rules are universal; in the bounded case
a characterization of semilinear sets of numbers is obtained.

In the asynchronous SN P systems constructed in [2], the non-determinism
comes from two resources: (1) the asynchronous mode; (2) the non-deterministic
choice of enabled rules to be applied. Each neuron of a system constructed in
the present paper works in a deterministic way, in the sense that at each step
each neuron has at most one enabled rule; however, the whole system works in a
non-deterministic way because of the asynchronous mode.

In the proofs of the universality results in this work, the feature of local synchro-
nization plays a crucial role. An asynchronous general SN P system with standard
rules loses this “programming capacity” ensured by the extended rules and the
local synchronization. So, our research gives some hint to support the conjecture
that an asynchronous general SN P system with standard rules is non-universal
[2].

2 Preliminaries

It is useful for readers to have some familiarity with basic elements of language
theory, e.g., from [13], as well as basic membrane computing [10]. We here only
introduce the necessary prerequisites.

The set of natural numbers is denoted by N.
For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;

the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, we write simply a∗ and a+ instead
of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)

+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)

+) = (L(E1))
+, for all regular expressions E1, E2 over V . Unnecessary

parentheses can be omitted when writing a regular expression, and (E)+∪{λ} can
also be written as E∗.

By SLIN , NRE we denote the families of semilinear and of Turing computable
sets of numbers. (SLIN is the family of length sets of regular languages – languages
characterized by regular expressions;NRE is the family of length sets of recursively
enumerable languages – those recognized by Turing machines.)

In the university proofs, the notion of a register machine is used. A register
machine is a construct M = (m,H, l0, lh, R), where m is the number of registers,
H is the set of instruction labels, l0 is the start label, lh is the halt label (assigned
to instruction HALT), and R is the set of instructions; each element of H labels

Asynchronous SN P Systems with Local Synchronization 191

only one instruction from R, thus precisely identifying it. The instructions are of
the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-zero, then subtract 1 from it, and go to
the instruction with label lj ; otherwise, go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way.
The register machine starts with all registers empty (i.e., storing the number zero).
It applies the instruction with label l0 and proceeds to apply instructions as indi-
cated by labels (and, in the case of SUB instructions, by the contents of registers).
If the register machine reaches the halt instruction, then the number n stored at
that time in the first register is said to be computed by M . The set of all numbers
computed by M is denoted by N(M). It is known that register machines compute
all sets of numbers which are Turing computable, hence they characterize NRE
[8].

Without loss of generality, it can be assumed that l0 labels an ADD instruction,
that in the halting configuration all registers different from the first one are empty,
and that the output register is never decremented during the computation (its
content is only added to).

A strongly monotonic register machine is a non-deterministic machine with
only one register (this is also the output register). This register is initially zero
and can only be incremented by 1 at each computation step (that is why we call
such a machine strongly monotonic). When the machine halts, the value stored
in the register is said to be generated. It is known that a set of natural numbers
is semilinear if and only if it can be generated by a strongly monotonic register
machine.

A register machine can also be used in the accepting mode: one starts with all
registers empty, except one specified register, the input one, where a number x is
introduced; the computation starts (with instruction with label l0) and, if it halts,
then the number x is accepted. In this way, again all sets of numbers from NRE
are characterized. Furthermore, a register machine can be used for computing
functions φ : N −→ N: certain registers are designated as input registers and
a specific one as the output register; numbers x1, . . . , xk are introduced in the
input registers and the value of a function φ(x1, . . . ,mk) is obtained in the output
register – providing that φ is defined for x1, x2, . . . , xk, otherwise the computation
never halts. Turing computable functions can be computed in this way.

We use the following convention. When the power of two number generat-
ing/accepting devices D1 and D2 are compared, number zero is ignored, that is,
N(D1) = N(D2) if and only if N(D1)− {0} = N(D2)− {0} (this corresponds to
the usual practice of ignoring the empty string in language and automata theory).

192 T. Song, L. Pan, Gh. Păun

3 Asynchronous Spiking Neural P Systems with Local
Synchronization

In this section, we introduce the variant of SN P systems investigated in this work
– asynchronous spiking neural P systems with local synchronization. The definition
is complete, but familiarity with the basic elements of classic SN P systems (e.g.,
from [11], [12]) is helpful.

An asynchronous spiking neural P system (without delay) with local synchro-
nization is a construct of the form:

Π = (O, σ1, σ2, . . . , σm, Loc, syn, out), where

• m ≥ 1 is the degree of the system;
• O = {a} is the singleton alphabet (a is called spike);
• σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

(1) ni ≥ 0 is the initial number of spikes contained in σi;
(2) Ri is a finite set of extended rules of the following form: E/ac → ap, where

E is a regular expression over O, c ≥ 1 and c ≥ p ≥ 0;
• Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}) is the family of sets of locally

synchronous neurons (we call these sets ls-sets), where P({σ1, σ2, . . . , σm}) is
the power set of {σ1, σ2, . . . , σm}; the number max{|loc1|, |loc2|, . . . , |locl|} is
the local synchronization degree of the system;

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn is the set of synapses
between neurons;

• out ∈ {1, 2, . . . ,m} indicates the output neuron.

A rule E/ac → ap with p ≥ 1 is called extended firing (we also say spiking)
rule; a rule E/ac → ap with p = 0 is written in the form E/ac → λ and is called a
forgetting rule. If L(E) = {ac}, then the rules are written in the simplified forms
ac → ap and ac → λ. A rule of the type E/ac → a and ac → λ is said to be
standard.

The rules are applied as follows. If neuron σi contains k spikes and ak ∈ L(E),
k ≥ c, then the rule E/ac → ap ∈ Ri is enabled and can be applied. This means
that c spikes are consumed (thus k − c spikes remain in neuron σi), the neuron is
fired, and it produces p spikes. The p spikes emitted by a neuron σi are replicated
and they go to all neurons σj such that (i, j) ∈ syn (each neuron σj receives p
spikes). Every neuron can contain several rules. Because two firing rules, E1/a

c1 →
ap1 and E2/a

c2 → ap2 , can have L(E1)∩L(E2) ̸= ∅, it is possible that two or more
spiking rules are enabled in a neuron at some moment, and then one of them is
chosen non-deterministically.

If the rule is a forgetting one of the form E/ac → λ, then, when it is applied,
c ≥ 1 spikes are removed.

A global clock is assumed, marking the time for all neurons. In each time unit,
any neuron is free to use a rule or not, i.e., a neuron can remain still in spite of the
fact that it contains rules which are enabled by its contents. If the content of the

Asynchronous SN P Systems with Local Synchronization 193

neuron is not changed, a rule which is enabled in a given step can fire later. If new
spikes are received, then it is possible that other rules will be enabled and applied
or not. Furthermore, for neurons in the same ls-set locj , if one of these neurons
fires, then all neurons in locj that have enabled rules should fire. Of course, it
is possible that all neurons from locj remain unfired even if they have enabled
rules. That is, all neurons from locj may remain still, or all neurons from locj with
enabled rules fire at a same step (of course, neurons without enabled rules cannot
fire). Hence, neurons work asynchronously at the global level, but neurons in each
ls-set work synchronously.

The “state” of the system at a given time is described by the number of spikes
present in each neuron. That is, the configuration of the system is of the form
⟨r1, r2, . . . , rm⟩ for ri ≥ 0, which indicates that neuron σi contains ri spikes. With
this notation, the initial configuration of the system is ⟨n1, n2, . . . , nm⟩. By using
the rules as described above, one can define transitions among configurations. Any
series of transitions starting from the initial configuration is called a computation.
A computation is successful if it reaches a configuration where no rule can be
applied in any neuron (i.e., the SN P system has halted). The result of a compu-
tation is defined here as the total number of spikes sent into the environment by
the output neuron. (Because of the asynchronous mode, now “the time does not
matter”. The output neuron can remain still for any number of steps between two
consecutive spikes, therefore the result of a computation can no longer be defined
in terms of the steps between two consecutive spikes as in the standard SN P
systems definition.)

Specifically, a number x is generated by an SN P system if there is a halting
computation of the system where the output neuron emits exactly x spikes (if
several spikes are emitted at the same time, all of them are counted). Because of
the non-determinism in using the rules, a given system computes in this way a set
of numbers.

The rules, the neurons, and the SN P systems are called bounded, unbounded,
or general as defined in the Introduction – the definitions are obvious, so we do
not recall them here.

Asynchronous SN P systems with local synchronization can be used as com-
puting devices in various ways, but here we consider them only as generators of
numbers. We denote by N(Π) the set of numbers generated by an asynchronous
SN P system with local synchronization Π, and by NSpikoutP

locsyn
m (α, ls) with

α ∈ {gen, boun, unb} and ls ≥ 0, the family of such sets of numbers generated by
systems of type α (gen stands for general, boun for bounded, unb for unbounded),
with at most m neurons, and local synchronization degree at most ls. If one of
the parameters m and ls is not bounded, then it is replaced with ∗. The subscript
out reminds us of the fact that we count all spikes sent into the environment as
computation results.

194 T. Song, L. Pan, Gh. Păun

4 Asynchronous General SN P Systems with Local
Synchronization

In this section, we investigate the computation power of asynchronous general SN P
systems with local synchronization, and we prove that such systems using standard
rules are universal. It was formulated as an open problem whether asynchronous
SN P systems with standard rules are universal and it was conjectured that the
answer is negative in [2]. So, the feature of local synchronization provides a useful
“programming capacity”.

As it is usual in the area of spiking neural P systems, asynchronous SN P sys-
tems with local synchronization are represented graphically, which may be easier
to understand than in a symbolic way. We use an oval with rules inside to repre-
sent a neuron, and a directed graph to represent the structure of the system: the
neurons are placed in the nodes of the graph and the edges represent the synapses;
the output neuron has an outgoing arrow, suggesting its communication with the
environment.

Theorem 1. NRE = NSpikoutP
locsyn
∗ (gen, ∗).

We only have to prove that NRE ⊆ NSpikoutP
locsyn
∗ (gen, ∗), since the con-

verse inclusion is straightforward (or we can invoke for it the Turing-Church thesis).
To this aim, we use the characterization of NRE by means of generating register
machines. Let us consider a register machine M = (m,H, l0, lh, I). As mentioned
in Section 2, without any loss of generality, we may assume that in the halting
configuration, all registers different from register 1 are empty, and that the output
register is never decremented during a computation. For each register r of M , let
sr be the number of SUB instructions acting on register r. If there is no such SUB
instruction, then sr = 0, which is the case for the first register r = 1. In what
follows, a specific asynchronous SN P system with local synchronization Π will be
constructed to simulate the register machine M , where each neuron in system Π
has only standard rules.

The system Π consists of three types of modules – ADD modules, SUB mod-
ules, and a FIN module. ADD modules and SUB modules are used to simulate the
ADD and SUB instructions of M , respectively; the FIN module is used to output
a computation result.

In general, a neuron σr is associated with each register r of M ; the number
stored in register r is encoded by the number of spikes in neuron σr. Specifically, if
register r holds the number n ≥ 0, then neuron σr contains 2n spikes. With each
label li of an instruction in M , a neuron σli is associated. In the initial config-
uration, all neurons are empty, with the exception of neuron σl0 associated with
the initial instruction l0 of M , which contains one spike. During a computation,
a neuron σli having one spike inside will become active and starts to simulate an
instruction li : (OP(r), lj , lk) of M : starting with neuron σli activated, one changes
neuron σr as requested by OP, then one introduces one spike into neuron σlj or neu-
ron σlk , which becomes active in this way. When neuron σlh (associated with the

Asynchronous SN P Systems with Local Synchronization 195

label lh of the halting instruction of M) is activated, a computation in M is com-
pletely simulated in Π; the FIN module starts to output the computation result
(the number of spikes sent into the environment by the output neuron corresponds
to the number stored in register 1 of M).

In what follows, the modules ADD, SUB, and FIN are given in the standard
graphical way, also specifying their ls-sets, and their work is briefly analyzed.

Module ADD (shown in Figure 1) – simulating an ADD instruction li : (ADD
(r), lj , lk).

The initial instruction of M , the one with label l0, is an ADD instruction. Let
us assume that at step t, an instruction li : (ADD(r), lj , lk) has to be simulated, with
one spike present in neuron σli (like σl0 in the initial configuration) and no spike
in any other neurons, except in those neurons associated with registers. Having
one spike inside, the rule a → a is enabled, neuron σli can fire, and at some time it
will do it (otherwise, the computation does not halt), sending one spike to neurons
σ
l
(1)
i

, σ
l
(2)
i

and σ
l
(3)
i

, respectively. Having one spike inside, neurons σ
l
(1)
i

, σ
l
(2)
i

and

σ
l
(3)
i

can fire; neurons σ
l
(1)
i

and σ
l
(2)
i

will fire at the same step (because they are

in the same ls-set {σ
l
(1)
i
, σ

l
(2)
i
}) sending two spikes to neurons σ

l
(3)
i
, σ

l
(4)
i

and σr,

respectively. In this way, the number of spikes in neuron σr is increased by two,
which corresponds to the fact that the number stored in register r is increased by
one. For neuron σ

l
(3)
i
, we have two possible cases.

Proof. (1) Neuron σ
l
(3)
i

fires before neurons σ
l
(1)
i

and σ
l
(2)
i

fire. Note that, in this

case, when neuron σ
l
(3)
i

fires, neuron σ
l
(4)
i

does not fire (it has no enabled rule),

although neurons σ
l
(3)
i

and σ
l
(4)
i

are in the same ls-set {σ
l
(3)
i
, σ

l
(4)
i
}. Neurons

σ
l
(5)
i

and σ
l
(6)
i

receive one spike from neuron σ
l
(3)
i

and they keep inactive. After

neurons σ
l
(3)
i

and σ
l
(4)
i

receive two spikes from neurons σ
l
(1)
i

and σ
l
(2)
i

, both of

neurons σ
l
(3)
i

and σ
l
(4)
i

can fire, and they will fire at a same step, sending two

spikes to neurons σ
l
(5)
i

and σ
l
(6)
i

. In this way, both of neurons σ
l
(5)
i

and σ
l
(6)
i

accumulate 3 spikes. With 3 spikes inside, neuron σ
l
(5)
i

can fire at any step by

the rule a3 → a, and send one spike to neuron σlj . After neuron σlj receives
one spike, it becomes active, starting to simulate the instruction lj of M .

When neuron σlj fires, it is possible that neuron σ
l
(6)
i

still contains three

spikes because of non-synchronization. In this case, neuron σ
l
(6)
i

should also

fire (because they are in the same ls-set) at the same step removing all three
spikes, which insures that no spike remains in the module (except those in σr).

(2) Neuron σ
l
(3)
i

fires after neurons σ
l
(1)
i

and σ
l
(2)
i

fire. In this case, neuron σ
l
(3)
i

accumulates three spikes and neuron σ
l
(4)
i

has two spikes. Neurons σ
l
(3)
i

and

σ
l
(4)
i

will fire at a same step. Similar to case (1), neuron σlk will become active,

starting to simulate the instruction lk ofM (at the same step “cleaning” neuron
σ
l
(5)
i
).

196 T. Song, L. Pan, Gh. Păun

Fig. 1. Module ADD with four ls-sets {σ
l
(1)
i

, σ
l
(2)
i

}, {σ
l
(3)
i

, σ
l
(4)
i

}, {σ
l
(5)
i

, σlk} and

{σ
l
(6)
i

, σlj} for simulating li : (ADD(r), lj , lk)

Therefore, after firing neuron σli , the system adds two spikes to neuron σr and
non-deterministically fires one of neurons σlj and σlk , which correctly simulates
the ADD instruction li : (ADD(r), lj , lk).

Module SUB (shown in Figure 2) – simulating a SUB instruction li : (SUB(r),
lj , lk).

A SUB instruction li is simulated in Π in the following way. Initially, neuron
σli has one spike, and other neurons are empty, except the neurons associated with
registers. With one spike inside, the rule a → a in neuron σli is enabled, and it will
fire at some step sending one spike to neurons σ

l
(1)
i
, σ

l
(2)
i
, and σr. These neurons

will fire simultaneously, because they are in the same ls-set. For neuron σr, there
are two cases.

(1) Before receiving one spike from neuron σli , neuron σr contains 2n (n > 0)
spikes (corresponding to the fact that the number stored in register r is n, and
n > 0). In this case, neuron σr gets 2n+ 1 spikes and the rule a(a2)+/a3 → a
is enabled. So, when neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send

three spikes to each of neurons σ
l
(3)
i

and σ
l
(4)
i

. In neuron σr, three spike are

consumed, ending with 2n+ 1− 3 = 2(n− 1) spikes, which simulates the fact
that the number stored in register r is decreased by one. With three spikes

Asynchronous SN P Systems with Local Synchronization 197

Fig. 2. Module SUB with three ls-sets {σ
l
(1)
i

, σ
l
(2)
i

, σr}, {σl
(3)
1

, σ
l
(3)
2

, . . . , σ
l
(3)
sr

, σlk} and

{σ
l
(4)
1

, σ
l
(4)
2

, . . . , σ
l
(4)
sr

, σlj} for simulating li : (SUB(r), lj , lk)

inside, neuron σ
l
(3)
i

can fire, sending one spike to neuron σlj , hence neuron σlj

will become active, and the system Π starts to simulate instruction lj of M .
When neuron σlj fires, it is possible that neuron σ

l
(4)
i

also contains three

spikes because of non-synchronization. In this case, all neurons σ
l
(4)
s

should also

fire (because they are in the same ls-set {σ
l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σlj}) removing

simultaneously the three spikes, hence these neurons return to the initial state,
with no spike inside.

(2) When receiving one spike from neuron σli , neuron σr has no spike inside (cor-
responding to the fact that the number stored in register r is 0). In this case,
after neuron σr receives one spike from neuron σli , the rule a → λ in neuron σr

is enabled. When neurons σ
l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send two

spikes to each of neurons σ
l
(3)
i

and σ
l
(4)
i

. In neuron σr, one spike is consumed,

ending with 0 spikes, which means that the number stored in register r of M is
zero. With two spikes inside, neuron σ

l
(4)
i

can fire, sending one spike to neuron

σlk , hence neuron σlk will become active, and the system Π starts to simulate
instruction lk of M .

Similar to case (1), the ls-set {σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σlk} ensures that no

“wrong” step is done in system Π.

The simulation of SUB instruction is correct: system Π starts from spiking
neuron σli and ends in firing neuron σlj (if the number stored in register r is
greater than 0 and it was decreased by one), or in firing neuron σlk (if the number
stored in register r is 0).

198 T. Song, L. Pan, Gh. Păun

Note that there is no interference between the ADD modules and the SUB mod-
ules, other than correctly firing the neurons σlj or σlk , which may label instructions
of the other kind. However, it is possible to have interferences between two SUB
modules. Specifically, if there are several SUB instructions lv that act on the same
register r, then neuron σr has synapses to all neurons σ

l
(3)
v

and σ
l
(4)
v
. When a SUB

instruction li : (SUB(r), lj , lk) is simulated, in the SUB module associated with lv
(lv ̸= li) all neurons receive no spike except for neurons σ

l
(3)
v

and σ
l
(4)
v
, each of them

having one spike inside. Because we have the ls-sets {σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σlk} and

{σ
l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σlj}, when neuron σ

l
(3)
i

(resp. σ
l
(4)
i
) fires, each of neurons σ

l
(3)
v

(resp. σ
l
(4)
v
) (lv ̸= li) should also fire at the same step removing its spike. Conse-

quently, the interference among SUB modules will not cause undesired steps in Π
(i.e., steps that do not correspond to correct simulations of instructions of M).

Module FIN (shown in Figure 3) – outputting the result of computation.

Fig. 3. The FIN module of Π

The functioning of this module is obvious: after activating the neuron σlh ,
neuron σ1 outputs one spike for each two spikes present inside; the last spike
remains idle in the system.

From the above description of the modules and of their work, it is clear that
the register machine M is correctly simulated by the system Π. Therefore, N(Π)
= N(M), and this completes the proof. ⊓⊔

In Theorem 1, the number m of neurons and the local synchronization degree
ls are not bounded (thus, denoted by ∗). As expected, these parameters can be
bounded by making use of the fact that there are (small) universal register ma-
chines. Such machines are given, e.g., in [6], but they are used in the accepting
mode: the code of a particular register machine is introduced in register 1, an input
for the particular machine is introduced in register 2, and the result is obtained in
register 0. The universal machine halts if and only if the particular machine halts
for the given input. The problem which remains to be solved is to pass from such
an universal register machine to a generative SN P system.

Corollary 1. NRE = NSpikoutP
locsyn
152 (gen, 5).

Consider the universal register machine Mu from [6] as shown in Figure 4.
It takes the code code(M) of a particular register machine M which computes a
function φ in register 1 and a number x in register 2, and outputs the value of
φ(x) in register 0.

Asynchronous SN P Systems with Local Synchronization 199

Take an arbitrary set K in NRE and consider its membership function φK :
N −→ {0, 1}. There is a register machine MK computing this function. Starting
with a number x in its input register, MK halts if and only if x ∈ K, hence
φK(x) = 1. Let code(MK) be its code; we introduce code(MK) in register 1 of
Mu, thus obtaining a register machine Mu(K). It takes any natural number n (in
register 2) and halts (with 1 in register 0) if and only if n ∈ K. We modify Mu(K)
as follows. A further register is added, labeled with 8; consider two further labels,
l−1, l−2, with l−1 being the initial label of the machine we want to obtain. Consider
also the instructions l−1 : (ADD(2), l−2, l−2), l−2 : (ADD(8), l−1, l0), where l0 is the
start label of Mu. The register machine M ′ obtained in this way has 9 registers,
11 ADD and 13 SUB instructions, and 25 labels; the result of a computation is
stored in register 8, which is never decremented during a computation. Clearly,
n ∈ N(M ′) if and only if φK(n) = 1, hence n ∈ K, therefore N(M ′) = K: M ′ first
“proposes” a number x to machine Mu(K), by introducing it both in register 2,
as needed for Mu and in register 8, the output one of M ′; when the computation
of Mu(K) halts, also the computation of M ′ halts. Therefore, the number x is
accepted and the computation of M ′ halts if and only if x ∈ K.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),

l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),

l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),

l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),

l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),

l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),

l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),

l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),

l16 : (ADD(4), l11), l17 : (ADD(2), l21),

l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),

l20 : (ADD(0), l0), l21 : (ADD(3), l18),

lh : HALT

Fig. 4. A universal register machine Mu from Korec [6]

As in the proof of Theorem 1, we can construct an asynchronous SN P system
with local synchronization ΠM ′ to simulate the register machine M ′. The system
ΠM ′ has
Proof. • 9 neurons for the 9 registers,
• 25 neurons for the 25 labels,

200 T. Song, L. Pan, Gh. Păun

• 6× 11 neurons for the 11 ADD instructions,
• 4× 13 neurons for the 13 SUB instructions,

which gives a total of 152 neurons.
The maximal size of ls-sets in the ADD module shown in Figure 1 is 2; the

maximal size of ls-sets in the SUB module shown in Figure 2 is max{3, sr + 1},
where sr is the number of SUB instructions acting on register r; the maximal size
of ls-sets in the FIN module shown in Figure 3 is 0. So, the local synchronization
degree is not more than max{3, sr + 1}. We can check that register 5 in M ′

u has
4 SUB instructions, which is maximal, hence max{3, sr + 1} = 5. Therefore, our
corollary holds. ⊓⊔

The above way of passing from computing universal register machines to reg-
ister machines used in the generative way can be used in all results in membrane
computing which show the computational completeness of a class of P systems by
means of proofs based on the simulation of register machines. In this way, bounds
on many parameters of the resulting P systems can be obtained. Note that many
such bounds were reported in membrane computing (obtained by directly simulat-
ing a generating register machine), but no such result was reported for the number
of neurons in SN P systems which characterize NRE. For instance, all universality
results given in Chapter 13 of [11] are stated for SN P systems with arbitrarily
many neurons. All these results can be improved from this point of view by using
the technique from the proof of the previous corollary. Actually, also the number
of rules in an SN P system should be considered (neurons can be saved by putting
in the same neuron several rules), hence a double hierarchy should be discussed:
number of neurons and number of rules.

5 Asynchronous Unbounded SN P System with Local
Synchronization

In [2] it was proved that asynchronous unbounded SN P systems with extended
rules can only characterize SLIN . In this section, making use of the “programming
capability” of local synchronization, we prove that asynchronous unbounded SN
P systems with local synchronization can achieve the Turing completeness.

Theorem 2. NRE = NSpikoutP
locsyn
∗ (unb, ∗).

We only have to prove that NRE ⊆ NSpikoutP
locsyn
∗ (unb, ∗), since the con-

verse inclusion is straightforward (or we can invoke for it the Turing-Church
thesis). As in the proof of Theorem 1, let us consider a register machine M =
(m,H, l0, lh, I), with the properties specified in Section 2. For each register r of
M , let sr be the number of instructions of the form li : (SUB(r), lj , lk).

As in the proof of Theorem 1, we construct an SN P system Π ′ consististing
of three types of modules – ADD, SUB, and FIN. The first and the third types
of modules can be easily obtained by modifying the ADD and FIN modules from
Figures 1 and 3, respectively, while the SUB module is given in Figure 5.

Asynchronous SN P Systems with Local Synchronization 201

Specifically, we observe that in the ADD and FIN modules from the proof
of Theorem 3, all bounded neurons never contain more than three spikes. Then,
each bounded rule ac → a, ac → λ can be replaced with the unbounded rule
ac(a4)∗/ac → a, ac(a4)∗/ac → λ, respectively, and the functioning of modules
ADD and FIN is not changed.

The difficulty with the module SUB from Figure 2 is that the neurons σr

contain both unbounded rules and the bounded rule a → λ, which we do not
see how can be turned to an unbounded rule. That is why we present a different
module SUB, more complex than that from Figure 2.

Fig. 5. The SUB module of Π ′ with ls-sets {σr, σl
(1)
i

, σ
l
(2)
i

, σ
l
(8)
i

}, {σ
l
(5)
i

, σ
l
(6)
i

, σ
l
(7)
i

},
{σ

l
(3)
1

, σ
l
(3)
2

, . . . , σ
l
(3)
sr

, σ
l
(4)
1

, σ
l
(4)
2

, . . . , σ
l
(4)
sr

, σ
l
(9)
1

, σ
l
(9)
2

, . . . , σ
l
(9)
sr

}

It is given in Figure 5 and it works as follows.
The simulation of a SUB instruction li : (SUB(r), lj , lk) is started with neuron

σli having one spike. The rule a(a2)∗/a → a is enabled and neuron σli fires at
some step, sending a spike to neurons σ

l
(1)
i

, σ
l
(2)
i

and σr, respectively. For neuron

σr, there are two cases.
Proof. (1) Neuron σr has 2n (n > 0) spikes (corresponding to the fact that the

number stored in register r is n, and n > 0) before it receives one spike from
neuron σli . In this case, neuron σr gets 2n+1 spikes and the rule a(a2)+/a3 → a
is enabled. When neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr fire at some step, they send three

202 T. Song, L. Pan, Gh. Păun

spikes to neuron σ
l
(3)
i

, as well as two spikes to neuron σ
l
(4)
i

. (Note that neuron

σ
l
(8)
i

is in the same ls-set with neurons σ
l
(1)
i

, σ
l
(2)
i

, and σr, but it has no spike

inside, so it cannot fire.) In neuron σr, three spikes are consumed, ending with
2n+ 1− 3 = 2(n− 1) spikes, which simulates the fact that the number stored
in register r is decreased by one. Neuron σ

l
(3)
i

removes the three spikes inside

by the forgetting rule a(a2)+/a3 → λ, meanwhile neuron σ
l
(4)
i

fires by the rule

(a2)+/a2 → a, sending one spike to neuron σlj , hence neuron σlj will become
active, and the system Π starts to simulate instruction lj of M .

(2) Neuron σr has no spike inside (corresponding to the fact that the number
stored in register r is 0) before it receives one spike from neuron σli . In this
case, after neuron σr receives one spike from neuron σli , it keeps inactive for
no rule is enabled. Neurons σ

l
(1)
i

and σ
l
(2)
i

fire at some step, sending two spikes

to neuron σ
l
(3)
i

, as well as one spike to neuron σ
l
(4)
i

. With two spikes inside,

neuron σ
l
(3)
i

can fire at some step, sending one spike to neurons σ
l
(5)
i
, σ

l
(6)
i
,

and σ
l
(7)
i
, respectively. At the same moment, neuron σ

l
(4)
i

removes the spike

inside by the forgetting rule a(a2)∗/a → λ. Neurons σ
l
(5)
i
, σ

l
(6)
i
, and σ

l
(7)
i

fire

at some step sending two spikes to neuron σr and one spike to neuron σ
l
(8)
i
.

After neuron σr receives the two spikes, it has three spikes inside and the rule
a(a2)+/a3 → a is enabled. Neurons σr and σ

l
(8)
i

fire at some moment, sending

one spike to each of the neurons σ
l
(3)
i

, σ
l
(4)
i

, and σ
l
(9)
i

. Neurons σ
l
(3)
i

, σ
l
(4)
i

, and

σ
l
(9)
i

fire at some step, removing the spikes in neurons σ
l
(3)
i

, σ
l
(4)
i

and sending

one spike to neuron σlk from σ
l
(9)
i

. Therefore, neuron σlk becomes active, and

the system Π starts to simulate instruction lk of M . In neuron σr, there is no
spike inside, which means that the number stored in register r of M is zero.
Note that it is possible to have interferences between two SUB modules.

Specifically, if there are several SUB instructions lv that act on the same reg-
ister r, then neuron σr has synapses to all neurons σ

l
(3)
v

and σ
l
(4)
v
. When a

SUB instruction li : (SUB(r), lj , lk) is simulated, in the SUB module associated
with lv (lv ̸= li) all neurons receive no spike except for neurons σ

l
(3)
v

and σ
l
(4)
v
.

Each of neurons σ
l
(3)
v

and σ
l
(4)
v

has one spike inside. Because we have the ls-set

{σ
l
(3)
1
, σ

l
(3)
2
, . . . , σ

l
(3)
sr
, σ

l
(4)
1
, σ

l
(4)
2
, . . . , σ

l
(4)
sr
, σ

l
(9)
1
, σ

l
(9)
2
, . . . , σ

l
(9)
sr
}, when neuron σ

l
(3)
i

and σ
l
(4)
i

fire, each of neurons σ
l
(3)
v

and σ
l
(4)
v

(lv ̸= li) should also fire at the same

step removing its spike. Consequently, the interference among SUB modules will
not cause undesired steps in Π (i.e., steps that do not correspond to correct sim-
ulations of instructions of M). Therefore, the simulation of SUB instruction is
correct.

With the above description, we can see that the unbounded SN P system Π ′

can correctly simulate register machine M , hence N(M) = N(Π ′). ⊓⊔
Similar with Corollary 1, we can also have the following corollary.

Corollary 2. NRE = NSpikoutP
locsyn
217 (unb, 12).

Asynchronous SN P Systems with Local Synchronization 203

Indeed, the system Π ′ has

• 9 neurons for the 9 registers,
• 25 neurons for the 25 labels,
• 6× 11 neurons for the 11 ADD instructions,
• 9× 13 neurons for the 13 SUB instructions,

which gives a total of 217 neurons. The reader can easily check that the local
synchronization degree is 12.

6 Asynchronous Bounded SN P Systems with Local
Synchronization

In this section, we investigate the computation power of asynchronous bounded SN
P systems with local synchronization. It was shown that asynchronous bounded
SN P systems with extended rules can characterize semilinear sets of numbers [4],
but it is open whether this result holds when the systems are restricted to use
only standard rules. In the following, we prove that a set of natural numbers is
semilinear if only if it can be generated by asynchronous bounded SN P systems
with local synchronization using standard rules.

Lemma 1. NSpikoutP
locsyn
∗ (boun, ∗) ⊆ SLIN .

Take an asynchronous bounded SN P system with local synchronization using
standard rules, Π. The number of neurons is fixed, and the number of spikes in
each neuron is bounded, hence the number of configurations reached by Π is finite.
Let C be the set of configurations of Π, and C0 be the initial configuration of Π.

We construct the right-linear grammar G = (C, {a}, C0, P), where P contains
the following productions:
Proof. (1) C → C ′, for C,C ′ ∈ C such that there is a transition C ⇒ C ′ in Π

during which the output neuron does not spike;
(2) C → aC ′, for C,C ′ ∈ C such that there is a transition C ⇒ C ′ in Π during

which the output neuron spikes;
(3) C → λ, for any C ∈ C in which all neurons have no enabled rules.

Clearly, the construction of G ensures the fact that N(Π) is the length set

of the regular language L(G), hence it is semilinear. Therefore, NSpikoutP
locsyn
∗

(boun, ∗) ⊆ SLIN . ⊓⊔

Lemma 2. SLIN ⊆ NSpikoutP
locsyn
∗ (boun, ∗).

Since a set of natural numbers is semilinear if and only if it can be generated
by a strongly monotonic register machine, it is enough to prove that any strongly
monotonic register machine can be simulated by an asynchronous bounded SN
P system with local synchronization using standard rules. Let M be a strongly
monotonic register machine. Clearly, the machine M has only register 1 and the
ADD instructions of the forms li : (ADD(1), lj , lk).

204 T. Song, L. Pan, Gh. Păun

An asynchronous bounded SN P system with local synchronization using stan-
dard rules Π can be constructed as in the proof of Theorem 1 to simulate the
strongly monotonic register machine M : we place the rule a2 → a in neuron σ1

(it is associated with register 1 and it is also the output neuron), also considering
the ls-set consisting of neurons σ1 and σ

l
(3)
v
, σ

l
(4)
v

for all ADD instructions lv of M .

Moreover, in neuron σlh we provide no rule (when M halts, also Π halts, so the
FIN module is here not necessary). The above mentioned new ls-set make sure
that as soon as the simulation of an ADD instruction of M reaches the neurons
σ
l
(3)
j
, σ

l
(4)
j
, then also neuron σ1 spikes, thus getting empty, ready for a further in-

crement by one. That is, neuron σ1 is either empty or it contains two spikes – in
the latter case, one spike is sent to the environment. Thus, the equivalence of M
and Π is obvious. ⊓⊔

By Lemmas 1 and 2, the following theorem holds.
Proof. Theorem 3. NSpikoutP

locsyn
∗ (boun, ∗) = SLIN .

7 Conclusions and Remarks

In this work, inspired by the fact that neurons in the same functioning brain motif
or community work synchronously to achieve some specific biological functions, we
introduce local synchronization into the framework of SN P systems. The compu-
tation power of asynchronous SN P systems with local synchronization is investi-
gated. Asynchronous SN P systems with local synchronization consisting of general
neurons (resp. unbounded neurons) and using standard spiking rules are proved to
be universal. Asynchronous SN P systems with local synchronization consisting of
bounded neurons and using standard spiking rules can characterize the semilinear
sets of natural numbers. It was already known that (1) asynchronous general SN P
systems with extended rules are universal; (2) asynchronous unbounded SN P sys-
tems with extended rules can only characterize semilinear sets of natural numbers
[2]. However, the computation power of asynchronous general (resp. unbounded)
SN P systems with standard rules is unknown. The results from this paper show
that such systems can reach universality if they are provided with the “program-
ming capability” of local synchronization. So, local synchronization is a powerful
ingredient for achieving “Turing creative capability”.

The local synchronization degrees in Corollary 1 and Corollary 2 are 5 and 12,
respectively. It remains open whether or not these values can be improved. We con-
jecture that the value two is enough to achieve universality for asynchronous SN P
systems with local synchronization consisting of general neurons (resp. unbounded
neurons) and using standard spiking rules.

In the systems constructed in Theorem 1 and Theorem 2, forgetting rules are
used. It remains open whether forgetting rules can be removed without any loss of
computation power. We conjecture the answer is positive (that is, we believe that
the feature of local synchronization is powerful enough to remove forgetting rules
without decreasing the computation power).

Asynchronous SN P Systems with Local Synchronization 205

Acknowledgment

This work of the first two authors was supported by National Natural Science Foun-
dation of China (61033003, 91130034 and 30870826), Ph.D. Programs Foundation
of Ministry of Education of China (20100142110072), Fundamental Research Funds
for the Central Universities (2010ZD001 and 2010MS003), and National Science
Foundation of Hubei Province (2008CDB113 and 2011CDA027). The work of Gh.
Păun is supported by Proyecto de Excelencia con Investigador de Reconocida
Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. U. Alon: An Introduction to Systems Biology: Design Principles of Biological Cir-
cuits. Chapman&Hall/CRC, 2006

2. M. Cavaliere, O. Egecioglu, O.H. Ibarra, S. Woodworth, M. Ionescu, Gh. Păun:
Asynchronous spiking neural P systems: decidability and undecidability. Proc. 13th
Int. Meeting on DNA Computing (M.H. Garzon, H. Yan, eds.), Memphis, USA,
LNCS 4848, Springer, Berlin, 2008, 246–255.

3. H. Chen, M. Ionescu, T. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spiking
neural P systems with extended rules: universality and languages. Natural Comput-
ing, 7 (2008), 147–166.

4. O.H. Ibarra, S. Woodwort: Spiking neural P systems: some characterizations. Pre-
proc. 16th International Symposium on Fundamentals of Computation Theory, FCT
2007 (E. Csuhaj-Varjú, Z. Ésik, eds.), Budapest, Hungary, LNCS 4639, Springer,
Berlin, 2007, 23–37.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71 (2006), 279–308.

6. I. Korec: Small universal register machines. Theoretical Computer Sci., 168 (1996),
267–301.

7. C. Martin-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Patón: Tissue P systems. The-
oretical Computer Sci., 296 (2003), 295–326.

8. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, New Jersey,
1967.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61 (2000), 108–143.

10. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
11. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane

Computing. Oxford Univ. Press, Oxford, 2010.
12. Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems: An overview. Advancing

Artificial Intelligence through Biological Process Applications (A.B. Porto, A. Pazos,
W. Buno, eds.), PA: Medical Information Science Reference, Hershey, 2008, 60–73.

13. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,
1991.

Improving the Universality Results of Enzymatic
Numerical P Systems

Cristian Ioan Vasile1, Ana Brânduşa Pavel1, and Ioan Dumitrache1

Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, 060042 Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro

Summary. This paper provides the proof that Enzymatic Numerical P Sytems with
deterministic, but parallel, execution model are universal, even when the production
functions used are polynomials of degree 1. This extends previous known results and
provides the optimal case in terms of polynomial degree.

1 Enzymatic Numerical P Systems

Numerical P Systems (NP Systems) are a type of P systems [8], inspired by the
cell structure, in which numerical variables evolve inside the compartments by
means of programs; a program (or rule) is composed of a production function and
a repartition protocol. The variables have a given initial value and the produc-
tion function is a multivariate polynomial. The value of the production function
for the current values of the variables is distributed among variables in certain
compartments according to a repartition protocol. Formal definition of NPS can
be found in [7] where the authors introduce this type of P systems with possible
applications in economics.

NP systems were designed both as deterministic and non-deterministic systems
[7]. Non-deterministic NPS allow the existence of more rules per each membrane
and the best rule is selected by an “oracle”, while the deterministic NPS can have
only one or no rule per each membrane. NP Systems were used as a naturally
parallel and distributed modeling tool for the design of robot controllers [1], [5],
[6]. Designing robot controllers requires deterministic mechanisms. Therefore, an
extension of NPS, Enzymatic Numerical P systems (EN P Systems), in which
enzyme-like variables allow the existence of more than one program (rule) in each
membrane, while keeping the deterministic nature of the system, were introduced
in [3]. Due to their properties, EN P Systems represent a more powerful modeling
tool for robot behaviors than classical N P Systems [5], [6].

208 C.I. Vasile, A.B. Pavel, I. Dumitrache

2 The power of Enzymatic Numerical P Systems

In [9] the authors prove and analyze the universality of EN P Systems. The main
results in [7] and [9] regarding the power of NP Systems and ENP Systems are the
following:

Theorem 1. NRE = N+P8(poly
5(5), seq) = N+P7(poly

5(6), seq) =
NP7(poly

5(5), enz, seq) = NtP∗(poly
1(11), enz, oneP) =

NP254(poly
2(253), enz, allP, det).

The family of sets of numbers N+(Π) computed by NP Systems with at most
m membranes, production functions which are polynomials of degree at most n,
with integer coefficients, with at most r variables in each polynomial, is denoted
by N+Pm(polyn(r), seq), m ≥ 1, n ≥ 0, r ≥ 0, where the fact that they work in
the sequential mode (in each step, only one program is applied), is indicated by
seq. If one of the parameters m,n, r is not bounded, then it is replaced by ∗. (Both
in N+(Π) and in N+Pm(polyn(r), seq), the superscript + indicates the fact that
as the result of a computation we only consider positive natural numbers, zero
excluded. If any value of xj0,i0 is accepted, then the superscript + is removed.)
When tissue-like systems are used, we write NtPm(polyn(r), α, β).

In the next section, the authors present an improvement of the universality
results of EN P Systems by reducing the number of membranes, the polynomial
degree of the production functions and the number of variables of the production
functions.

3 Improving the universality results

The main result proposed here is the following theorem about the power of EN
P Systems. The theorem extends previous results about the benefits of adding
the enzymatic mechanism in terms of the computational power of the model. It
also provides the optimal result regarding the polynomial degree of the produc-
tion functions, namely 1. The execution model considered in the theorem is a
deterministic, but parallel one, in which all active rules are executed in parallel.
Rules, which share variables, will use the current value of the variable and execute
independently of each other.

Theorem 2. NRE = NP4(poly
1(6), enz, allP, det).

Proof. The proof is done by constructing a membrane system which enumerates
the positive values of some polynomial with integer coefficients corresponding to
tuples of natural numbers. It is proven in [2], that polynomials of degree at most
5 with 5 variables are sufficient to imply the universality of the models. This
technique is used to show that standard NP Systems are universal [7]. The following
system is a modified version of the one used in [9] (it is also shown in graphical
form in figure 1):

Improving the Universality Results of Enzymatic Numerical P Systems 209

Π = (4,H, µ, (V arGenerate, P rGenerate, V arGenerate(0))

(V arCompute, P rCompute, V arCompute(0), enum),

(V arPow5, P rPow5, V arPow5(0)),

(V arMult, P rMult, V arMult(0))),

H = {Generate, Compute, Pow5,Mult},
µ = [

Generate
[
Compute

[
Pow5

[
Mult

]
Mult

]
Pow5

]
Compute

]
Generate

,

V arGenerate = {xi, ej , ezk, eri, n, et, g, gc : 1 ≤ i ≤ 5, 1 ≤ i ≤ 7, 1 ≤ k ≤ 5},
P rGenerate = {n → 1|n, et → 1|gc,

1 + x1|e1 → 1|er1, −1 + g|e1 → 1|x1, 1 + n+ x1|e1 → 1|x1}
∪ {j · ej → 1|ej+1 + (j − 1)|et : 1 ≤ j ≤ 5}
∪ {1 + xi|e1 → 1|ezi, 1− i+ et|eri−1 → 1|xi : 2 ≤ i ≤ 5}
∪ {g + (ezi + eri−1)|ei → 1|eri, 2− i+ n+ et|eri → 1|xi

: 2 ≤ i ≤ 5}

∪ {2 + et|er5 →
5∑

i=1

1|xi + 1|n, er5|e6 → 1|gc, e6 → 1|e7,

e7 → 1|ec1}
∪ {g + 2 · xi|e7 → 1|xi + 1|xc

i : 1 ≤ i ≤ 5},
V arGenerate(0) = (5, 5, 5, 5, 5, 1, 0, . . . , 0, 5, 0, 0, 0),

V arCompute = {xc
i , e

c
j , t, g

∗, ept, fQ, enum, aux, ef : 1 ≤ i ≤ 5, 1 ≤ j ≤ 506},

P rCompute = {g∗ +

(
5∑

i=1

ai,k · xc
i + a6,k

)
|ec2k−1

→ 1|s1,

3 · ec2k−1 → 1|ec2k + 2|ep1, ec2k|ept → 1|ec2k+1,

g∗ − 2 · βkt|ec2k+1
→ 1|aux+ 1|ef : 1 ≤ k ≤ 252}

∪ {2 · ec505 → 1|ef + 1|ec506, aux|ef → 1|fQ, −fQ|g∗ → 1|enum,

−(fQ + ec506) → 1|ef , enum+ fQ + ept → 1|gc, ec506 → 1|e1}
V arCompute(0) = (0, 0, . . . , 0),

V arPow5 = {s1, s2, epi, eM , gc∗, z : 1 ≤ i ≤ 7},
P rPow5 = {z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1, z + 2 · s2|ep3 → 1|a+ 1|b,

z + s1|ep5 → 1|a, z + s2|ep5 → 1|b, z + s2|ep7 → 1|t,
ep7 → 1|ept, eM → 1|gc∗}

∪ {3 · ep2k−1 → 1|ep2k + 2|es, ep2k|eM → 1|ep2k+1, 1 ≤ k ≤ 3}
V arPow5(0) = (0, 0, . . . , 0),

V arMult = {a, b, z∗, d, u, es},
P rMult = {z∗ + 1.5 · a|b → 2|a+ 1|s2, z∗ − (1 + d)|b → 1|d, d → 1|b

210 C.I. Vasile, A.B. Pavel, I. Dumitrache

es + b|u → 1|eM , a+ b|u → 1|gc∗}
V arMult(0) = (0, 0, 0, 0, 1, 0).

The proposed membrane system is mainly composed of two parts: the 5-tuple
generation part and the computation of the polynomial’s value. The generating
part, implemented in the Generate membrane, is the same as in the proof from [9].
Only the last rule of the membrane, e7 → 1|ec1, was changed in order to synchronize
it with the Computation membrane. The 5-tuple generation process is described in
detail in [9]. The five variables forming the tuple are regarded as a single number
with 5 digits in a certain base. The algorithm counts down from the highest 5-digit
number to zero. Therefore, if the current base is b+1, the membrane will generate
the numbers from bbbbb to 00000. When the null tuple is reached the variables
are reset to the highest 5-digit number of the next base. The algorithm start with
base 6 from the tuple (5, 5, 5, 5, 5) and generates (5, 5, 5, 5, 4), . . . , (5, 5, 5, 5, 0),
(5, 5, 5, 4, 5), . . . , (0, 0, 0, 0, 0). At this point it will move to the tuple (6, 6, 6, 6, 6)
which corresponds to the highest 5-digit number in base 7. The process repeats
indefinitely, thus generating all 5-tuples of natural numbers in a deterministic way.

For the next part of the proof it is important to recall that every polynomial
f of degree 5 with 5 variables can be put in the following form (lemma from [9]):

f(x1, . . . , x5) =
m∑
i=1

βi · (a1,ix1 + . . .+ a5,ix5 + a6,i)
5 (1)

where m is 252 and represents the maximum number of terms of f in the general
form, βi are polynomial specific coefficients and aj,i are some constants. This form
of the polynomial is used in order to compute the values corresponding to the
generated 5-tuples in the first part of the procedure in the Generate membrane.

The Compute membrane was rewritten such that only polynomials of degree
one are used as production functions. This is achieved by noting that the only part
where polynomials of degree greater than one are needed is when the 5-th power
of a number is computed, more specifically a natural number [9]. Computing the
power of a number can be done using only multiplication; computing the 5-th
power of x can be done by first computing a = x · x = x2, then b = a · a = x4 and
finally c = x · b = x5. Since x in the system is a natural number, multiplication
can be performed as a repeated addition, a · b = a+ . . .+ a︸ ︷︷ ︸

b

. This procedure is

implemented in the Pow5 membrane which repeatedly uses the Mult membrane
to compute the products of natural numbers. Thus the degree of the polynomials
in all production functions is reduced to 1, the optimal value.

Also, the number of membranes needed in the computation was reduced by
reusing some membranes, Pow5 and Mult. Instead of using m = 252 Pow5 mem-
branes in order to compute the m terms of the polynomial (in the form from
equation 1), the membrane is used repeatedly to compute each term. Therefore,
the number of membranes is reduced to 4. ⊓⊔

Improving the Universality Results of Enzymatic Numerical P Systems 211'

&

$

%

Generate

xi[5], 1 ≤ i ≤ 5, e1[1], ej [0], 2 ≤ j ≤ 7, ezk[0], 1 ≤ k ≤ 5, eri[0], 1 ≤ i ≤ 5

n[5], et[0], g[0], gc[0]

n → 1|n
et → 1|gc
1 + xi|e1 → 1|ezi, 2 ≤ i ≤ 5

1 + x1|e1 → 1|er1
−1 + g|e1 → 1|x1

1 + n+ x1|e1 → 1|x1

j · ej → 1|ej+1 + (j − 1)|et, 1 ≤ j ≤ 5

1− i+ et|eri−1 → 1|xi, 1 ≤ i ≤ 5

g + (ezi + eri−1)|ei → 1|eri, 2 ≤ i ≤ 5

2− i+ n+ et|eri → 1|xi, 2 ≤ i ≤ 5

2 + et|er5 →
∑5

i=1 1|xi + 1|n
er5|e6 → 1|gc
e6 → 1|e7
g + 2 · xi|e7 → 1|xi + 1|xc

i , 1 ≤ i ≤ 5

e7 → 1|ec1

'

&

$

%

Compute

xc
i [0], 1 ≤ i ≤ 5,

ecj [0], 1 ≤ j ≤ 506,

t[0], g∗[0], ept[0], fQ[0],

enum[0], aux[0], ef [0]

g∗ +
∑5

i=1 ai,k · xc
i + a6,k|ec

2k−1
→ 1|s1

3 · ec2k−1 → 1|ec2k + 2|ep1
ec2k|ept → 1|ec2k+1

g∗ − 2 · βkt|ec
2k+1

→ 1|aux+ 1|ef
1 ≤ k ≤ 252
2 · ec505 → 1|ef + 1|ec506
aux|ef → 1|fQ
−fQ|g∗ → 1|enum
−(fQ + ec506) → 1|ef
enum+ fQ + ept → 1|gc
ec506 → 1|e1

'

&

$

%

Pow5

s1[0], s2[0], epi[0], 1 ≤ i ≤ 7,

eM [0], gc∗[0], z[0]

z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1
z + 2 · s2|ep3 → 1|a+ 1|b
z + s1|ep5 → 1|a
z + s2|ep5 → 1|b
3 · ep2k−1 → 1|ep2k + 2|es
ep2k|eM → 1|ep2k+1

1 ≤ k ≤ 3
z + s2|ep7 → 1|t
ep7 → 1|ept
eM → 1|gc∗'

&

$

%

Mult

a[0], b[0], z∗[0], d[0], u[1], es[0]

z∗ + 1.5 · a|b → 2|a+ 1|s2
z∗ − (1 + d)|b → 1|d
d → 1|b
es + b|u → 1|eM
a+ b|u → 1|gc∗

Fig. 1. The EN P system from the proof of Theorem 2

212 C.I. Vasile, A.B. Pavel, I. Dumitrache

Parts of the proposed membrane system, Generate membrane and Pow5 mem-
brane, were simulated and verified using SimP, an EN P Systems simulator pro-
posed in [4].

4 Remarks

In the proof of theorem 2 a method of reusing membranes was used in order to
reduce the number of membranes in the system. It is, however, important to notice
that it also constrained the system to perform most important computations in a
serial manner. In practice, it may be more convenient to have more membranes
that compute in parallel, because it allows the underlying runtime environment
to perform optimizations based on available hardware and software platform. It is
also important to note that there are more rules dedicated to program control flow
in the membrane system from theorem 2 than there are in the one from theorem 4
in [9].

Another important observation is that even though computation can be done
with polynomial production functions of degree 1, in some cases it is more conve-
nient to use higher degree polynomials. However, most rules used for program flow
control are of degree 1 and also, most rules with higher degree polynomial produc-
tions functions have few terms. These observations are relevant for optimizing the
data structures and algorithms used for simulating EN P Systems.

Acknowledgments

This paper is supported by the Sectorial Operational Program Human Resources
Development, financed from the European Social Fund and by the Romanian Gov-
ernment under the contract number SOP HRD/107/1.5/S/82514.

References

1. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences (in press), doi: 10.1016/j.ins.2011.10.007

2. Minsky, M. (ed.): Computation: Finite and Infinite Machines. Prentice-Hall (1967)
3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of

membrane computing systems. In: The IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010) Liverpool. pp. 1331–
1336 (September 2010)

4. Pavel, A.B.: Membrane controllers for cognitive robots. Master’s thesis, Department
of Automatic Control and System Engineering, Politehnica University of Bucharest,
Romania (February 2011)

5. Pavel, A.B., Buiu, C.: A software tool for modeling and simulation of numerical P
systems. Natural Computing (in press), doi: 10.1007/s11047-011-9286-5

6. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot localization implemented with enzy-
matic numerical P systems (submitted)

Improving the Universality Results of Enzymatic Numerical P Systems 213

7. Păun, G., Paun, A.: Membrane Computing and Economics: Numerical P Systems.
Fundamenta Informaticae pp. 213–227 (2004)

8. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

9. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, G.: On the Power of Enzymatic Nu-
merical P Systems (submitted)

Implementing Obstacle Avoidance and Follower
Behaviors on Koala Robots
Using Numerical P Systems

Cristian Ioan Vasile1, Ana Brânduşa Pavel1, Ioan Dumitrache1, and
Jozef Kelemen2

1 Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, 060042 Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro

2 Institute of Computer Science
Silesian University in Opava
kelemen@fpf.slu.cz

Summary. Membrane controllers have been developed using Numerical P Systems and
their extension, Enzymatic Numerical P Systems, for controlling mobile robots like e-
puck and Khepera III. In this paper we prove that membrane controllers can be easily
adapted for other types of robotic platforms. Therefore, obstacle avoidance and follower
behaviors were adapted for Koala robots. The membrane controllers for Koala robots
have been tested on real and simulated platforms. Experimental results and performance
analysis are presented.

1 Introduction

Numerical P systems represent a type of membrane systems introduced by Gh.
Păun in [7]. The main difference of this computational model in comparison to
other types of P systems [8] is that compartments contain numerical variables (in-
stead of symbols) which evolve by means of programs (rules). A membrane system
has a tree-like structure and computation takes place in parallel in all membranes.
Using membrane computing paradigm for modeling robot controllers is a new ap-
proach that was discussed and analysed in several papers [2], [5], [1]. Numerical
P Systems (NPS) and their extension, Enzymatic Numerical P Systems (ENPS),
were successfully applied for modeling robot behaviors like obstacle avoidance,
wall following, following another robot, localization [2], [5], [6]. The robot behav-
iors were tested on real and simulated two wheel differential robots: e-puck and
Khepera III. These two types of robots are small educational robots with diame-
ters between about 7 and 13 cm. In this paper, we propose robot controllers for
following a leader and obstacle avoidance behaviors, which were tested on Koala

216 C.I. Vasile et al.

educational robots. Koala robot is a bigger robot, about 30x30 size, with differ-
ent infrared sensor placement than e-puck and Khepera III. In this way we prove
that membrane controllers can be easily adapted to any types of robots and are
a scalable modeling tool for robotics applications. The membrane controllers for
the follower behavior are modeled based on classical control laws (proportional
controller) using membrane systems. The obstacle avoidance behavior is presented
in detail in [5]. The membrane controllers’ performance will be analyzed and pre-
sented in this paper.
In order to introduce the NPS and ENPS models and the mathematical notations,
we further present formal definitions which were adapated from other papers. For
instance numerical P systems are presented in detail in [7]. Their definition is the
following:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0))) (1)

where:

• m is the number of membranes used in the system, degree of Π; m ≥ 1;
• H is an alphabet that contains m symbols (the labels of the membranes);
• µ is a membrane structure;
• V ari is the set of variables from compartment i, and the initial values for these

variables are V ari(0);
• Pri is the set of programs (rules) from compartment i. Programs process vari-

ables and have two components, a production function and a repartition pro-
tocol.
The j-th program has the following form:

Prj,i = (Fj,i(x1,i, ..., xki,i), cj,1|v1 + ...+ cj,ni |vni) (2)

where:
– Fj,i(x1,i, ..., xki,i) is the production function;
– ki represents the number of variables in membrane i;
– cj,1|v1 + ...+ cj,ni |vni is the repartition protocol;
– ni represents the number of variables contained in membrane i, plus the

the number of variables contained in the parent membrane of i, plus the
number of variables contained in the children membranes of i.

The variables cj,1, . . . , cj,ni are natural numbers (they may be also 0, case in
which it is omitted to write “+0|x”) [7]. These coefficients specify the proportion
of the current production distributed to each variable v1, ..., vni . Let,

Cj,i =

ni∑
n=1

cj,n (3)

A program Prj,i is executed as follows. At any time t, the function Fj,i(x1,i, ..., xki,i)
is computed. The value:

Membrane Controllers on Koala Robots 217

q =
Fj,i(x1,i, ..., xki,i)

Cj,i
(4)

represents the “unitary portion” to be distributed to variables v1, . . . , vni , accord-
ing to coefficients cj,1, . . . , cj,ni in order to obtain the values of these variables at
time t + 1. Specifically, variable vs which belongs to the repartition protocol of
program j, will receive:

q ∗ cj,s, for1 ≤ s ≤ ni (5)

The variables which receive new values from a rule must be contained within
the current, the parent or a child membrane. If a variable belongs to membrane i,
it can appear in the repartition protocol of the parent membrane of i and also in
the repartition protocol of the child membranes of i. After applying all the rules, if
a variable receives such “contributions” from several neighboring compartments,
then they are added in order to produce the next value of the variable.

A production function which belongs to membrane i may depend only on some
of the variables from membrane i. Those variables which appear in the production
function become 0 after the execution of the program.

Deterministic NPS have only one rule per membrane (card(Pri) = 1) or must
have a selection mechanism that can decide which rule to apply. The NPS model
with multiple rules per membrane is a non-deterministic system. However, NPS
are well suited for applications which involve numerical variables and require a
deterministic behavior, such as control systems for mobile robots. Thus a selec-
tion mechanism for the active rules is defined in the extended model, enzymatic
numerical P systems (ENPS), proposed [3].

ENPS is defined as a NPS with special enzyme-like variables which control the
execution of the rules:

Π = (m,H, µ, (V ar1, E1, P r1, V ar1(0)), . . . , (V arm, P rm, Em, V arm(0))) (6)

where:

• Ei is a set of enzyme variables from compartment i, Ei ⊂ V ari
• Pri is the set of programs from compartment i. Programs have one of the two

following forms:
1. non-enzymatic form, which is exactly like the one from the standard NPS:

Prj,i = (Fj,i(x1,i, . . . , xki,i), cj,1|v1 + ...+ cj,ni |vni) (7)

2. enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), et,i, cj,1|v1 + ...+ cj,ni |vni) (8)

where et,i ∈ Ei

218 C.I. Vasile et al.

There can be more than one active rule in a membrane or none. A rule is active
if it is in the non-enzymatic form or if the associated enzyme has a greater value
than one of the variables involved in the production function, in absolute value. All
active rules in the membrane system are executed in parallel in one computational
step. The enzymatic mechanism and the advantages of ENPS are detailed in [5],
[1].

2 Behaviors on Koala robot

In this paper two behaviors are presented and tested on simulated and real Koala
robots: obstacle avoidance and following a leader. The obstacle avoidance behavior
is simple to define: the robot has to be able to maintain a minimum distance from
all other objects in the environment. Although simple in principle, a lot of problems
can arise by taking into account the physical constraints of the robot, such as the
limited perception (sensors’ detection range, precision, accuracy, sampling time,
etc.) and limited effector action (speed, acceleration, torque, force-stress, etc.).
These factors together with the nature and structure of the environment play a very
important role in the design of an effective control strategy not only for obstacle
avoidance, but also for any other behavior (simple or complex). The control law
of the obstacle avoidance behavior uses the infrared sensor’s readings to compute
appropriate speeds for the two motors of the Koala robot (figure 3). This data is
sufficient to ensure that the robot will not come in contact with any object in the
environment. If no obstacle are in sight, the robot just cruises forward at a given
constant speed.

The behavior of following a leader robot is more difficult to perform just from
infrared sensors’ readings (figure 3), because objects from the environment cannot
be distinguished from the leader just from this data. On the other hand the control
program that uses only the infrared sensors is much more simple and easier to
implement.

In this paper, experiments are carried out to show that membrane controllers
are viable control strategies for robots operating in a semi-structured office-like
environment.

In previous work, a proportional controller for the follower behavior was de-
signed using Numerical P Systems, for Khepera III and e-puck robots [2]. The
membrane structure is illustrated in figure 1.

The control law implemented by the membrane structure in figure 1 is the
following:

lw = CruiseSpeedLeft− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

+kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (9)

rw = CruiseSpeedRight− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

−kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (10)

Membrane Controllers on Koala Robots 219

Fig. 1. A proportional controller for the follower behavior, implemented with NPS, for
Koala III and e-puck robots

The follower controller was adapted to work with Koala robots, taking into
account the sensors’ placement on this type of robots. Therefore, we can prove that
membrane controllers can be adapted to work on any type of robotic platforms
(figure 2).

The control law for the follower behavior of Koala robot is:

lw = CruiseSpeedLeft− kDist ∗ (refDist −
1

6

6∑
i=1

sDisti)

+kHeading ∗ (refHeading − (
6∑

i=1

sRi −
6∑

i=1

sLi)) (11)

rw = CruiseSpeedRight− kDist ∗ (refDist −
1

6

6∑
i=1

sDisti)

−kHeading ∗ (refHeading − (

6∑
i=1

sRi −
6∑

i=1

sLi)) (12)

The NPS structure tested on Koala was computed using SimP simulator pro-
posed in [4]. The follower robot behavior was simulated using Webots simulator
and then tested on real Koala robots (figure 3).

220 C.I. Vasile et al.

Fig. 2. A proportional controller for the follower behavior, implemented with NPS, for
Koala robot

Fig. 3. Koala robot

An equivalent membrane controller using ENPS model has been created as
well and is shown in figure 4. The structure of the ENPS controller is simpler and
easier to understand and use. It also has less rules and membranes.

Membrane Controllers on Koala Robots 221

Fig. 4. A proportional controller for the follower behavior, implemented with ENPS, for
Koala robot

In the experiments the leader Koala robot performs different predefined mo-
tions and also obstacle avoidance behavior. The membrane controller for obstacle
avoidance was adapted from the one in [5] and is shown in figure 5. It is based
on the ENPS model and the only thing that needed to be changed was to add
more membranes for the extra infrared sensors of the Koala robot and the weight
of each sensor, which has a different placement than on the other robots. In [5] it
is presented how the membrane controller for obstacle avoidance works and what
all variables are used for.

Fig. 5. A controller for the obstacle avoidance behavior, implemented with ENPS, for
Koala robot

222 C.I. Vasile et al.

3 Experiment setup and performance analysis

As stated above, experiments were performed in the WeBots robotic simulator and
in a real world setting. In both cases, the environment is a semi-structured office-
like environment with or without obstacles. Both obstacle avoidance and follow
a leader behaviors were tested, first separately and then together (the leader was
performing obstacle avoidance).

All experiments used the SimP membrane simulator to execute the membrane
controller that drive the robots. SimP3 is described in [4] and can be used stan-
dalone or as a library. For the experiments on the real Koala robots, a server
version was developed in order to respond to the robots’ queries. In this setup, a
TCP/IP connection is established from each robot to a host machine (in this case
a laptop) through a wireless router. The robots run a program that queries the
SimP server for the current motor commands based on the sensors’ readings. This
is done, because SimP is implemented in Java and the robots do not posses the
necessary computational capabilities in order to run a Java Virtual Machine.

The performance of the controllers is analyzed based on the speed profiles
of the leader and follower robots and also based on the duration of a cycle, the
execution time of a membrane controller. The two behaviors were tested separately
and together in different scenarios as follows.

Figures 6, 7, 8, 9 show the speed profiles of the leader and follower robots in
simulated experiments. These figures are the result of three experiments for the
following the leader behavior.

In the first experiment, the leader robot has a forward constant motion with a
cruising speed (15) different then that of the follower robot (12). It is clear from
figure 6 that the follower matched the speed of the leader and thus maintaining
the desired distance to the leader.

In the second experiment, the leader robot has a forward variable motion.
The speed of the leader oscillates around the cruising speed of 15 with amplitude
A = 10 and frequency of about f = 1.6e − 4 (equation 13) . Figure 7 shows that
the follower is able to match the speed of the leader in this experiment as well.
However, a slight phase shift and amplitude difference can be observed in the graph
and this is due to the reaction time of the follower, which is at least as long as the
duration of a controller cycle. The cruising speed of the follower is also 12 in this
experiment.

SpeedLeft = CruiseSpeed+A · sin(2π · f · t) (13)

SpeedRight = CruiseSpeed+A · sin(2π · f · t) (14)

In the third experiment, the leader has a variable sine motion. The speed is
computed as composition of the constant forward cruising speed and a variable

3 For the Java binary program (.jar) please contact A.B. Pavel at anabran-
dusa@gmail.com

Membrane Controllers on Koala Robots 223

turning speed (equation 15). The speed of the left motor is phase shifted by π from
the right one. In this case, the follower is still able to follow the leader. However,
there is a big difference in the speed profiles of the two robots. These are due to the
fact that the Koala robots are square; when the leader turns, its back gets closer to
the follower even though the leader is moving away. This is why the follower has to
slow down when the leader changes direction and this can be seen in figures 8, 9.

SpeedLeft = CruiseSpeed+A · sin(2π · f · t) (15)

SpeedRight = CruiseSpeed−A · sin(2π · f · t) (16)

0 50 100 150 200
12

12.5

13

13.5

14

14.5

15

15.5

16

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

follower
leader

Fig. 6. Speeds of the leader and follower during the forward constant motion

0 100 200 300 400 500
0

5

10

15

20

25

30

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

follower
leader

Fig. 7. Speeds of the leader and follower during the forward variable motion

The next figures were obtained from experiments in a real world experiments.
Figure 10 shows the speed profile for obstacle avoidance controller. It can be noted
that the peaks in the graph correspond to the reaction of the robot when obstacles
are detected. The Koala robot was able to avoid all obstacles in the environment.

224 C.I. Vasile et al.

0 100 200 300 400 500 600
0

5

10

15

20

25

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

 follower
leader

Fig. 8. Speeds of the leader and follower during the sine motion on the left wheels

0 100 200 300 400 500 600
0

5

10

15

20

25

time

le
ad

er
/fo

llo
w

er
 s

pe
ed

s

follower
leader

Fig. 9. Speeds of the leader and follower during the sine motion on the right wheels

In figure 11, the speed profiles of a follower robot is shown. The leader has a
variable sine motion (equation refeq:leader-sine). It can be seen that the follower
robot is able to match the movement of the leader and to follow it.

In the last experiment, the two behavior are used together: the leader performs
obstacle avoidance while the other robot follows it. The speed profiles of both
robots are presented in figures 12 and 13. The follower is able to keep track of the
leader. It is important to note, that the follower must not get to close to other
objects in the environment, because it can not distinguish them from the leader
robot, only based on the infrared sensors’ readings.

In the last figure (figure 14) the execution time of the two membrane controllers
in each cycle is shown. It can be seen that the execution time is very stable and
small. The first cycles take more time, however, due to initialization of the Java
environment. After that, there are no significant peaks in the execution time for
the proposed membrane systems.

Membrane Controllers on Koala Robots 225

100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

50

cycle

S
pe

ed
 p

ro
fil

es

Left Speed
Right Speed
Cruise Speed

Fig. 10. avoid speed profiles

20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

cycle

S
pe

ed
 p

ro
fil

es

Left Speed
Right Speed

Fig. 11. follow sine speed profiles

50 100 150 200 250 300
−10

−5

0

5

10

15

20

cycle

S
pe

ed
 p

ro
fil

es

Left Speed
Right Speed
Cruise Speed

Fig. 12. follow avoid speed profiles

4 Conclusions

In this paper, we have proven that NPS and their extension, ENPS, are a flexible
and scalabale modeling tool which can be succesfully used to design robot con-
trollers. Among the advantages of using this computational paradigm in robotics

226 C.I. Vasile et al.

100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

cycle

S
pe

ed
 p

ro
fil

es

Left Speed
Right Speed
Cruise Speed

Fig. 13. leader avoid speed profiles

50 100 150 200 250 300
0

50

100

150

200

250

300

cycle

du
ra

tio
n

[m
s]

Avoid Membrane Controller
Follower Membrane Controller

Fig. 14. Avoid/Follow cycle duration

we mention the parallel nature of the model and the possibility of encapsulating
behaviors and functionalities as modules which can be executed in parallel. The
membranes are independent from the control program of the robotic system and
can be easily adapted to other types of robots or applications by only modifying
some parameters in the xml files which store the membrane structures.

Future work includes extending the current membrane controllers to other
robots, but also to implement other behaviors and functionalities using ENPS
model.

References

1. Buiu, C., Pavel, A., Vasile, C., Dumitrache, I.: Perspectives of using membrane com-
puting in the control of mobile robots. In: In Proc. of the Beyond AI - Interdisciplinary
Aspect of Artificial Inteligence Conference, Pilsen, Czech Republic. pp. 21–26 (Decem-
ber 2011)

2. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences 187, 22–51 (March 2012), doi: 10.1016/j.ins.2011.10.007

Membrane Controllers on Koala Robots 227

3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of
membrane computing systems. In: The IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010) Liverpool. pp. 1331–
1336 (September 2010)

4. Pavel, A.B.: Membrane controllers for cognitive robots. Master’s thesis, Department
of Automatic Control and System Engineering, Politehnica University of Bucharest,
Romania (February 2011)

5. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile robot
controllers. Natural Computing (in press), doi: 10.1007/s11047-011-9286-5

6. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot localization implemented with enzy-
matic numerical P systems (submitted)

7. Păun, G., Paun, A.: Membrane Computing and Economics: Numerical P Systems.
Fundamenta Informaticae pp. 213–227 (2004)

8. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

A Note on the Probabilistic Evolution
for P Systems

Sergey Verlan

Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris Est – Créteil Val de Marne,
61, av. gén. de Gaulle, 94010, Créteil, France
verlan@univ-paris12.fr

Summary. In this note we propose a method that permits to describe in a uniform man-
ner variants of probabilistic/stochastic P systems. We give examples of such a description
for existing models of P systems using probabilities.

1 Introduction

The idea of enriching P systems with probabilities and using a probabilistic or
stochastic evolution appears very early in the development of the area [7, 6]. Such
kind of models (we shall call them probabilistic P systems) were shown to be
very useful for simulations of biological phenomena, we cite here only [3, 1, 10].
While some of these models are using the Gillespie stochastic simulation algorithm
(SSA) [4, 5] for the evolution step, the others are introducing different approxima-
tions of it or choose a completely different strategy. The definitions used to define
the models often use specific notions and terminology, so their comparison and
understanding quickly becomes a difficult task.

In this note we propose a systematical approach to the definition of such sys-
tems based on the association of a probability to a group of rules, which is a
natural generalization of a probability for a single rule. The used method permits
to establish a framework that can be used to compare existing definitions and
gives a possibility to extend them. As an example of the application of the method
we translate the definition of the evolution step of two variants of probabilistic P
systems into our framework and we show the equivalent strategies of computation
of individual rule probabilities leading to a corresponding group probability.

230 S. Verlan

2 Preliminaries

We do not present here standard definitions. We refer to [12] for all details. We
will denote by |M | the cardinality of a set M or the size of a multiset M . By |M |x
we will denote the number of elements x in the multiset M .

We also assume that the reader is familiar with standard notions of P systems,
which can be consulted in the books [8] and [9] or at the web page [11]. We shall
only focus on the semantics of the evolution step. We will follow the approach
given in [2], however we will not enter into deep details concerning the notation
and the definition of derivation modes given there. Consider a P system Π of
any type evolving in any derivation mode. The key point of the semantics of P
systems is that according to the type of the system and the derivation mode δ for
any configuration of the system C a set of multisets (over R) of applicable rules,
denoted by Appl(Π,C, δ), is computed. After that, one of the elements from this
set is chosen, non-deterministically, for the further evolution of the system.

We remark that from the point of view of the computer simulation of P systems
the non-deterministic choice can be considered equivalent to a probabilistic choice
where each multiset of rules has an equal probability to be chosen. Permitting
these multisets to have a different probability is the main idea of this paper. More
precisely, for each multiset of rules R ∈ Appl(Π,C, δ) we compute the probability
p(R,C) based on the propensity function f : R◦ × (N×O◦)∗ → R that associates
a real value for a multiset of rules with respect to a configuration. Hence the value
f(R,C) depends not only on the multiset of rules R, but also on the configuration
C.

The probability to choose a multiset R ∈ Appl(Π,C, δ) is defined as the nor-
malization of corresponding probabilities:

p(R,C) =
f(R,C)∑

R′∈Appl(Π,C,δ) f(R
′, C)

(1)

3 Discussion

In the previous section we didn’t discuss the propensity function f , which is the
main ingredient of the model. Below we will give examples of simple propensity
functions each leading to different execution strategies.

Constant strategy: each rule r from R has a constant contribution to f and equal
to cr:

f(R,C) =
∏
r∈R

cr (2)

Multiplicity-dependent strategy: each rule r from R has a contribution to f pro-
portional to the number of times this rule can be applied and to a stochastic
constant cr that only depends on r:

On the Probabilistic Evolution for P Systems 231

Nr(C) = min
x∈lhs(r)

[
|C|x

|lhs(r)|x

]
(3)

f(R,C) =
∏
r∈R

crNr(C) (4)

Concentration-dependent strategy: each rule r from R has a contribution to f
proportional to hr(C), the number of distinct combinations of objects from C
that activate r, and to a stochastic constant cr that only depends on r (below
we denote by

(
a
b

)
the binomial function):

hr(C) =
∏

x∈lhs(r)

(
|C|x

|lhs(r)|x

)
(5)

hR(C) =
∏
r∈R

crhr(C) (6)

f(R,C) = hR(C) (7)

Gillespie strategy: each rule r from R has a contribution to f that depends on
the order in which it was chosen and it is equal to cr · hr(C

′), where C ′ is the
configuration obtained by applying all rules that were chosen before r.

We remark that the concentration-dependent strategy is not equal to Gillespie
strategy. More precisely, in a Gillespie run the probability to choose a new rule
depends on the objects consumed and produced by previously chosen rules. We
can consider a Gillespie run as a sequence of sequential (single-rule) applications
using concentration-dependent strategy.

We also remark that the Gillespie algorithm uses the notion of time that we
do not consider in this paper. However, the definitions can be easily adapted for
to handle this case.

4 Examples

4.1 Dynamical Probabilistic P Systems

Dynamical probabilistic P (DPP) systems were introduced in [10]. We present
below the definition of the evolution step. For the sake of the simplicity we will
consider only one compartment, however the discussion below can be easily gen-
eralized to several compartments.

Let C be the current configuration and R be the set of all rules. Then the
system evolves from C to C ′ as follows.

1. For each rule r ∈ R the propensity of ar(C) = cr ∗ hr(C) (hr being defined as
in Equation (5)) is computed.

232 S. Verlan

2. The propensities are normalized giving a probability for a rule r to be chosen:

pr(C) = ar(c)∑
r′∈R ar′ (C) .

3. The rules to be applied are chosen according to their probabilities. If a non-
applicable rule is chosen, the choice is repeated.

4. The process stops when a maximal (parallel) multiset of rules R is obtained.
5. The multiset of rules obtained at the previous step is applied and yields a new

configuration C ′.

It can be easily seen that since the probabilities to apply a rule (pr) are com-
puted only at the beginning of each step, then the maximal multiset of rules R is
composed from independent rules (the order in which the rules were chosen has
no influence). Hence the probability to choose a multiset of rules R is equal to the
product of the probabilities of each rule: pR(C) =

∏
r∈R pr. Now if we normal-

ize this value with respect to all possible maximally parallel multisets of rules we
obtain:

∏
r∈R pr(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ pz(C)

=

∏
r∈R

ar(C)∑
r′∈R ar′ (C)∑

R′∈Appl(Π,C,max)

∏
z∈R′

pz(C)∑
r′∈R ar′ (C)

=

∏
r∈R ar(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ az(C)

(8)

Since for the concentration-dependent strategy we have f(R,C) =
∏

r∈R ar(C),
it follows that (8) equals to (1). Hence we just showed that DPP systems can be
translated to probabilistic P systems with a concentration-dependent strategy.

4.2 Probabilistic Functional Extended P Systems

Probabilistic functional extended P (PFEP) systems where introduced in [1] as a
part of a framework used to model eco-systems. In order to simplify the presen-
tation we consider a flattening of the structure of the P system, hence using only
multiset rewriting rules. We also consider that the rules having the same left-hand
side form a partition of the set of rules R into n subsets R = R1 . . .Rn, where
r1, r2 ∈ Ri ⇒ lhs(r1) = lhs(r2), 1 ≤ i ≤ n.

The evolution of a PFEP system is done as follows:

1. A maximally parallel multiset of rules R is chosen.
2. R is partitioned into submultisets based on the left-hand side of rules: Ri =

{r ∈ R | r ∈ Ri}.
3. For each non-empty partition Ri, |Ri| rules from Ri are chosen according to

the given probability fr(a), where r ∈ Ri and a is a moment of time.
4. The resulting multiset of rules is applied yielding a new configuration.

From the description of the strategy it is clear that it corresponds to the
multiplicity-dependent strategy for a maximally parallel derivation mode (and
where the constant cr is replaced by fr(a)).

On the Probabilistic Evolution for P Systems 233

5 Final Remarks

In this note we presented a new method to describe P systems working with
probabilities. The main aim of this method is to provide a common framework
permitting to describe variants of probabilistic P systems. Such a framework could
be useful for the comparison of different variants and for the extension of existing
ones.

The used method is based on the assignment of a probability to a multiset
of applicable rules (according to some derivation mode). The evolution step then
chooses a multiset of rules according to its probability and then applies it. We were
particularly interested by the cases when the probability of a multiset of rules R
can be represented as a product of individual probabilities of rules r ∈ R. We gave
example of three strategies for the computation of the individual probabilities
of a rule. The first strategy supposes that the rule probability is constant, the
second strategy supposes that the rule probability is proportional to the number
of its applications, while the third strategy corresponds to the mass action law.
We showed that the DPP systems from [10] are using the third strategy, while the
PFEP systems from [1] the second. An interesting direction for the further research
is to consider the above strategies in combination with different derivation modes.

We remark that the obtained strategies are not equivalent to the Gillespie
stochastic simulation algorithm (SSA), except if the sequential derivation mode
is used, because they do not take into account the intermediate modifications
of the configuration. In some sense they correspond to the tau-leaping method,
which is an approximation of the Gillespie SSA. An interesting topic for a fur-
ther research could be the expression of different Gillespie-based strategies in the
proposed framework. This can give rise to new variants of P systems suitable for
stochastic simulations.

References

1. M. Cardona, M. A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. J. Pérez-
Jiménez, D. Sanuy, A computational modeling for real ecosystems based on P sys-
tems. Natural Computing, 10(1): 39–53, 2011.

2. R. Freund, S. Verlan: A formal framework for static (tissue) P systems. In Proc. of
WMC 2008 (G. Eleftherakis et al., eds.), Thessaloniki, Greece, Springer, 2007, LNCS
4860, 271–284.

3. M. Gheorghe, V. Manca, F. J. Romero-Campero, Deterministic and stochastic P
systems for modelling cellular processes. Natural Computing 9(2): 457–473, 2010.

4. D.T. Gillespie, A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions, J. Comput. Phys. 22 (4)(1976) 403-434.

5. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81(25):2340–2361, 1977.

6. M. Madhu, Probabilistic rewriting P systems. International Journal of Foundations
of Computer Science, 14(1): 157–166, 2003.

234 S. Verlan

7. A. Obtulowicz, Gh. Păun. (In search of) Probabilistic P systems, BioSystems, 70(2):
107–121, 2003.

8. Gh. Păun, Membrane Computing. An Introduction. Springer–Verlag, 2002.
9. G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook Of Membrane Com-

puting. Oxford University Press, 2009.
10. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P systems.

International Journal of Foundations of Computer Science, 17:183–204, 2006.
11. The Membrane Computing Web Page: http://ppage.psystems.eu
12. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages. Springer–Verlag,

Berlin, 1997.

Adaptive Fuzzy Spiking Neural P Systems for
Fuzzy Inference and Learning

Jun Wang1 and Hong Peng2

1 School of Electrical and Information Engineering,
Xihua University, Chengdu, Sichuan, 610039, China

2 School of Mathematics and Computer Engineering,
Xihua University, Chengdu, Sichuan, 610039, China
wangjun@mail.xhu.edu.cn

Summary. Spiking neural P systems (in short, SN P systems) and their variants, in-
cluding fuzzy spiking neural P systems (in short, FSN P systems), generally lack learning
ability so far. Aiming at this problem, a class of modified FSN P systems are proposed in
this paper, called adaptive fuzzy spiking neural P systems (in short, AFSN P systems).
The AFSN P systems not only can model weighted fuzzy production rules in fuzzy knowl-
edge base but also can perform dynamically fuzzy reasoning. It is more important that
the AFSN P systems have learning ability like neural networks. Based on neuron’s firing
mechanisms, a fuzzy reasoning algorithm and a learning algorithm are developed. An
example is included to illustrate the learning ability of the AFSN P systems.

Key words: Spiking neural P systems, Fuzzy spiking neural P systems, Adaptive fuzzy
spiking neural P systems, Fuzzy reasoning, Learning pronlem

1 Introduction

Spiking neural P systems (in short, SN P systems) firstly introduced by Ionescu
et al. in 2006 [1], are a class of distributed parallel computing models, which
are incorporated into membrane computing from the way that biological neu-
rons communicate through electrical impulses of identical form (spikes) [2]. Since
then, a large number of SN P systems and their variants have been proposed
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. From the viewpoint of real-world applications, SN
P systems have attractive due to the following features: (i) parallel computing
advantage, (ii) high understandability (due to their directed graph structure), (iii)
dynamic feature (neurons firing and spiking mechanisms make them suitable to
model dynamic behaviors of a system), (iv) synchronization (that makes them
suitable to describe concurrent events or activities), (v) non-linearly (that makes
them suitable to process non-linear situation), and so on. Recently, in order to
take full the advantage of SN P systems, a class of extended SN P systems were

236 J. Wang, H. Peng

proposed by introducing fuzzy logic, which were called fuzzy spiking neural P
systems (in short, FSN P systems) [12, 13, 14, 15]. The motivation of proposing
these FSN P systems is to deal with the representation of fuzzy knowledge and
model fuzzy reasoning in some real-world applications, such as process control,
expert system, fault diagnosing, etc. As we know, since knowledge in real-world
applications mentioned above is frequently updated, they are essentially dynamic
systems. This requires that the FSN P systems should be adaptive, that at, FSN
P systems must have ability to adjust themselves. However, the FSN P systems
might fails to cope with potential changes of actual systems due to their lack of
adaptive or learning mechanism. Besides, a few of adaptive SN P systems have
been addressed in recent years [16, 17].

In this paper, we propose a class of modified FSN P systems, which are called
adaptive fuzzy spiking neural P systems (in short, AFSN P systems). The practical
motivation is to build a novel way to deal with the learning problem of dynamical
fuzzy knowledge in some real-world applications under the framework of SN P
systems. For this purpose, based on neuron’s firing mechanisms, a fuzzy reasoning
algorithm and a learning algorithm are developed in this paper.

The rest of this paper is organized as follows. In Section 2, we firstly present
the AFSN P systems, and then describe a way to model weighted fuzzy production
rules by the AFSN P systems, finally move on to give the developed fuzzy reasoning
algorithm and learning algorithm. Simulation example is provided in Section 3.
Finally, Section 4 draws the conclusions.

2 AFSN P Systems

2.1 Definition of AFSN P Systems

Currently, fuzzy spiking neural P systems (FSN P Systems, in short) have been
discussed [12, 13, 14, 15]. However, they can not adjust themselves and lack learn-
ing ability. In this paper, we will introduce “adaptive” mechanism into the FSN P
systems to propose a class of adaptive FSN P systems, called AFSN P systems.

Definition 1. An AFSN P systems (of degree m ≥ 1) is a construct of the form

Π = (A,Np, Nr, syn, I,O)

where

1) A={a} is the singleton alphabet (the object a is called spike);
2) Np = {σp1, σp2, . . . , σpm} is called proposition neuron set, where σpi is its

i-th proposition neuron associated with a fuzzy proposition in weighted fuzzy
production rules, 1 ≤ i ≤ m. Each proposition neuron σpi has the form
σpi = (αi,ωi, λi, ri), where:
a) αi ∈ [0, 1] and it is called the (potential) value of pulse contained in propo-

sition neuron σpi. αi is used to express fuzzy truth value of the proposition
associated with proposition neuron σpi.

Adaptive Fuzzy Spiking Neural P Systems 237

b) ωi = (ωi1, ωi2, . . . , ωisi) is called the output weight vector of the neuron σpi,
where component ωij ∈ [0, 1] is the weight on j-th output synapse (arc) of
the neuron, 1 ≤ j ≤ si, and si is the number of all output synapses (arc)
of the neuron.

c) ri is a firing/spiking rule, of the form E/aα → aα, where α ∈ [0, 1]. E =
{α ≥ λi} is called the firing condition, i.e., if α ≥ λi, then the firing rule
will be enabled, where λi ∈ [0, 1) is called the firing threshold.

3) Nr = {σr1, σr2, . . . , σrn} is called rule neuron set, where σri is its i-th rule
neuron associated with a weighted fuzzy production rule, 1 ≤ i ≤ n. Each rule
neuron σri has the form σri = (αi, γi, τi, ri), where
a) αi ∈ [0, 1] is called the (potential) value of pulse contained in rule neuron

σri.
b) γi ∈ [0, 1] is called the certain factor. It represents the strength of belief of

the weighted fuzzy production rule associated with rule neuron σri. At the
same time, γi is also the weight on output synapse (arc) of the neuron.

c) ri is a firing/spiking rule, of the form E/aα → aβ, where α, β ∈ [0, 1].
E = {α ≥ τi} is called the firing condition, i.e., if α ≥ τi, then the firing
rule will be enabled, where τi ∈ [0, 1) is called the firing threshold.

4) syn ⊆ (Np ×Nr)
∪
(Nr ×Np) indicates synapses between both proposition neu-

rons and rule neurons. Note that there are no synapse connections between any
two proposition neurons or between any two rule neurons;

5) I,O ⊆ Np are input neuron set and output neuron set, respectively.

In the AFSN P systems, there are two types of neurons: proposition neurons
and rule neurons. In this paper, we denote proposition neurons and rule neurons
by circles and rectangles respectively, shown in Fig. 1.

(a) (b)

Fig. 1. Two types of neurons: (a) a proposition neuron; (b) a rule neuron.

For a proposition neuron, its content is used to express the fuzzy truth value of
the fuzzy proposition associated with it. When its firing condition E = {α ≥ λi}
is satisfied, the neuron fires and its firing/spiking rule E/aα → aα can be applied.
Applying the firing/spiking rule E/aα → aα means that the spike contained in
the neuron is consumed, and then it produces a spike with value α, which will
be weighted by the corresponding weight factor. Thus, its outputs are α · ωi(i =
1, 2, . . . , s).

238 J. Wang, H. Peng

Note that each rule neuron is assigned only an output weight ν. Suppose that
a rule neuron has k predecessor proposition neurons. When it receives k spikes
from its all predecessor proposition neurons and its firing condition E = {α ≥ τi}
is satisfied, then it fires and its firing/spiking rule E/aα → aβ can be applied. The
value of the received k spikes is calculated as its content α: α = x1+x2+ . . .+xk.
Applying the firing/spiking rule E/aα → aβ means that the spike contained in the
neuron is consumed, and then it produces a spike with value β where β = α · γ.
Thus, its all outputs are α · γ.

Suppose that a proposition neuron has k predecessor rule neurons and it re-
ceives k spikes from them. Let output weights of the k predecessor rule neurons
be γ1, γ2, . . . , γk respectively. If (potential) values of the received k spikes are
x1, x2, . . . , xk respectively, then its new content is computed by α = (x1 + x2 +
. . .+ xk)/(γ1 + γ2 + . . .+ γk).

2.2 Modeling Weighted Fuzzy Production Rules by AFSN P Systems

In many real-world applications such as expert system, fault diagnosing and pro-
cess control, fuzzy production rules are used to describe the fuzzy relation between
two propositions. In order to consider the degree of importance of each proposition
in the antecedent contributing to the consequent, weighted fuzzy production rule
has been introduced, and a more detained description can be found in [18, 19, 20].

However, we will discuss the following three types of weighted fuzzy production
rules in order to study AFSN P systems in this paper.

Type 1: A simple fuzzy production rule

R : IF p1 THEN p2 (CF = γ), τ, ω

Type 2: A composite conjunctive rule

R : IF p1 AND p2 AND · · · AND pn THEN pn+1 (CF = γ), τ, ω1, ω2, . . . , ωn

Type 3: A composite disjunctive rule

R : IF p1 OR p2 OR · · · OR pn THEN pn+1 (CF = γ), τ, ω1, ω2, . . . , ωn

Above three types of weighted fuzzy production rules can be modeled by the
proposed AFSN P systems according to the idea that each fuzzy proposition is
mapped into one proposition neuron and each fuzzy production rule is mapped
into one rule neuron or several rule neurons. Thus, the three types of weighted
fuzzy production rules are represented by the following three AFSN P systems,
Π1, Π2 and Π3, respectively:

• Π1 = (A, {σp1, σp2}, {σr1}, syn, I, O) where:
(1) A = {a}
(2) For each j (j = 1, 2), σpj = (αj ,ω, λ, rj) is a proposition neuron associated

with proposition pj , and rj is a spiking rule of the form E/aα → aα.

Adaptive Fuzzy Spiking Neural P Systems 239

(3) σr1 = (α3, γ, τ, r3) is a rule neuron associated with rule R, and r3 is a
spiking rule of the form E/aα → aβ .

(4) syn = {(σp1, σr1), (σr1, σp2)}.
(5) I = {σp1}, O = {σp2}.

Fig. 2(a) shows the AFSN P system model of Type 1 : Π1.

• Π2 = (A, {σp1, σp2, . . . , σpn, σp(n+1)}, {σr1}, syn, I,O) where:
(1) A = {a}
(2) For each j (j = 1, . . . , n, n + 1), σpj = (αj ,ωj , λj , rj) is a proposition

neuron associated with proposition pj , and rj is a spiking rule of the form
E/aα → aα.

(3) σr1 = (αn+2, γ, τ, rn+2) is a rule neuron associated with rule R, and rn+2

is a spiking rule of the form E/aα → aβ .
(4) syn = {(σp1, σr1), (σp2, σr1), . . . , (σpn, σr1), (σr1, σp(n+1))}.
(5) I = {σp1, σp2, . . . , σpn}, O = {σp(n+1)}.

Fig. 2(b) shows the AFSN P system model of Type 2 : Π2 (in the case of n = 2).

• Π3 = (A, {σp1, σp2, . . . , σpn, σp(n+1)}, {σr1, σr2, . . . , σrn}, syn, I, O) where:
(1) A = {a}
(2) For each j (j = 1, . . . , n, n+1), σj = (αj ,ωj , λj , rj) is a proposition neuron

associated with proposition pj , and rj is a spiking rule of the form E/aα →
aα.

(3) For each j (j = 1, . . . , n), σrj = (αn+j+1, γj , τj , rn+j+1) is a rule neuron
associated with rule R, and rn+j+1 is a spiking rule of the form E/aα → aβ .

(4) syn = {(σp1, σr1), (σp2, σr2), . . . , (σpn, σrn), (σr1, σp(n+1)), (σr2, σp(n+1)),
. . . , (σrn, σp(n+1))}.

(5) I = {σp1, σp2, . . . , σpn}, O = {σp(n+1)}.

Fig. 2(c) shows the AFSN P system model of Type 3 : Π3 (in the case of n = 2).

2.3 Fuzzy Reasoning Based on AFSN P systems

Since the presented AFSN P systems mainly focus on the weighted fuzzy reasoning,
we assume that firing threshold of every proposition neuron is λ = 0. This means
that once a proposition neuron contains a spike with α > 0 it will fires. According
to firing mechanism of AFSN P systems, fuzzy reasoning processes of above three
types of weighted fuzzy production rules can be described as follows:

• For Type 1, we can set ω = 1 since there is only one proposition in antecedent
of the rule R. Initially, assume that neuron σp1 contains a spike with α1 > 0.
At first step, neuron σp1 fires and emits a spike with α1. At second step, neuron
σr1 receives the spike. If α1 ≥ τ , then neuron σr1 fires and emits a spike with

240 J. Wang, H. Peng

(a)

sp1

sr1

sp2

t

w1

(b)

(c)

l1
g

sp1

sr1

sp3

t
w1

l1

g

sp2
w2

l2

sp1

sr1 sp3

t1

w1
l1

g1

sp2

sr2

t2

w2
l2

g2

Fig. 2. AFSN P systems of weighted fuzzy production rules of three types: (a) Type 1 ;
(b) Type 2 ; (c) Type 3.

α1 ·γ. Neuron σp2 will receive the spike at next step. Thus, α2 can be expressed
by

α2 =

{
α1 · γ, if α1 ≥ τ
0, if α1 < τ

(1)

• For Type 2, assume that neurons σp1, σp2, . . . , σpn contain a spike with α1 >
0, α2 > 0, . . . , αn > 0, respectively. At first step, the n neuron fire simulta-
neously, and emit a spike with α1, α2, . . . , αn, respectively. At second step,
neuron σr1 receives the n spikes and its content is updated as

∑n
i=1 αi · ωi. If

(
∑n

i=1 αi ·ωi) ≥ τ , then neuron σr1 fires and emits a spike with (
∑n

i=1 αi ·ωi)·γ.
Neuron σp(n+1) will receive the spike at next step. Thus, αn+1 can be expressed
by

Adaptive Fuzzy Spiking Neural P Systems 241

αn+1 =


(n∑

i=1

αi · ωi

)
· γ, if

(n∑
i=1

αi · ωi

)
≥ τ

0, if
(n∑

i=1

αi · ωi

)
< τ

(2)

• For Type 3, we can set ω1 = ω2 = 1. Assume that neurons σp1, σp2, . . . , σpn

contain a spike with α1 > 0, α2 > 0, . . . , αn > 0, respectively. At first step, the
n neuron fire simultaneously, and emit a spike with α1, α2, . . . , αn, respectively.
At second step, each neuron σri receives a spike sent by σpi, whose value is αi,
i = 1, 2, . . . , n. Let J = {j | αj ≥ τj , j = 1, 2, . . . , n}. Then neurons σrj(j ∈ J)
fire and each neuron of them emits a spike. Neuron σp(n+1) will receive the
spikes at next step. Thus, αn+1 can be expressed by

αn+1 =


(∑

j∈J

αj · γj
)/(∑

j∈J

γj

)
, if αj ≥ τj , j ∈ J

0, if αj < τj , j = 1, 2 . . . , n
(3)

From fuzzy reasoning process described above, we can see that fuzzy reasoning
based on AFSN P systems are easily implemented. Thus, through firing mecha-
nism of AFSN P systems, certainty factors can be reasoned from a set of known
antecedent propositions to a set of consequent propositions step by step.

Let Pcurrent = {σpi | σpi ∈ Np, αi > 0} be a set of current enabled proposition
neurons. If a neuron σpi ∈ Pcurrent, then it will fire. Let Rcurrent = {σrj | σrj ∈
Nr, αj > τj} be a set of current enabled rule neurons. Likewise, if a neuron σrj ∈
Rcurrent, then it will fire. Therefore, fuzzy reasoning algorithm based on AFSN P
systems can be summarized as follows.

program Fuzzy_reasoning_algorithm

input

Certainty factors of a set of antecedent propositions, which

are corresponding to I of AFSN P systems;

output

Certainty factors of a set of consequence propositions, which

are corresponding to O of AFSN P systems;

begin

Pcurrent := I;

Rcurrent := {}

P := Np;

R := Nr;

repeat

Compute the outputs of current enabled proposition

neurons in Pcurrent;

Find current enabled rule neurons Rcurrent form R;

Compute the outputs of current enabled proposition

neurons in Rcurrent;

P := P - Pcurrent;

242 J. Wang, H. Peng

R := R - Rcurrent;

Find current enabled proposition neurons Pcurrent form P;

until P = {} and R = {}

end.

2.4 Learning of AFSN P systems

In order to deal with the learning problem of AFSN P systems, we assume that

1) AFSN P system model Π has been developed;
2) In the AFSN P system model, weights and thresholds of all rule neurons are

known;
3) Certainty factor values of all neurons in I and O are given.

From the discussion above, we know that the presented AFSN P systems are
mainly used to model weighted fuzzy production rules and these rules consist of
three types. So, an AFSN P system model can be divided into three types of
sub-structures, which are shown in Fig.2(a)-(c). Therefore, the learning of entire
system can be decomposed to several simpler learning procedures of the sub-nets.
This means that the complexity of the learning algorithm can be greatly reduced.
According to above assumption, certainty factors of the proposition neurons associ-
ated with antecedent propositions are known, however, their weights are unknown.
Therefore, these weights need to be learned. Note that for AFSN P system Π1 of
Type 1, we have ω1 = 1, while we have ω1 = ω2 = 1 for AFSN P system Π3 of
Type 3. So, only weights of AFSN P system Π2 of Type 2 need to be learned.
In order to carry out the weight learning, the AFSN P system Π2 of Type 2 can
be converted to a single-layer neural network, shown in Fig.3. So, Widrow-Hoff
learning law (Least Mean Square) can be applied in this paper.

a1

an

an+1

wn

w1

a2 w2

Fig. 3. The single-layer neural network converted by the AFSN P system Π2 of Type 2.

We can summarize the learning algorithm of AFSN P systems as follows

Adaptive Fuzzy Spiking Neural P Systems 243

program Weight_learning_algorithm

input

Training data set D;

m = |D|;

Learning rate delta;

output

The weights (w1, w2,..., wn);

begin

Select a set of initial weights;

i=1;

repeat

Compute the outputs error of i-th training sample;

Update the weights (w1, w2,..., wn) using Widrow-Hoff

learning law with learning rate delta;

i = i + 1

until i>m

end.

3 Simulation

In this section, a typical example is selected to illustrate the learning ability.

Example 1. Let p1, p2, p3, p4, p5 and p6 are related propositions of a knowledge
base of fault diagnosis. There are the following weighted fuzzy production rules:
R1: IF p1 THEN p4 (γ1, τ1)
R2: IF p2 AND p4 THEN p5 (ω2, ω4, γ2, τ2)
R3: IF p3 AND p5 THEN p6 (γ3, γ4, τ3, τ4)

This example includes three types of rules: R1 is a simple rule and R2 is a com-
posite conjunctive rule, while R3 is a composite disjunctive rule. These weighted
fuzzy production rules can be modeled by the following AFSN P system Π:

• Π = (A, {σp1, σp2, σp3, σp4, σp5, σp6}, {σr1, σr2, σr3, σr4}, syn, I, O)
where:
(1) A = {a}
(2) For each j (j = 1, 2, 3, 4, 5, 6), σpj = (αj ,ωj , λj , rj) is a proposition neuron

associated with proposition pj , and rj is a spiking rule of the form E/aα →
aα. Here, λj(j = 1, 2, . . . , 6) = 0, and ω1 = ω3 = ω5 = 1.

(3) For each j (j = 1, 2, 3, 4), σrj = (αk+j , γj , τj , rk+j) is rule neuron. σr1 and
σr2 are associated with rule R1 and R2 respectively, while σr3 and σr4 are
associated with rule R3. rk+j(j = 1, 2, 3, 4) are spiking rule of the form
E/aα → aβ .

(4) syn = {(σp1, σr1), (σp2, σr2), (σp3, σr3), (σp4, σr2), (σp5, σr4), (σr1, σp4),
(σr2, σp5), (σr3, σp6), (σr4, σp6)}.

(5) I = {σp1, σp2, σp3}, O = {σp4, σp5, σp6}.

244 J. Wang, H. Peng

Fig.4 shows the AFSN P system Π. The AFSN P system has three input proposi-
tion neurons {σp1, σp2, σp3} and three output proposition neurons {σp4, σp5, σp6}.
Suppose parameters of the AFSN P system are given as follows:

γ1 = 0.80, γ2 = 0.85, γ3 = 0.85, γ4 = 0.90
τ1 = 0.40, τ2 = 0.60, τ3 = 0.55, τ4 = 0.45

(4)

Here, weights ω2 and ω4 are unknown. Assume the ideal weights are ω∗
2 = 0.63 and

ω∗
4 = 0.37. Using fuzzy reasoning algorithm, we can obtain a set of output data

(certainty factors of consequence propositions) according to the input data (cer-
tainty factors of antecedent propositions). Table 1 gives the part of the reasoning
results of the AFSN P system.

sp1 sr1 sp4

t1

1 g1

sr2 sp5

t2
g2

sp2

w2
sr4

sp6

t4
w4

g4

sp3

sr3

t3

1 g3

1

Fig. 4. AFSN P system of Example 1.

Table 1. The reasoning results of AFSN P systems.

No. α1 α2 α3 α4 α5 α6

1 0.8762 0.7724 0.8536 0.7010 0.6341 0.7470
2 0.8325 0.8271 0.6124 0.6660 0.6524 0.6365
3 0.7518 0.8912 0.5896 0.6390 0.6782 0.6326
4 0.6785 0.7216 0.6518 0.5767 0.5678 0.6110
5 0.6127 0.6874 0.7829 0.5208 0.5319 0.6610
6 0.5866 0.8516 0.5908 0.4986 0.6128 0.6015
7 0.5236 0.7835 0.5862 0.4451 0.5595 0.5732
8 0.3645 0.7845 0.6628 0.0 0.0 0.3409
9 0.5235 0.5648 0.7461 0.4450 0.0 0.3837
10 0.3246 0.6324 0.5582 0.0 0.0 0.2871
· ·

Adaptive Fuzzy Spiking Neural P Systems 245

From Fig.4, we can see that only two weights ω2 and ω4 need to be learned in
the AFSN P system Π. In this paper, neural network technique will be employed
to adjust the two weights. The learning part of the AFSN P system Π (see the part
in the dashed box of Fig.4) can be transformed as a single layer neural network
(see Fig.5):

y(t) = W (t)TX(t) + b
where t is time, X(t) = [α2(t), α4(t)]

T is input vector, W (t) = [ω2(t), ω4(t)]
T is

weights vector, and b is the bias.

a4

a2

a5

w2

w4

Fig. 5. The neural network transformed by the learning part in the AFSN P system of
Example 1.

In order to learn these weights by using neural networks, Widrow-Hoff learning
law can be applied as follows

W (t+ 1) = W (t) + 2δe(t)X(t), (5)

e(t) = y∗(t)− y(t) (6)

Here, we select δ = 1.23. Let initial weights be W (0) = [ω2(0), ω4(0)]
T =

[0.5, 0.2]T . By applying Widrow-Hoff learning law, after a training process (t > 33),
the two weights convergence to their real values. Fig.6 shows simulation results.

Form the example, we can see that the fuzzy reasoning algorithm and the
Widrow-Hoff learning are very effective if we do not know the weights of AFSN
P systems. After a training process, we can build a good input-output mapping
relation of a knowledge system.

4 Conclusion

In this paper, we presented a class of modified fuzzy spiking neural P systems:
adaptive fuzzy spiking neural P systems (AFSN P systems, in short). In addition
to fuzzy knowledge representation and dynamically fuzzy reasoning, they have
learning ability as neural netwarks. Therefore, fuzzy knowledge in knowledge base
not only can be modeled by a AFSN P system but also can be learning through the

246 J. Wang, H. Peng

w2

w4

Fig. 6. The weight learning results of Example 1.

AFSN P system. The results presented in this paper provide a novel way to solve
the knowledge learning problem in some real-world applications, such as expert
systems, fault diagnosis, process control, and so on.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of
China (Grant No. 61170030), Research Fund of Sichuan Provincial Key Discipline
of Power Electronics and Electric Drive, Xihua University (No. SZD0503-09-0),
Research Fund of Sichuan Key Laboratory of Intelligent Network Information Pro-
cessing (No. SGXZD1002-10), and the Importance Project Foundation of Xihua
University (No. Z1122632), China.

References

1. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundameta Infor-
maticae 71(2-3), 279–308 (2006)

2. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrance Com-
puting. Oxford Unversity Press, New York (2010)

3. Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Spike Train in Spiking Neural P
Systems. Int. J. Found. Comp. Sci. 17(4), 975–1002 (2006)

Adaptive Fuzzy Spiking Neural P Systems 247

4. Chen, H., Ishdorj, T.-O., Păun, Gh., Perez-Jimenez, M.J.: Handling Languages with
Spiking Neural P Systems with Extended Rules. Romanian Journal of Information
Science and Technology 9(3), 151–162 (2006)

5. Chen, H., Ishdorj, T.-O., and Gh. Păun, Computing Along The Axon. Progress in
Natural Science 17(4), 417–423 (2007)

6. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems with An Exhaustive
Use of Rules. Int. J. of Unconvent. Comt. 3(2), 135–154 (2007)

7. Freund, R., Ionescu, M., Oswald, M.: Extended Spiking Neural P Systems with De-
caying Spikes and/or Total Spiking. Int. J. of Foundations of Computer Science 19(5),
1223–1234 (2008)

8. Pan, L., Păun, G.: Spiking Neural P Systems with Anti-Spikes. Int. J. of Computers,
Communications & Control, 4(3), 273-282 (2009)

9. Wang, J., Hoogeboom, H.J., Pan, L., Pǎun, Gh.: Spiking Neural P Systems with
Weights and Thresholds. In: Proceedings of Tenth Workshop on Membrane Com-
puting (WMC10), August 2009, pp. 514-533 (2009)

10. Cavaliere, M. Ibarra, O.H., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.
Asynchronous Spiking Neural P Systems. Theoretical Computer Science 410(24-25)
2352–2364 (2009)

11. Pan, L., Păun, G.: Spiking Neural P Systems: An Improved Normal Form. Theoretical
Computer Science 411(6) 906–918 (2010)

12. Wang, J., Peng, H.: Fuzzy Knowledge Representation Based on An Improving Spiking
Neural P System. In: 2010 Sixth International Conference of Natural Computing,
ICNC2010, 6, 3012–3015 (2010)

13. Wang, T., Wang, J. Peng, H. Deng, Y.L.: Knowledge Representation Using Fuzzy
Spiking Neural P System. In: 2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications, Volume-1, 586–590 (2010)

14. Wang, J., Zhou, L., Peng, H., Zhang, G.X.: An Extended Spiking Neural P System
for Fuzzy Knowledge Representation. International Journal of Innovative Computing,
Information and Control, 7(7A), 3709–3724 (2011)

15. Peng, H., Wang, J., Perez-Jimenez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy Rea-
soning Spiking Neural P System for Fault Diagnosis. Information Sciences, 2012
(Accepted)

16. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J.: Hebbian Learning from Spiking Neu-
ral P Systems View. Lecture Notes in Computer Science, Volume 5391/2009, 217–230
(2009)

17. Peng, H., Wang, J.: Adaptive Spiking Neural P Systems. In: 2010 Sixth International
Conference of Natural Computing, ICNC2010, 6, 3008–3011 (2010)

18. Yeung, D.S., Tsang, E.C.C.: Weighted Fuzzy Production Rules. Fuzzy Sets and Sys-
tems, 88, 299–313 (1997)

19. Yeung, D.S., Tsang, E.C.C.: A Multilevel Weighted Fuzzy Reasoning Algorithm for
Expert Systems. IEEE Trans. Syst., Man, Cybern. A, 28(2), 149–158 (1998)

20. Chen, S.-M., Ko, Y.-K., Chang, Y.-C., Pan J.-S.: Weighted Fuzzy Interpolative Rea-
soning Based on Weighted Increment Transformations and Weighted Ratio Transfor-
mation Techniques. IEEE Transactions on Fuzzy Systems, 17(6), 1412–1427 (2009)

Modelling Intelligent Energy Distribution
Systems by Hyperdag P Systems

Adrian Zafiu1, Cristian Ştefan2

1 IMT Bucharest, Romania
2 University of Piteşti, Romania
{adrian.zafiu,cristi.stefan}@upit.ro

Summary. The paper introduces a new model in membrane computing, using the hy-
perdag P systems to simulate a complex, feedback-driven energy distribution system.
The proposed model is tested within an ad-hoc developed simulator, and the evolution
of the system is presented step by step.

1 Introduction

The P systems are a computational model inspired from cellular biology, intro-
duced by Păun [10] in 1998 in order to simulate the behaviour of natural systems
by means of formal specifications.

Membrane computing is a vast research field, involving contributions from dif-
ferent areas, like parallel and distributed systems, financial case studies and evo-
lution of living cells populations. There are many types of P systems, like tissue P
systems, neural (spiking) P systems or asynchronous P systems. The model was
further examined in Păun et al. [11].

The hyperdag P systems are a refinement of the original model, in which the
tree structure is replaced by a directed acyclic graph (dag), introduced by Nicolescu
[8] in 2008.

P system models allow realistic simulations of evolving systems, as transition
rules can be applied separately for each cell, taking into account the environment
factors (represented as promoters or inhibitors) and the received information from
other cells (transported symbols).

2 Energy distribution systems (EDS) - a case study

When we consider an energy distribution system (EDS), there are two approaches.
One involves the big-scale entities, like power plants, the national network of trans-
formers and transmission lines, and finally the consumers (industrial-grade and
home).

250 A. Zafiu, C. Ştefan

The small-scale approach regards the self-powered home, that has its own gen-
erators using renewable energy sources like the sun (photovoltaic panels) and the
wind (eolian turbines).

The main goal in designing an ecological household regards the control of energy
consumption level and the ways to optimize it.

In order to bypass short-time fluctuations that this kind of generators can suffer
due to sudden changes in the environment factors, the system makes use of a set
of batteries, that store the energy when it is available and give it back instantly if
ecological power falls for a short period.

To summarize, the EDS (figure 1) has the following components:

• connection to the grid
• grid controller
• batteries
• battery regulator
• generators
• generator regulator
• the consumers
• the consumer controller (inverter)
• sensors
• sensor monitor
• memory for comfort variables
• main control unit (MCU)

As the natural factors change all the time, one cannot rely solely on independent
generators to supply all the necessary power to a household for everyday needs.
Thus, the connection to the national power grid is mandatory. To control how much
power is taken from the grid and to monitor the costs involved, a grid controller
is taken into account.

The set of batteries acts both as a buffer in case of short outages (temporary
lack of wind or sunlight), and as an affordable alternative source for low-power
requirements (night lighting, standby current for different devices), where grid
energy can be avoided. Batteries charge only when there is enough green power,
in order to keep the costs as low as possible. Their cycle is regulated by a ded-
icated controller to prevent overcharging or over-discharging, both being equally
dangerous for the internal chemistry.

The generator set is the core of a self-powered home system, transforming the
freely available energy from the natural sources, like sun and wind, into usable
electrical power to drive all the devices that surround us and make our life easier.
Using such energy implies reduced costs, long-term sustainability and a reduced
impact on the planet’s resources. The controller to which they are attached to is
used for monitoring their usage, reporting failures and disconnecting them when
power requirements indicate there’s no need for more, in order to protect the life
of moving components (turbine).

The consumers are all the electrical appliances that the owner makes use of
but, for the case study in this paper, only the lighting and air conditioning systems

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 251

are considered to be monitored and adjusted according to the desired parameters.
Their controller has a function in conversion also, as the supplied DC voltage
(usually 12 to 48V) from batteries and generators must be raised and converted
to AC before it can be used.

The sensors read the instantaneous values (available light level and tempera-
ture) from the environment, and report them through their monitor to the MCU.
They play the key role in the feed-back mechanism.

The desired values for the comfort variables (temperature and amount of light)
that the user sets are stored in a dedicated memory that the MCU will read each
time it needs to make an adjustment.

The MCU is the brain of the system, containing all necessary logic (rules)
to request data from the memory and sensor controller, calculate the difference
between values and issue the appropriate commands for the generators and con-
sumers to adjust their behaviour as required. It is connected directly with all other
controllers and the memory, as all communication between them passes through
it.

3 Intelligent Energy distribution systems

3.1 The model structure and logic

The intelligence involved in the distribution is achieved through the rules imple-
mented by the MCU, with the declared goal of minimizing the consumption from
the grid. When the parameters need to be adjusted upwards, the first source con-
sidered are always the generators, as their energy comes almost for free (after the
investment has been recovered). If they cannot supply the necessary instantaneous
power, the second choice are the batteries, as they have an amount of power that
comes also at no cost. If they are empty or have already reached the maximum
that they can offer, there is no other option than to take the rest from the grid.
This is the costly solution, but sometimes it’s the only one left. When renewable
power is available again, the first to be satisfied are the consumers, followed by
the batteries who need to be refilled.

The philosophy behind such a system is to react promptly to the changes that
occur and to satisfy the current needs without wasting energy when there’s no
one home, or at night, when there’s usually no need for powerful lighting. If the
temperature in the house is already at the desired level, the air conditioning system
will not be started and, if the desired level has been reached after an increased
consumption, the controller will just keep with it, without other increases.

3.2 Architecture - Hyperdag P systems

As mentioned in the Introduction, hyperdag P systems are a new family of P
systems that R. Nicolescu proposed as an alternative to other existent types (tissue

252 A. Zafiu, C. Ştefan

and neural P systems) in order to offer a more flexible way to communicate between
cells, but respecting the hierarchical structure. In this approach the messages can
be passed also to the cells on the same level (siblings), rewriting rules can be
applied in a deterministic or parallel way, and the transfer modes can be dedicated
(a single receiver) or spread across a domain (broadcast). The efficiency of such P
systems has been proven by modelling problems like Synchronization in P Modules
[2], the Byzantine Agreement [1] and optimizations to FSSP [4].

The basic definitions and notions from graph theory will not be discussed again
here, as they can be found very easily in the literature.

The definition of hyperdag P systems and the two extensions are the ones given
in Part A of the technical report by R. Nicolescu [7], [8], [9].

Definition 1. A hP system (of degree m) is a system Π = (O, σ1, . . . , σm, δ, Iout),
where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σn are cells, of the form σi = (Qi, si0, wi0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set (of states),
• si0 ∈ Qi is the initial state,
• wi0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewriting rules of the form sx→ s′x′u↑v↓w↔ygozout,

where s, s′ ∈ Qi, x, x
′ ∈ O∗, u↑ ∈ O∗↑, v↓ ∈ O∗↓, w↔ ∈ O∗↔, ygo ∈ O∗go, and

zout ∈ O∗out with the restriction that zout = λ for all i ∈ {1, . . . ,m} \ Iout;
3. δ is a set of dag parent/child arcs on {1, . . . ,m}, i.e., δ ⊆ {1, . . . ,m}x{1, . . . ,m},

representing bidirectional communication channels between the cells;
4. Iout ⊆ {1, . . . ,m} indicates the output cells, the only cells allowed to send

objects to the ”environment”.

In addition to this definition, there are two more elements that should be
presented in order to fully describe the simulation mechanism. One is the object
transfer mode and the other is rewriting mode for symbols. Both define how rules
are applied.

Regarding the object transfer mode, there are three options:

• replication: the replicated symbols are transmitted to all parents (↑), all chil-
dren (↓) or all siblings (↔);

• one: the object will be delivered to a single, randomly chosen, parent (↑), child
(↓) or sibling (↔);

• spread : the multiset will be decomposed and the parts are to be sent arbitrarily
to the parents (↑), children (↓) or siblings (↔).

Regarding the symbol rewriting mode, there are also three options:

• min: the rule is applied once, if possible;
• par : rule is applied in parallel manner for all available symbols;
• max : a rule is applied as many times as possible.

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 253

It is important to mention that rules are applied in weak priority order, meaning
that the ones with higher priority (appear at the beginning) come first, and that
lower priority rules are applied only if they do not change the target state reached
from the previous rules.

MemConf s0

Ctrl s0

CtrlCons s0

CtrlGen s0

CtrlBat s0

CtrlGrid s0

SenzT s0

CtrlSenz s0

SenzL s0

ConsT s0

ConsL s0

GenEOL s0

GenPV s0

Bat1 s0

Bat2 s0

Grid s0

Fig. 1. General view of the system

3.3 Algorithm - The rule set and types

At the beginning, we define the connexions between the cells, by mentioning the
parent and all its children. The initial cell configurations follow @ lines, as we define
the memory for comfort variables MemConf, current u and maximum m energy
values for each entity. Each consumer has a maximum amount of power that it can
take, each generator has a limit of what it can give. The sensors store the values
read from the environment. The first step is to send the trigger command q from
the main control unit Ctrl to the memory and the sensors, in order to ask them
to reply with their content. Sensors report to their dedicated controller CtrlSenz,
which then sends the information to the main Ctrl.

After receiving all data, the controller is able to make the decision to increase
or decrease the amount of energy offered by the generators, by calculating the dif-
ference between the desired temperature (or light) level - stored in MemConf, and
the current one, reported by the sensors. The confirmation of energy availability

254 A. Zafiu, C. Ştefan

will be sent to the consumers (temperature, lights), and they will increase their
current consumption by one unit at each step.

Start

Query command

Read memory and
sensor values

Compute difference

Req > CurrentNo
Req. from

generators
Yes

Power
available?

Increase generated
power

YesReq. from batteries

No

Available?

Increase battery
power

Yes

Increase grid
consumption

No

Idle

Stop

Fig. 2. Logical scheme

4 The simulator overview

The simulator implements the hyperdag P systems in respect with Def. 1, object
rewriting rules and object transfer modes. At its core we defined the digraph
structure, with arcs, nodes, rules, states and symbols as components, grouped
into Configurations. We also implemented the Rewriting and Transition types as
described above.

The direction for symbol transfer is indicated within the Behaviour class, all
communication channels being considered as bi-directional. There are four options:

• down: symbols are sent to direct children of the current node;
• up: symbols are sent to the directly connected parent(s);
• sibling : objects reach the nodes on the same level and which are connected

with the emitting cell;

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 255

• out : this is the production of the P system calculation, symbols are sent from
the Output cell to the environment, and their multiplicity is regarded as the
final result.

Rules form a separate class, each one having defined the initial and final states,
the priority, rewriting and transition types. Rules are defined as strings entered by
the user, as one would usually describe them, in the following form:

* cell init.state <sym._mult.> -> f.state <sym._mult._dir.rewr.transf.>

As an example, we present a rule for the MCU, which will propagate down the
commands to increase the light and the power from the Grid, without changing
the current state sqc. The rule is applied as many times as possible, and symbols
are replicated to all the children:
∗ Ctrl sqc ALu Su→ sqc ALu↓ Su↓ max repl
Before entering the rules (marked by *), one needs to define the cells in the

system, their connections and their initial states (lines beginning with @). When
the command Create is given, the parser reads each line, builds the dag structure
and the graphical representation on the fly (using GraphViz [3]) and loads each
cell with its rule set. From that point, the system can evolve fully in one step (Run
command) or step by step, with the currently applied rules being showed in red, for
easier understanding of the transitions, and the content of each cell being updated
in real time. Execution uses the parallel features of the .NET platform, cells that
can evolve simultaneously have dedicated threads for their computations.

The simulator will be available for download in the near future at the following
address: http://fmi.upit.ro/psim/.

5 Description of the rule set

In this section we present all the rules, grouped in subsections by each cell, and
explain their roles in the system.

5.1 The memory for the comfort variables

For the cell MemConf, there are the following rules:

1. s0 q → sqt min rep
2. sqt t → sql t MT↓ max rep
3. sqt → sql min rep

4. sql l → sqa l ML↓ max rep
5. sql → sqa min rep
6. sqa → s0 a↓ max rep

The meaning of the symbols are detailed in Table 1.

5.2 Main Control Unit

The Ctrl cell analyses and regulates the functioning of the entire system, and thus
it has an increased number of rules and symbols. It communicates with all other
Controllers in a full cycle. The states for this cell are, as follows:

256 A. Zafiu, C. Ştefan

Symbol Description

q The query request
t The desired temperature value, stored in memory
l The desired light level, stored in memory
MT The response symbol for temperature
ML The response symbol for light

Table 1. MemConf cell symbols

s0 sqt sql sa
q → λ

t→ t MT↓ max repl

λ

l → l ML↓ max repl

λ

λ

Fig. 3. State diagram for MemConf

s0: initial state;
sq: waiting for a system query;
sqa: the analysis phase;
sqc: computing the base regulation (phase I), computing the commands for the

full regulation (phase II) and cleaning the unnecessary symbols.

s0
Initial state

sqa
Analysis

sqc
I Comp. commands

sqc
II Comp. commands

sqc
Clean

Fig. 4. State diagram for Ctrl

The role of the symbols are described in Table 2.

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 257

Symbol Description

a An answer
MT The temperature value stored in memory
ST The system temperature
CTu Temperature can be increased
CTd Temperature can be decreased
ATu The computing answer is to increase the temperature
ATd The computing answer is to decrease the temperature
ML The light level stored in memory
SL the light measured by the sensor
CLu Light can be in increased
CLd Light can be decreased
ALu The computing answer is to increase the light
ALd The computing answer is to decrease the light
GEu The eolian generator has available power
GEd The eolian generator cannot increase power
GPu The photovoltaic generator has available power
GPd The photovoltaic generator cannot increase power
B1u Battery 1 can be charged
B1d Battery 1 can be used for power
B2u The battery 2 can be charged
B2d The battery 2 can be used for power
Su The Grid can offer more power
Sd The Grid cannot offer more power

Table 2. Ctrl cell symbols

Request rules:

1. s0 → sq ql min rep 2. sq a6 → sqa min rep

The first step when starting the system is to send a query command (q) to all
components. After receiving six answers (a symbols), the Ctrl has all necessary
informations and it can start computing the differences and adjust the parameters
by sending the appropriate commands to the other controllers.

The state analysis:

1. sqa MT ST → sqa max rep
2. sqa MT CTu → sqa ATu min rep
3. sqa ST CTd → sqa ATd min rep
4. sqa MT → sqa max rep
5. sqa ST → sqa max rep
6. sqa CTu → sqa min rep
7. sqa CTd → sqa min rep

8. sqa ML SL → sqa max rep
9. sqa ML CLu → sqa ALumin rep

10. sqa SL CLd → sqa ALd min rep
11. sqa ML → sqa max rep
12. sqa SL → sqa max rep
13. sqa CLu → sqa min rep
14. sqa CLd → sqa min rep

Rule #1 computes the difference between the desired Temperature value that
is stored in Memory (MT) and the current one, read by the Sensor (ST). If there

258 A. Zafiu, C. Ştefan

are MT symbols left and it is possible to increase the consumption for the heating
device (CTu is present), the command is issued by creating the ATu symbol. If
there are ST symbols present and it is possible to reduce the consumption (CTd is
present), then we produce the command to decrease the Temperature, ATd. Rules
4 to 7 clean the remaining symbols.

Rule #8 makes the difference between the desired Light level form the Memory
(ML) and the current one from the Sensor (SL). If there are ML symbols present
and it is possible to increase the power for lighting (CLu is present), then we
produce the command ALu with rule #9. If there are SL symbols left, and it is
possible to reduce the power for lighting (presence of CLd), then symbol Ald is
produced. Rules #11. . . #14 do the cleaning.

The first set of regulation rules is the following:

1. sqa → sqc min rep
2. sqc B1o Sd → sqc B1o↓ Sd↓ max rep
3. sqc B2o Sd → sqc B2o↓ Sd↓ max rep
4. sqc GEu Sd → sqc GEu↓ Sd↓ max rep
5. sqc GPu Sd → sqc GPu↓ Sd↓ max rep
6. sqc GEu B1i → sqc GEu↓ B1i↓ max rep
7. sqc GPu B1i → sqc GPu↓ B1i↓ max rep
8. sqc GEu B2i → sqc GEu↓ B2i↓ max rep
9. sqc GPu B2i → sqc GPu↓ B2i↓ max rep

Rule #1 puts the Ctrl cell in a state where potential anomalies are detected
and removed (rules #2. . . #9).

2, 3: If the Batteries can give more power (presence of B1o or B2o) and the
consumption from the Grid can be decreased (presence of Sd), then the ap-
propriate commands will be propagated down.

4, 5: If the Generators can give more power (GEu or GPu are present) and the
consumption from the Grid can be decreased (Sd is there), then the commands
are sent down.

6, 7, 8, 9: If the battery charge current can be increased (we have B1i or B2i) and
the Generators can offer more energy, the appropriate commands are sent to
their controller.

The second set of regulation rules consists of:

1. sqc ATu GEu → sqc ATu↓ GEu↓ max rep
2. sqc ATu GPu → sqc ATu↓ GPu↓ max rep
3. sqc ATu B1o → sqc ATu↓ B1o↓ max rep
4. sqc ATu B2o → sqc ATu↓ B2o↓ max rep
5. sqc ATu Su → sqc ATu↓ Su↓ max rep
6. sqc ATd Sd → sqc ATd↓ Sd↓ max rep
7. sqc ATd B1i → sqc ATd↓ B1i↓ max rep
8. sqc ATd B2i → sqc ATd↓ B2i↓ max rep
9. sqc ATd GEg → sqc ATd↓ GEd↓ max rep

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 259

10. sqc ATd GPg → sqc ATd↓ GPd↓ max rep
11. sqc ALu GEu → sqc ALu↓ GEu↓ max rep
12. sqc ALu GPu → sqc ALu↓ GPu↓ max rep
13. sqc ALu B1o → sqc ALu↓ B1o↓ max rep
14. sqc ALu B2o → sqc ALu↓ B2o↓ max rep
15. sqc ALu Su → sqc ALu↓ Su↓ max rep
16. sqc ALd Sd → sqc ALd↓ Sd↓ max rep
17. sqc ALd B1i → sqc ALd↓ B1i↓ max rep
18. sqc ALd B2i → sqc ALd↓ B2i↓ max rep
19. sqc ALd GEg → sqc ALd↓ GEd↓ max rep
20. sqc ALd GPg → sqc ALd↓ GPd↓ max rep

These rules are in charge of the increase (ATu, ALu) and decrease commands
(ATd, ALd) for the Temperature and Light levels.

1..5: We try to increase the consumption for the Temperature (ATu) by checking
the available sources, in the following order: Eolian Generator (GEu), Photo-
voltaic Generator (GPu), and the Batteries (B1o, B2o) and finally, as a last
resort, the national power Source (Su). If any one of those has available power,
the appropriate commands are sent to it.

6..10: We try to decrease the consumption for the Temperature and take into
account the sources in reverse order: grid (Sd), batteries (B1d, B2d) and the
generators (GEd, GPd). If the amount taken form any of these sources can be
decreased, the commands are to be sent accordingly.

10..15: We try to increase the consumption for the Light (ALu) by checking the
available sources, in the following order: Eolian Generator (GEu), Photovoltaic
Generator (GPu), and the Batteries (B1o, B2o) and finally, as a last resort,
the national power Source (Su). If any one of those has available power, the
appropriate commands are sent to it.

16..20: We try to decrease the consumption for the Light and take into account
the sources in reverse order: grid (Sd), batteries (B1d, B2d) and the generators
(GEd, GPd). If the amount taken form any of these sources can be decreased,
the commands are to be sent accordingly.

We use the following rules for cleaning:

1. sqc MT → sqc max rep
2. sqc ST → sqc max rep
3. sqc ML → sqc max rep
4. sqc SL → sqc max rep
5. sqc B1i → sqc max rep
6. sqc B1o → sqc max rep
7. sqc Su → sqc max rep
8. sqc Sd → sqc max rep
9. sqc GEu → sqc max rep

10. sqc GEd → sqc max rep

11. sqc GPu → sqc max rep

12. sqc GPd → sqc max rep

13. sqc B2i → sqc max rep

14. sqc B2o → sqc max rep

15. sqc CTu → sqc max rep

16. sqc CTd → sqc max rep

17. sqc CLu → sqc max rep

18. sqc CLd → sqc max rep

19. sqc → s0

260 A. Zafiu, C. Ştefan

In the end, all unused symbols from this cell are cleared, rule #19 having the
role to prepare the cell for a new computation cycle.

5.3 The sensor controller

For the cell CtrlSens we defined the following rules:

1. s0 q → s0 q↑ min rep
2. s0 a2 → sq a min rep
3. sq ST → sq ST↓ max rep

4. sq SL → sq SL↓ max rep

5. sq a → s0 a↓ min rep

Description for these rules is given below:

1: the response request is forwarded to the sensors;
2: the cell waits for all sensors to answer;
3, 4: the measured values are relayed to the general controller;
5: cell confirms that all measured values have been submitted.

If the Temperature sensor receives a query, it will answer with an ST symbol for
each t, and the Light sensor will answer with an SL symbol for each l it contains.

The description of the symbols is given in the table 3.

Symbol Description

q Query
t The measured temperature
ST The response symbol for temperature
l The measured light
SL The response symbol for light

Table 3. Sensor Controller symbols

5.4 Sensors

As announced, we have two sensors that measure the current temperature and
amount of light from the environment we wish to monitor and control.

The rules for the Temperature sensor (SensT) are the following:

1. s0 q → sqt min rep
2. sqt t → sqa t ST↓ max rep

3. sqt → sqa min rep
4. sqa → s0 a↓ min rep

For the Light sensor SensL we have:

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 261

1. s0 q → sqt min rep
2. sql t → sqa l SL↓ max rep

3. sql → sqa min rep
4. sqa → s0 a↓ min rep

Again, they will answer with ST and SL for the queries, the same as their
Controller, symbols having the same sense.

s0 sqx sa
q → λ

x→ x SX↓ max repl

λ

λ

Fig. 5. State diagram for the Sensors

5.5 Consumers controller

The main property for the consumers is the availability to increase or decrease
their current power absorbed. Let variable X represent the consumers. The re-
quest received by the consumer controller will be sent to all consumers. They
will answer with CXu, meaning that the consumption for variable X (where
X ∈ {Temp., Light}) can be increased, or with CXd, meaning that the consump-
tion for that variable can be decreased. These symbols are further forwarded to
the MCU, when answers from all consumers have been received.

The second phase regards treating the commands for actually increasing or
decreasing the consumptions. These are forwarded to the consumers themselves
for execution. Unnecessary symbols are then cleared.

Rules for the cell CtrlCons are the following:

1. s0 q → sq q↓ min rep
2. sq a2 → sa min rep
3. sa CTu → sa CTu↑ min rep
4. sa CTd → sa CTd↑ min rep
5. sa CLu → sa CLu↑ min rep
6. sa CLd → sa CLd↑ min rep
7. sa → s0 a↑ min rep
8. s0 ATu → s0 ATu↓ max rep
9. s0 ATd → s0 ATd↓ max rep

10. s0 ALu → s0 ALu↓ max rep
11. s0 ALd → s0 ALd↓ max rep

12. s0 GEu → s0 max rep

13. s0 GEd → s0 max rep

14. s0 GPu → s0 max rep

15. s0 GPd → s0 max rep

16. s0 B1o → s0 max rep

17. s0 B1i → s0 max rep

18. s0 B2o → s0 max rep

19. s0 B2i → s0 max rep

20. s0 Su → s0 max rep

21. s0 Sd → s0 max rep

Description for these rules is given below:

262 A. Zafiu, C. Ştefan

1: the request is transmitted to all consumers;
2: the cell waits for all consumers to answer;
3..6: the answers are relayed to the general controller;
7: the cell confirms that all answers have been submitted;
8..11: all commands are distributed to the consumers;
12..21: clean the unnecessary symbols.

The symbols’ meanings are shown in Table 4.

Symbol Description

q Query
a Counting the consumers answers
CTu Temperature can be increased
CTd Temperature can be decreased
ATu The computing answer is to increase the temperature
ATd The computing answer is to decrease the temperature
CLu Light can be in increased
CLd Light can be in decreased
ALu The computing answer is to increase the light
ALd The computing answer is to decrease the light

Table 4. CtrlCons cell symbols

5.6 Consumers

Each consumer can be asked to report it’s actual state. The state consists of it’s
current consumption level (the multiplicity of the symbol u, if u > 0) and the
availability to increase it (if u < m, m being the maximum value). The answer can
be positive or negative. The second set of commands is about actually increasing
the consumption, which is executed. Unknown commands are to be cleared.

The description is given for a generic consumer, indicated by X. The rules for
a consumer cell are the following:

1. s0 q → sqd min rep
2. sqd u → squ u ud min rep
3. sqd → squ min rep
4. squ u m → squ d max rep
5. squ m → sqa m uu min rep
6. sqa d → sqa u mmax rep

7. sqa uu → sqa CXCu↑ min rep

8. sqa ud → sqa CXd↑ min rep

9. sqa → s0 a↑ min rep

10. s0AXu → s0 u max rep

11. s0AXd u → s0max rep

The rules description is given below:

1: request to for the consumer state;
2..6: computing the difference between maximum and current values;

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 263

7, 8: the cell emits the answer;
9: cell confirms that answers were submitted;
10: the cell increases consumption;
11: the cell decreases consumption.

The symbols’ meaning are shown in Table 5.

Symbol Description

u The consumption
m The maximum value for the consumption
q Query
a Answer acknowledge
CXu Consumption can be increased
CXd Consumption can be decreased
AXu Request to increase the consumption
AXd Request to decrease power

Table 5. Consumer cell symbols

5.7 Generators controller

The generators have or not the ability to increase or decrease the amount of power
they give at each moment. Let X be the generic name for a generator. The request
received by the generator controller is further spread to all generators defined.
They will answer with either GXu, meaning that they can increase the power, or
GXd, if they can decrease their power. These symbols are to be delivered to the
MCU when all generators have sent their answers.

The second phase of using a generator occurs when commands for increasing
or decreasing the given power are actually received. These are forwarded to the
generators, and the unnecessary symbols are to be cleaned up from their Controller.

The specific rules for the CtrlGen cell are as follows:

1. s0 q → sq q↓ min rep
2. sq a2 → sa min rep
3. sa GEu → sa GEu↑ max rep
4. sa GEd → sa GEd↑ max rep
5. sa GPu → sa GPu↑ max rep
6. sa GPd → sa GPd↑ max rep
7. sa → s0 a↑ max rep
8. s0 GEu → s0 GEu↓ max rep
9. s0 GEd → s0 GEd↓ max rep

10. s0 GPu → s0 GPu↓ max rep
11. s0 GPd → s0 GPd↓ max rep

12. s0 ATu → s0 max rep

13. s0 ATd → s0 max rep

14. s0 ALu → s0 max rep

15. s0 ALd → s0 max rep

16. s0 B1o → s0 max rep

17. s0 B1i → s0 max rep

18. s0 B2o → s0 max rep

19. s0 B2i → s0 max rep

20. s0 Su → s0 max rep

21. s0 Sd → s0 max rep

264 A. Zafiu, C. Ştefan

Description for these rules is given below:

1: the response request is forwarded to the generators;
2: the cell waits for all generators to answer;
3..6: the measured values are relayed to the general controller;
7: cell confirms that all measured values were submitted;
8..11: all commands are submitted to generators;
12..21: cleaning rules.

The symbols GXu and GXd play two roles:

1. if the cell is in the state sa, then the symbol indicating a generator state (G)
is sent to the general controller;

2. if the cell is in state s0, then the symbol designating a command forwarded to
the each generator.

Unlike the consumers, symbols GXu and GXd have the multiplicity equal with
the number of units that the power amount can be increased or decreased with.

The symbols’ meaning are shown in Table 6.

Symbol Description

q Query
a Answer acknowledge
GEu Eolian generator can increase power
GEd Eolian generator decrease power
GPu Photovoltaic generator can offer more
GPd Photovoltaic generator can offer less

Table 6. CtrlGen cell symbols

5.8 Generators

Each generator can be queried about it’s current state. The state is about the
actual power it gives, indicated by the multiplicity of the symbol u, and the avail-
ability to increase that power if the maximum value (m) has not been reached.
The answer can be positive or negative.

The second mode for the generators occurs when they receive actual power
increase or decrease commands, which are to be executed directly. Unnecessary
commands need to be cleared.

The description is given for a generic generator, indicated by X :
The rules for a generator are the following:

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 265

1. s0 q → sqd min rep
2. sqd u → squ u ud max rep
3. sqd → squ min rep
4. squ u m → squ d max rep
5. squ m → sqa m uu max rep
6. sqa d → sqa u mmax rep

7. sqa uu → sqa GXu↑ max rep

8. sqa ud → sqa GXd↑ max rep

9. sqa → s0 a↑ min rep

10. s0 GXu → s0 u max rep

11. s0 GXd u → s0 max rep

Rules description:

1: the request to report the consumer state;
2..6: computing the difference between maximum and current values;
7, 8: cell returns the answer;
9: the cell confirms that answers were submitted;
10: the cell increases generated power;
11: the cell decreases energy offered.

The symbols’ meaning are shown in Table 7.

Symbol Description

u The actual power level
m The maximum power
q Query
a Answer acknowledge
GXu Request to increase the generated power
GXd Request to decrease the generated power

Table 7. Generator cell symbols

5.9 Battery controller

Batteries are defined by the availability to increase or decrease the power they offer
at each instant. The request to the CtrlBat is further disseminated to all batteries.
They will answer each with BXi - the value with which the charge current can
be increased, or BXo - the value with which the amount of power they give can
be increased, where Xin{1 . . . n}. These symbols are further relayed to the MCU
when answers from all batteries have been received.

Rules for CtrlBat are as follows:

1. s0 q → sq q↓ min rep
2. sq a2 → sa min rep
3. sa B1i → sa B1i↑ max rep
4. sa B1o → sa B1o↑ max rep
5. sa B2i → sa B2i↑ max rep
6. sa B2o → sa B2o↑ max rep

7. sa → s0 a↑ max rep
8. s0 B1o → s0 B1o↓ max rep
9. s0 B1i → s0 B1i↓ max rep

10. s0 B2o → s0 B2o↓ max rep
11. s0 B2i → s0 B2i↓ max rep
12. s0 ATu → s0 max rep

266 A. Zafiu, C. Ştefan

13. s0 ATd → s0 max rep
14. s0 ALu → s0 max rep
15. s0 ALd → s0 max rep
16. s0 GEu → s0 max rep
17. s0 GEd → s0 max rep

18. s0 GPu → s0 max rep

19. s0 GPd → s0 max rep

20. s0 Su → s0 max rep

21. s0 Sd → s0 max rep

Rules description:

1: the request is retransmitted to the batteries;
2: cell waits for all batteries to answer;
3..6: measured values are relayed to the general controller;
7: cell confirms that all measured values were submitted;
8..11: all commands are submitted to batteries;
12..21: cleaning rules.

The symbols BXi and BXo play two roles:

1. if the cell is in the state sa, then the symbol indicating a battery state (B) is
sent to the general controller;

2. if the cell is in state s0, then the symbol designating a command forwarded to
the each battery.

Unlike the consumers, symbols BXi and BXo have the multiplicity equal with
the number of units that the power amount taken or given (for charging) can be
increased or decreased with.

The symbols’ meaning are shown in Table 8.

Symbol Description

q Query
a Answer acknowledge
BXi The battery X can give more energy
BXo The battery X can charge more

Table 8. Battery controller symbols

5.10 Batteries

Each battery can be queried about its current state. The actual state refers to:

u, m: Energy level and maximum level;
iu, im: Charge level and maximum charge;
du, dm: Discharge level and maximum discharge.

A battery can have dual behaviour: can be a generator as it discharges, but
becomes a consumer when it charges back. The two states differ by the maximum
instantaneous values. Thus, the maximum amount with which the charging can be

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 267

done is given by the stopping of discharging and maximizing the charge current.
Also, the maximum available power is given when the charge current is 0.

The second state for the batteries occurs when they receive commands to in-
crease or decrease their given power amount. The command translates in changes
for the values iu and du. The unnecessary commands are to be removed.

The description is given for a generic battery, indicated by X.
Rules for cell Battery X are:

1. s0 iu du → s0 max rep
2. s0 q → sqd min rep
3. sqd u m → sqd d max rep
4. sqd iu im → sqd id BXo↑ max rep
5. sqd du dm → sqd dd BXi↑max rep
6. sqd m → sqi mmin rep
7. sqd d → sqo d min rep
8. sqd → sqa min rep
9. sqi im → sqo im BXi↑ max rep

10. sqi → sqo min rep
11. sqo dm → sqa dm BXo↑ max rep
12. sqo → sqa min rep
13. sqa d → sqa u mmax rep
14. sqa id → sqa iu immax rep
15. sqa dd → sqa du dmmax rep
16. sqa → s0 a↑ min rep
17. s0 BXo → s0 du max rep
18. s0 BXi → s0 iu max rep

Rules description:

1: request to submit the battery state;
2..7: computing the difference between maximum value and inverse value for

charge and discharge (decrease the inverse flow);
8, 12: computing the direct values for charge and discharge (increase the direct

flow);
13..15: restore the initial cell’s values;
16: cell confirms that answers were submitted;
10: the cell increases output flow;
11: the cell decreases input flow.

The symbols’ meaning are shown in Table 9.

Symbol Description

u The available energy level
m The maximum energy level
iu The charge level
im The maximum charge level
du The discharge level
dm The maximum discharge level
q Query
a Answer acknowledge
BXi The input can be increased
BXd The output can be increased

Table 9. Battery cell symbols

268 A. Zafiu, C. Ştefan

5.11 Grid controller

The power Grid is defined by the installed power (m) which can be taken from the
physical line. Let X represent the source identifier (one can have many connections
for different voltages, like 220V and 380V). The request from the Grid Controller
is forwarded to the source itself. Each of them answers with SXu, if the amount of
power can be increased, or SXd, if the power can be decreased. The symbols are
then delivered to the MCU, when all answers from the sources have been received.

The second phase of using the Controller occurs when actual increase or de-
crease commands are received. These are forwarded to the sources themselves, and
all unnecessary symbols are cleaned up.

Rules for the cell CtrlGrid are presented below:

1. s0 q → sq q↓ min rep
2. sq a → sa min rep
3. sa Su → sa Su↑ max rep
4. sa Sd → sa Sd↑ max rep
5. sa → s0 a↑ max rep
6. s0 Su → s0 Su↓ max rep
7. s0 Sd → s0 Sd↓ max rep
8. s0 ATu → s0 max rep
9. s0 ATd → s0 max rep

10. s0 ALu → s0 max rep

11. s0 ALd → s0 max rep

12. s0 GEu → s0 max rep

13. s0 GEd → s0 max rep

14. s0 GPu → s0 max rep

15. s0 GPd → s0 max rep

16. s0 B1o → s0 max rep

17. s0 B1i → s0 max rep

18. s0 B2o → s0 max rep

19. s0 B2i → s0 max rep

Rules description:

1: the request is retransmitted to the sources;
2: the cell waits for all sources to answer;
3..4: measured values are relayed to the general controller;
5: cell confirms that all measured values were submitted;
6..7: all commands are submitted to sources;
8..19: cleaning rules.

The symbols SXu and SXd play two roles:

1. if the cell is in the state sa, then the symbol indicating a source state (S) is
sent to the general controller;

2. if the cell is in state s0, then the symbol designating a command forwarded to
the each source.

Unlike the external sources, symbols SXu and SXd have the multiplicity equal
with the number of units that the power amount taken can be increased or de-
creased with.

The symbols’ meaning are shown in Table 10.

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 269

Symbol Description

q Query
a Answer acknowledge
Sxu Source can have more load
Sxd Source decrease load

Table 10. External power sources controller symbols

5.12 External sources (GRID)

The Grid is defined by the installed power (m) and by the actual power given, u.
The request from the Grid is about the instantaneous power u, if that is above 0,
and the possibility to increase the amount offered if maximum value m has not
been reached. The answer can be positive or negative.

The second state occurs when actual increase or decrease commands are re-
ceived and executed. Unnecessary symbols will be removed from the cell.

Rules for the cell GridX are as follows:

1. s0 q → sqd min rep
2. sqd u → squ u ud max rep
3. sqd → squ min rep
4. squ u m → squ d max rep
5. squ m → sqa m uu max rep
6. sqa d → sqa u mmax rep

7. sqa uu → sqa SXu↑ max rep

8. sqa ud → sqa SXd↑ max rep

9. sqa → s0 a↑ min rep

10. s0 SXu → s0 u max rep

11. s0 SXd u → s0 max rep

Rules description:

1: request to submit the current state;
2..6: computing the difference between maximum value and current value;
7,8: the cell returns an answer;
9: cell confirms that answers were submitted;
10: the cell increases amount given;
11: the cell decreases power.

The symbols’ meaning are shown in Table 11.

Symbol Description

u Current consumption
m Maximum available for consumption
q Query
a Answer acknowledge
SXu Consumption can be increased and the request to increase the used power
SXd Consumption can be decreased and the request to decrease the used power

Table 11. External source cell symbols

270 A. Zafiu, C. Ştefan

6 Conclusions and future work

In this paper we presented a model for a real-life working system ([6]), we described
the use of hyperdag P systems for a feedback-oriented infrastructure that quickly
reacts to environment conditions and adapts the parameters accordingly. A de-
tailed description of the system is followed by the complete rule set and transition
diagrams, in order to better understand the concept. The model was tested and
validated using the ad-hoc built simulator and the results were the ones expected.

Future work involves extending the simulator to accept new types of P systems
and development of other models (like network-related algorithms) that can be
simulated by using this architecture. Another aspect to be considered is a formal
testing of the proposed model, by using techniques like the ones indicated in [5].

Acknowledgements

The authors wish to thank Dr. Raluca Lefticaru for her valuable advice and the
SOP-HRD programme of the EU for funding the research. The work of Adrian
Zafiu was supported by SOP-HRD grant 89/1.5/S/63700. The work of Cristian
Ştefan was supported by SOP-HRD grant 88/1.5/S/52826.

References

1. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. P systems and the Byzan-
tine agreement. Report CDMTCS-375, Centre for Discrete Mathematics and The-
oretical Computer Science, The University of Auckland, Auckland, New Zealand,
January 2010.

2. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Synchronization in P mod-
ules. Report CDMTCS-378, Centre for Discrete Mathematics and Theoretical Com-
puter Science, The University of Auckland, Auckland, New Zealand, February 2010.

3. J. Ellson, E. Gansner, and many others. Graphviz 2.28: Graph visualization software,
2012.

4. Florentin Ipate, Radu Nicolescu, Ionut-Mihai Niculescu, and Cristian Stefan. Syn-
chronization of p systems with simplex channels. CoRR, abs/1108.3430, 2011.

5. Raluca Lefticaru, Marian Gheorghe, and Florentin Ipate. An empirical evaluation of
p system testing techniques. Natural Computing, 10(1):151–165, 2011.

6. P. L. Milea, Adrian Zafiu, M. Dra̧gulinescu, and O. Oltu. Mpp tracking method for
pv systems, based on three points prediction algorithm. UPB Scientific Bulletin,
72(4):149–160, 2010.

7. Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling with
hyperdag P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics
and Theoretical Computer Science, The University of Auckland, Auckland, New
Zealand, December 2008.

8. Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling with
hyperdag P systems: Part A. In Brainstorming Week on Membrane Computing,
pages 85–107, 2009.

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 271

9. Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling with
hyperdag P systems: Part B. Report CDMTCS-373, Centre for Discrete Mathematics
and Theoretical Computer Science, The University of Auckland, Auckland, New
Zealand, October 2009.

10. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

11. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook of
Membrane Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

7 Appendix

We present here the complete trace of the P-system evolution, at each step indi-
cating the contents and current states of the cells.

272 A. Zafiu, C. Ştefan

S
te

p
M

e
m
C
o
n
f
C
tr
l

0
s0

t2
3

s0

1
s0

t2
3
q

sq

2
sq
t
t2
3

sq

3
sq
l
t2
3

sq
M
T
2
3

4
sq
a
t2
3

sq
M
T
2
3

5
s0

t2
3

sq
M
T
2
3
a

6
s0

t2
3

sq
M
T
2
3
a

7
s0

t2
3

sq
M
T
2
3
a
S
T
2
0

8
s0

t2
3

sq
M
T
2
3
a
2
S
T
2
0

9
s0

t2
3

sq
M
T
2
3
a
2
S
T
2
0

1
0

s0
t2
3

sq
M
T
2
3
a
2
S
T
2
0

1
1

s0
t2
3

sq
M
T
2
3
a
2
S
T
2
0
B
1
i5
0
0

1
2

s0
t2
3

sq
M
T
2
3
a
2
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9

1
3

s0
t2
3

sq
M
T
2
3
a
2
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d

1
4

s0
t2
3

sq
M
T
2
3
a
3
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0

1
5

s0
t2
3

sq
M
T
2
3
a
4
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7

1
6

s0
t2
3

sq
M
T
2
3
a
6
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7

1
7

s0
t2
3

sq
c
M
T
2
3
S
T
2
0
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7

1
8

s0
t2
3

sq
c
M
T
3
B
1
i5
0
0
C
T
u
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7

1
9

s0
t2
3

sq
c
M
T
2
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7
A
T
u

2
0

s0
t2
3

sq
c
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
C
T
d
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7
A
T
u

2
1

s0
t2
3

sq
c
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
S
d
C
L
u
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7
A
T
u

2
2

s0
t2
3

sq
c
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
S
d
G
P
u
7
9
3
B
2
o
5
0
0
C
L
d
G
P
d
7
A
T
u

2
3

s0
t2
3

sq
c
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
S
d
G
P
u
7
9
3
B
2
o
5
0
0
G
P
d
7
A
T
u

2
4

s0
t2
3

sq
a
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
1
0
0
0
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
S
d
G
P
u
7
9
3
B
2
o
5
0
0
G
P
d
7
A
T
u

2
5

s0
t2
3

sq
a
B
1
i5
0
0
G
E
u
7
8
8
B
1
o
9
9
9
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
G
P
u
7
9
3
B
2
o
5
0
0
G
P
d
7
A
tu

2
6

s0
t2
3

sq
a
G
E
u
2
8
8
B
1
o
9
9
9
S
u
2
9
9
9
G
E
d
1
2
B
2
i1
0
0
0
G
P
u
7
9
3
B
2
o
5
0
0
G
P
d
7
A
T
u

2
7

s0
t2
3

sq
a
B
1
o
9
9
9
S
u
2
9
9
9
G
E
d
1
2
B
2
i7
1
2
G
P
u
7
9
3
B
2
o
5
0
0
G
P
d
7
A
T
u

2
8

s0
t2
3

sq
a
B
1
o
9
9
9
S
u
2
9
9
9
G
E
d
1
2
G
P
u
8
1
B
2
o
5
0
0
G
P
d
7
A
T
u

2
9

s0
t2
3

sq
a
B
1
o
9
9
9
S
u
2
9
9
9
G
E
d
1
2
G
P
u
8
0
B
2
o
5
0
0
G
P
d
7

3
0

s0
t2
3

sq
a
S
u
2
9
9
9
G
E
d
1
2
G
P
u
8
0
B
2
o
5
0
0
G
P
d
7

3
1

s0
t2
3

sq
a
G
E
d
1
2
G
P
u
8
0
B
2
o
5
0
0
G
P
d
7

3
2

s0
t2
3

sq
a
G
P
u
8
0
B
2
o
5
0
0
G
P
d
7

3
3

s0
t2
3

sq
a
B
2
o
5
0
0
G
P
d
7

3
4

s0
t2
3

sq
a
B
2
o
5
0
0

3
5

s0
t2
3

sq
a

T
a
b
le

1
.
S
y
st
em

ev
o
lu
ti
o
n
-
P
a
rt

1

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 273

S
e
n
z
T

C
tr
lS
e
n
z

S
e
n
z
L

C
tr
lC

o
n
s

C
tr
lG

e
n

C
tr
lB

a
t

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
q

s0
s0

q
s0

q
s0

q

s0
t2
0
q

s0
s0

q
sq

sq
sq

sq
t
t2
0

s0
sq
l

sq
sq

sq

sq
a
t2
0

s0
S
T
2
0

sq
a

sq
sq

sq

s0
t2
0

s0
S
T
2
0
a
2

s0
sq

sq
sq

s0
t2
0

sq
S
T
2
0
a

s0
sq

sq
sq

B
1
i5
0
0
B
2
i1
0
0
0

s0
t2
0

sq
a

s0
sq

sq
sq

B
1
i5
0
0
B
2
i1
0
0
0
B
1
o
1
0
0
0
B
2
o
5
0
0

s0
t2
0

s0
s0

sq
C
T
u
C
L
u

sq
G
E
u
7
8
8
G
P
u
7
9
3

sq
B
1
i5
0
0
B
2
i1
0
0
0
B
1
o
1
0
0
0
B
2
o
5
0
0

s0
t2
0

s0
s0

sq
C
T
u
C
L
u
C
T
d
C
L
d

sq
G
E
u
7
8
8
G
P
u
7
9
3
G
E
d
1
2
G
P
d
7

sq
B
1
i5
0
0
B
2
i1
0
0
0
B
1
o
1
0
0
0
B
2
o
5
0
0
a
2

s0
t2
0

s0
s0

sq
C
T
u
C
L
u
C
T
d
C
L
d
a
2

sq
G
E
u
7
8
8
G
P
u
7
9
3
G
E
d
1
2
G
P
d
7
a
2
sa

B
1
i5
0
0
B
2
i1
0
0
0
B
1
o
1
0
0
0
B
2
o
5
0
0

s0
t2
0

s0
s0

sa
C
T
u
C
L
u
C
T
d
C
L
d

sa
G
E
u
7
8
8
G
P
u
7
9
3
G
E
d
1
2
G
P
d
7

sa
B
2
i1
0
0
0
B
1
o
1
0
0
0
B
2
o
5
0
0

s0
t2
0

s0
s0

sa
C
L
u
C
T
d
C
L
d

sa
G
P
u
7
9
3
G
E
d
1
2
G
P
d
7

sa
B
2
i1
0
0
0
B
2
o
5
0
0

s0
t2
0

s0
s0

sa
C
L
u
C
L
d

sa
G
P
u
7
9
3
G
P
d
7

sa
B
2
o
5
0
0

s0
t2
0

s0
s0

sa
C
L
d

sa
G
P
d
7

sa

s0
t2
0

s0
s0

sa
sa

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
B
1
o
S
d

s0
B
1
o
S
d

s0
B
1
o
S
d

s0
t2
0

s0
s0

s0
S
d
G
E
u
5
0
0
B
1
i5
0
0

s0
G
E
u
5
0
0
S
d
B
1
i5
0
0

s0
B
1
i5
0
0
S
d
G
E
u
5
0
0

s0
t2
0

s0
s0

s0
S
d
G
E
u
2
8
8
B
1
i5
0
0
B
2
i2
8
8

s0
G
E
u
2
8
8
S
d
B
1
i5
0
0
B
2
i2
8
8

s0
B
1
i5
0
0
B
2
i2
8
8
S
d
G
E
u
2
8
8

s0
t2
0

s0
s0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u
7
1
2

s0
G
P
u
7
1
2
S
d
B
1
i5
0
0
B
2
i1
0
0
0

s0
B
1
i5
0
0
B
2
i1
0
0
0
S
d
G
P
u
7
1
2

s0
t2
0

s0
s0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u
A
T
u
s0

G
P
u
S
d
B
1
i5
0
0
B
2
i1
0
0
0
A
T
u

s0
B
1
i5
0
0
B
2
i1
0
0
0
S
d
G
P
u
A
T
u

s0
t2
0

s0
s0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u

s0
G
P
u
S
d
B
1
i5
0
0
B
2
i1
0
0
0

s0
B
1
i5
0
0
B
2
i1
0
0
0
S
d
G
P
u

s0
t2
0

s0
s0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0

s0
B
1
i5
0
0
B
2
i1
0
0
0
S
d

s0
t2
0

s0
s0

s0
S
d
B
2
i1
0
0
0

s0
S
d
B
2
i1
0
0
0

s0
B
2
i1
0
0
0
S
d

s0
t2
0

s0
s0

s0
S
d

s0
S
d

s0
S
d

s0
t2
0

s0
s0

s0
s0

s0

s0
t2
0

s0
s0

s0
s0

s0

T
a
b
le

1
.
S
y
st
em

ev
o
lu
ti
o
n
-
P
a
rt

2

274 A. Zafiu, C. Ştefan

C
tr
lG

ri
d

C
o
n
sT

C
o
n
sL

G
e
n
E
O
L

G
e
n
P
V

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
q

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

sq
s0

u
1
0
m
1
0
0
q

s0
u
1
0
m
1
5
0
q

s0
u
1
2
m
8
0
0
q

s0
u
7
m
8
0
0
q

sq
sq
d
u
1
0
m
1
0
0

sq
d
u
1
0
m
1
5
0

sq
d
u
1
2
m
8
0
0

sq
d
u
7
m
8
0
0

sq
sq
u
u
1
0
m
1
0
0
u
d

sq
u
u
1
0
m
1
5
0
u
d

sq
u
u
1
2
m
8
0
0
u
d
1
2

sq
u
u
7
m
8
0
0
u
d
7

sq
sq
u
m
9
0
u
d
d
1
0

sq
u
m
1
4
0
u
d
d
1
0

sq
u
m
7
8
8
u
d
1
2
d
1
2

sq
u
m
7
9
3
u
d
7
d
7

sq
sq
a
m
9
0
u
d
d
1
0
u
u

sq
a
m
1
4
0
u
d
d
1
0
u
u
sq
a
m
7
8
8
u
d
1
2
d
1
2
u
u
7
8
8
sq
a
m
7
9
3
u
d
7
d
7
u
u
7
9
3

sq
sq
a
u
1
0
m
1
0
0
u
d
u
u
sq
a
u
1
0
m
1
5
0
u
d
u
u
sq
a
u
1
2
m
8
0
0
u
d
1
2
u
u
7
8
8
sq
a
u
7
m
8
0
0
u
d
7
u
u
7
9
3

sq
S
u
2
9
9
9

sq
a
u
1
0
m
1
0
0
u
d

sq
a
u
1
0
m
1
5
0
u
d

sq
a
u
1
2
m
8
0
0
u
d
1
2

sq
a
u
7
m
8
0
0
u
d
7

sq
S
u
2
9
9
9
S
d

sq
a
u
1
0
m
1
0
0

sq
a
u
1
0
m
1
5
0

sq
a
u
1
2
m
8
0
0

sq
a
u
7
m
8
0
0

sq
S
u
2
9
9
9
S
d
a

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

sa
S
u
2
9
9
9
S
d

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

sa
S
d

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

sa
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
S
d
B
1
o

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
S
d
G
E
u
5
0
0
B
1
i5
0
0

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0

s0
u
7
m
8
0
0

s0
S
d
G
E
u
2
8
8
B
1
i5
0
0
B
2
i2
8
8

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
1
2
m
8
0
0
G
E
u
5
0
0

s0
u
7
m
8
0
0
G
E
u
5
0
0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u
7
1
2

s0
u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
5
1
2
m
8
0
0
G
E
u
2
8
8

s0
u
7
m
8
0
0
G
E
u
2
8
8

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u
A
T
u
s0

u
1
0
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0
G
P
u
7
1
2

s0
u
7
m
8
0
0
G
P
u
7
1
2

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0
G
P
u

s0
u
1
0
m
1
0
0
A
T
u

s0
u
1
0
m
1
5
0
A
T
u

s0
u
8
0
0
m
8
0
0

s0
u
7
1
9
m
8
0
0

s0
S
d
B
1
i5
0
0
B
2
i1
0
0
0

s0
u
1
1
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0
G
P
u

s0
u
7
1
9
m
8
0
0
G
P
u

s0
S
d
B
2
i1
0
0
0

s0
u
1
1
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0

s0
u
7
2
0
m
8
0
0

s0
S
d

s0
u
1
1
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0

s0
u
7
2
0
m
8
0
0

s0
s0

u
1
1
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0

s0
u
7
2
0
m
8
0
0

s0
s0

u
1
1
m
1
0
0

s0
u
1
0
m
1
5
0

s0
u
8
0
0
m
8
0
0

s0
u
7
2
0
m
8
0
0

T
a
b
le

1
.
S
y
st
em

ev
o
lu
ti
o
n
-
P
a
rt

3

Modelling Intelligent Energy Distribution Systems by Hyperdag P Systems 275

B
a
t1

B
a
t2

G
rid

O
u
t

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
q

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
q

s0
u
m
3
0
0
0
q

sq
d
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

sq
d
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

sq
d
u
m
3
0
0
0

sq
d
m
3
0
0
0
im

5
0
0
d
m
1
0
0
0
d
2
0
0
0

sq
d
m
1
8
0
0
0
im

1
0
0
0
d
m
5
0
0
d
2
0
0
0

sq
u
u
m
3
0
0
0
u
d

sq
i
m
3
0
0
0
im

5
0
0
d
m
1
0
0
0
d
2
0
0
0

sq
i
m
1
8
0
0
0
im

1
0
0
0
d
m
5
0
0
d
2
0
0
0

sq
u
m
2
9
9
9
u
d
d

sq
o
m
3
0
0
0
im

5
0
0
d
m
1
0
0
0
d
2
0
0
0

sq
o
m
1
8
0
0
0
im

1
0
0
0
d
m
5
0
0
d
2
0
0
0

sq
a
m
2
9
9
9
u
d
d
u
u
2
9
9
9

sq
a
m
3
0
0
0
im

5
0
0
d
m
1
0
0
0
d
2
0
0
0

sq
a
m
1
8
0
0
0
im

1
0
0
0
d
m
5
0
0
d
2
0
0
0

sq
a
u
m
3
0
0
0
u
d
u
u
2
9
9
9

sq
a
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

sq
a
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

sq
a
u
m
3
0
0
0
u
d

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

sq
a
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
B
1
o

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
B
1
o

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u
B
1
i5
0
0

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
B
1
i5
0
0

s0
u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
d
u
B
2
i1
0
0
0
iu
5
0
0
s0

u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
B
2
i1
0
0
0
s0

u
m
3
0
0
0

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
B
2
i1
0
0
0
iu
4
9
9

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
iu
1
0
0
0

s0
u
m
3
0
0
0
S
d

s0
u
2
0
0
0
m
5
0
0
0
im

5
0
0
d
m
1
0
0
0
iu
4
9
9

s0
u
2
0
0
0
m
2
0
0
0
0
im

1
0
0
0
d
m
5
0
0
iu
1
0
0
0

s0
m
3
0
0
0

T
a
b
le

1
.
S
y
stem

ev
o
lu
tio

n
-
P
a
rt

4

276 A. Zafiu, C. Ştefan

A Membrane-Inspired Evolutionary Algorithm
with a Population P System and its Application
to Distribution System Reconfiguration

Gexiang Zhang1, Miguel A. Gutiérrez-Naranjo2, Yanhui Qin3, Marian Gheorghe4

1,3 School of Electrical Engineering,
Southwest Jiaotong University, Chengdu 610031, P.R. China
1zhgxdylan@126.com; 3qinyanhui@gmail.com

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

4 Department of Computer Science,
University of Sheffield Regent Court,
Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

Summary. This paper develops a membrane-inspired evolutionary algorithm, PSMA,
which is designed by using a population P system and a quantum-inspired evolution-
ary algorithm (QIEA). We use a population P system with three cells to organize three
types of QIEAs, where communications between cells are performed at the level of genes,
instead of the level of individuals reported in the existing membrane algorithms in the
literature. Knapsack problems are applied to discuss the parameter setting and to test
the effectiveness of PSMA. Experimental results show that PSMA is superior to four rep-
resentative QIEAs and our previous work with respect to the quality of solutions and the
elapsed time. We also use PSMA to solve the optimal distribution system reconfiguration
problem in power systems for minimizing the power loss.

Key words: Membrane computing; membrane-inspired evolutionary algorithm;
population P system; distribution system reconfiguration

1 Introduction

According to the research development of interactions on membrane computing
and evolutionary computation, two kinds of research topics, membrane-inspired
evolutionary algorithms (MIEAs) and automated design of membrane computing
models (ADMCMs), have been reported in the literature.

278 G. Zhang et al.

The automated synthesis of some types of membrane computing models or of
a high level specification of them is envisaged to be obtained by applying vari-
ous heuristic search methods. ADMCMs aim to circumvent the programmability
issue of membrane-based models for complex systems. In this direction, Suzuki
and Tanaka made the first attempts [20,21] to introduce a genetic method to the
Artificial Cell Systems (ACS) via a P system model called Abstract Rewriting Sys-
tems on Multisets [19, 22], a rewriting Membrane Computing model where the P
systems have only one membrane. More recently, new attempts of using evolution-
ary algorithms to evolve P systems have been presented (see, e.g. [3, 5, 12, 24]).
In [3], a nested evolutionary algorithm was used to tuning parameters of P system
models. The automatic design of P systems for fulfilling an specific task was first
discussed in [5], where genetic algorithms are used for finding simple P systems.
In [5], the membrane structure is settled and the genetic evolution only corre-
sponds to the set of rules. A population of P systems is considered and two genetic
operations, crossover and mutation perform the evolution of the population. This
work was extended from 42 to n2 P systems in [12] by introducing a quantum-
inspired evolutionary algorithm (QIEA), where the set of rules were encoded by
a binary string and evolutionary operations (quantum-inspired gate (Q-gate) up-
date) were performed on genotypic individuals (quantum-inspired bits (Q-bits)),
instead of phenotypic individuals (binary bits) or evolution rules of P systems.
The outstanding advantage of this approach is that the difficulty of designing evo-
lutionary operators in the phenotypic space, such as crossover and mutation ones
is effectively avoided. In [24], the design of P systems for generating languages and
fitness functions were discussed.

A MIEA concentrates on generating new approximate algorithms for solving
various optimization problems by using the hierarchical or network structures of
membranes and rules of membrane systems, and the concepts and principles of
meta-heuristic search methodologies [33, 34]. In [11, 17], a cell-like membrane sys-
tem with a nested membrane structure (NMS) was used to combine with simulated
annealing and genetic algorithms to solve traveling salesman problems and con-
troller design problems for a marine diesel engine. In [31], a QIEA based on P
systems (QEPS) was proposed by incorporating a one-level membrane structure
(OLMS) with a QIEA. Knapsack problems were applied to verify that QEPS is
superior to its counterpart method and OLMS has an advantage over NMS. The
use of QEPS to solve sixty-five satisfiability problems with different complexities
was discussed in [33]. In [34], the QEPS performance was improved by introducing
a local search and the modified QEPS applied to analyze sixteen radar emitter sig-
nals. In [4,29], OLMS was integrated with differential evolution approaches and ant
colony optimization to solve numeric optimization and travelling salesman prob-
lems. In [35], the use of a cell-like membrane system with active membranes to
design a MIEA was designed for solving for combinatorial optimization problems.
In [27], a MIEA was presented to solve the DNA sequence design problem, which
has been proved to be NP-hard. In the above MIEAs, heuristic search methods,
such as genetic algorithms, QIEA, differential evolution and ant colony optimiza-

A MIEA with a Population P System and its Application 279

tion, were considered as an independent subalgorithm inside each membrane. This
idea was extended by the proposal of a membrane algorithm with quantum-inspired
subalgorithm (MAQIS) in [30], where each membrane contains one component of
the approach and all the components inside membranes cooperate together to
produce offspring in a single evolutionary generation. The effectiveness of MAQIS
was tested on knapsack problems and image sparse decomposition problems. It is
worth pointing out that the analysis of the dynamic behavior of MIEAs in the
process of evolution with respect to population diversity and convergence showed
that MIEAs have better capabilities to balance exploration and exploitation than
their corresponding optimization algorithms used [32, 36]. Until now MIEAs have
been studied in conjunction with cell-like membrane systems with fixed membrane
structures and by principally considering an evolutionary computing approach as
a subalgorithm put inside a membrane. Further research topics might include cell-
like membrane systems with active membranes, tissue-like membrane systems and
population membrane systems for exploring more real-world applications of mem-
brane computing.

In spite of the biological inspiration of membrane computing and evolutionary
computation, in the literature there are only a few examples of papers bridging
them. We continue to push this work forward. The main motivation of this work
is to use a population membrane system to design a MIEA for distribution system
reconfiguration. The algorithm called PSMA is designed by appropriately consider-
ing a population P system and three variants of QIEAs, where the communications
between cells are performed at the level of genes, instead of the level of individuals
reported in the existing membrane algorithms in the literature. This is the first
attempt to apply a population P system to design an approximate optimization
approach. Knapsack problems and distribution system reconfiguration are applied
to test the effectiveness and the application of PSMA, respectively. Experimental
results show that PSMA can obtain better solutions that four types of QIEAs and
QEPS (a MIEA reported in [31]) and is competitive to five types of optimiza-
tion algorithms for solving distribution system reconfiguration problems in power
systems.

This paper is organized as follows. Section 2 introduces briefly QIEA and pop-
ulation P systems, and then describes PSMA in detail. Section 3 presents exper-
iments conducted on knapsack problems for testing the PSMA performance. The
application of PSMA to distribution system reconfiguration is discussed in Section
4. Concluding remarks follow in Section 5.

2 PSMA

PSMA uses the network framework of a population P system to organize the
objects consisting of quantum-inspired bits (Q-bits) and classical bits, and rules
made up of several quantum-inspired gate (Q-gate) evolutionary rules like in QIEA
and evolution rules like in membrane systems. To clearly and concisely describe

280 G. Zhang et al.

PSMA, we first give brief introductions on QIEAs and population P systems, and
then turn to a detailed presentation of the introduced MIEA.

2.1 QIEA

Inspired by concepts and principles of quantum computing such as quantum bits,
quantum gates and a probabilistic observation, Han and Kim [9] proposed a new
evolutionary algorithm, QIEA, for a classical computer instead of quantum one.
In QIEA, a Q-bit representation is applied to describe individuals of a popula-
tion; a Q-gate is introduced to generate the individuals at the next generation;
a probabilistic observation is employed to link Q-bit representation with binary
solutions [28]. A Q-bit is defined by a pair of numbers (α, β) represented as [α β]

T
,

where |α|2 and |β|2 are probabilities that the observation of the Q-bit will render a
‘0’ or ‘1’ state and ξ = arctan(β/α) is the phase of the Q-bit [9,28]. Normalization
requires that |α|2 + |β|2 = 1. The evolution of QIEA depends on the operation
of Q-gates on Q-bit individuals. The basic pseudocode algorithm for a QIEA is
shown in Fig. 1 and a brief description for each step is as follows (here we just
list the outline of QIEA algorithm and details will be provided in the algorithm
description of PSMA (Section 2.3).).

 Begin

1t

(i) Initialize Q(t)

While (not termination condition) do

(ii) Make P(t) by observing the states of Q(t)

(iii) Evaluate P(t)

(iv) Update Q(t) using Q-gates

(v) Store the best solutions among P(t)

1t t !

End

End

Fig. 1. Pseudocode algorithm for a QIEA [9,28]

(i) In the “initialize Q(t)” step, a population Q(t) with n Q-bit individuals is
generated, Q(t)={qt

1, q
t
2, · · · , qt

n}, at generation t, where qt
i(i = 1, 2, · · · , n)

is an arbitrary individual in Q(t) and denoted as

qt
i =

[
αt
i1|αt

i2| · · · |αt
il

βt
i1|βt

i2| · · · |βt
il

]
(1)

where l is the number of Q-bits, i.e., the string length of the Q-bit individual.

A MIEA with a Population P System and its Application 281

(ii) By observing the states Q(t), binary solutions in P (t), where P (t) =
{xt

1,x
t
2, · · · ,xt

n} are produced at step t. According to the current proba-

bility, either
∣∣αt

ij

∣∣2 or
∣∣βt

ij

∣∣2 of qt
i , i = 1, 2, · · · , n, j = 1, 2, · · · , l, a binary

bit 0 or 1 is generated. Thus, l binary bits can construct a binary solution
xt
i(i = 1, 2, · · · , n). More details can be referred to Step 2 Observation in the

algorithm description of PSMA (Section 2.3).
(iii) Binary solutions xt

j(j = 1, 2, · · · , n) are evaluated and assigned fitness values
with respect to a criterion.

(iv) In this step, Q-bit individuals in Q(t) are updated by applying the current Q-
gates. The details will be expounded in Step 5 Q-gate update in the algorithm
description of PSMA (Section 2.3).

(v) The best solutions among P (t) are selected and stored.

2.2 Population P Systems

A population P system is a special kind of tissue P systems except for two im-
portant differences that the structure can be dynamically changed by using bond
making rules and cells are allowed to communicate indirectly by means of the
environment [2].

A population P system with degree n is formally defined as follows [2]

P = (V, γ, α, ωe, C1, C2, . . . , Cn, co),

where

(i) V is a finite alphabet of symbols called objects;
(ii) γ = ({1, 2, . . . , n}, E), with E ⊆ {{i, j}|1 ≤ i ̸= j ≤ n}, is a finite undirected

graph;
(iii) α is a finite set of bond making rules (i, x1;x2, j), with x1, x2 ∈ V ∗, and

1 ≤ i ̸= j ≤ n;
(iv) ωe ∈ V ∗ is a finite multiset of objects initially assigned to the environment;
(v) Ci = (ωi, Si, Ri), for each 1 ≤ i ≤ n, with

(a) ωi ∈ V ∗ a finite multiset of objects,
(b) Si is a finite set of communication rules; each rule has one of the following

forms: (a; b, in), (a; b, enter), (b, exit), for a ∈ V
∪
{λ}, b ∈ V ,

(c) Ri is a finite set of transformation rules of the form a → y, for a ∈ V ,
and y ∈ V +;

(vi) co is the (label of the) output cell, 1 ≤ co ≤ n.

A population P system P is defined as a collection of n cells where each cell
Ci corresponds in a one-to-one manner to a node i in a finite undirected graph γ,
which defines the initial structure of the system. Cells are allowed to communicate
alongside the edges of the graph γ, which are unordered pairs of the form {(i, j)},
with 1 ≤ i ̸= j ≤ n. The cells Ci, 1 ≤ i ≤ n, are associated in a one-to-one manner
with the set of nodes {1, 2, . . . , n}. Each cell Ci gets assigned a finite multiset of
objects ωi, a finite set of communication rules Si, and a finite set of transformation

282 G. Zhang et al.

rules Ri. Each set Ri contains rules of the form x → y that allow cell i to consume
a multiset x in order to produce a new multiset y inside cell i. Communication
rules in Si of the form (a; b, in) are instead used by cell i to receive objects from
its neighboring cells if the object a is placed in the cell i. The rules of the forms
(a; b, enter) mean that objects from the environment can enter the cell i if an
object a is present in it. The rules of the forms (b, exit) allow the cell i to release
an object b in the environment.

Cell capability of moving objects alongside the edges of the graph is influenced
by particular bond making rules in α that allow cells to form new bonds. A bond
making rule (i, x1;x2, j) specifies that, in the presence of a multiset x1 in the cell
i and a multiset x2 inside the cell j, a new bond can be created between the two
cells. This means that a new edge {i, j} can be added to the graph that currently
defines the structure of the system. Thus the structure of a population P system
can be dynamically changed in the process of evolution of the system.

A step of a computation in a population P system P is defined as being per-
formed in two separate stages: the content of the cells is firstly modified by ap-
plying the communication rules in Si, and the transformation rules in Ri, for all
1 ≤ i ≤ n; the structure of the system is then modified by using the bond mak-
ing rules in α. A successful computation in P is defined as a finite sequence of
configurations from processing the initial multisets ωi to the final state where the
content of the cells cannot be modified anymore by means of some communication
rules and transformation rules after a last bond making stage. The result is given
by the number of objects that are placed inside the output cell co in the final
configuration.

2.3 PSMA

In this subsection, we design PSMA by applying the dynamic network structure of
a population P system with three cells and three representative variants of QIEAs
that have good performance in terms of the investigations in [9, 10, 28, 37, 38].
Specifically, three QIEAs, QIEA02 [9], QIEA04 [10] and QIEA07 [38], are placed
inside three cells of the population P system in a common environment. The ob-
jects consist of Q-bits and classical bits. The rules are composed of observation and
Q-gate update rules of QIEAs, transformation rules in the population P system,
evaluation rules for candidate solutions, communication rules for exchanging infor-
mation between the three cells and bond making rules for modifying the structure
of the system. Q-bits, organized as a Q-bit individual which is a special string of
Q-bits, are processed as multisets of objects. Classical bits, which are obtained
from their corresponding Q-bits by applying a probabilistic observation process,
are arranged as a binary string and are treated with also as multisets of objects.
Inside each cell, the processes of initialization, observation, evaluation and Q-gate
update processes for producing offspring are performed independently. Information
exchange between individuals are executed through communications between cells
at the level of genes. In PSMA, a binary string corresponds a candidate solution

A MIEA with a Population P System and its Application 283

of a problem. The set of rules are responsible for evolving the system. The frame-
work of the population P system used in PSMA is shown in Fig. 2, where ovals
represent the cells and dashed lines indicate the links. The population P system
can be described as the following construct

P = (V, γ, α, ωe, C1, C2, C3, ce),

where

(i) V is a finite alphabet that consists of all possible Q-bits and classical bits
(objects)(It is worth noting that the alphabet used in this paper is finite
because the number of possible Q-bits equals the product of the number of
Q-bit individuals and the length of a Q-bit individual);

(ii) γ = ({1, 2, 3}, E), with E = {(1, 2), (1, 3), (2, 3)}, is a finite undirected graph;
(iii) α is a finite set of bond making rules (i, λ;λ, j) or ∅ if no new bond can be

added;
(iv) ωe = λ;
(v) Ci = (ωi, Si, Ri), for each 1 ≤ i ≤ 3, with

(a) ωi = q1q2 · · · qni , where qi, i = 1, 2, · · · , ni, is a Q-bit individual as
shown in (1); ni is the number of individuals in cell Ci and satisfies∑

3
ini = N , where N is the total number of individuals in this system;

(b) Si is a finite set of communication rules; each rule has one of the following
forms: (λ; b, in), (b, exit), for b ∈ V ,

(c) Ri is a finite set of transformation rules of the form a → y, for a ∈ V ,
and y ∈ V +;

(vi) ce means that the result is collected in the environment.

C1
 !
" # $

"#% # &'

"

(QIEA02)

 &'(!
" # &'($

" #% # &'(&)

"

(QIEA04)

 &'(&)(!
" # &'(&)($

" #% # &
"

(QIEA07)

C2 C3

Fig. 2. The framework of the population P system involved in this paper

To clearly understand PSMA, in what follows we describe its algorithm step
by step.

Step 1 Initialization: a membrane structure of a population P system with
three cells in a common environment is created. An initial population with N
individuals is generated. Each individual is composed of a certain number of Q-
bits. The N individuals are randomly scattered across the three cells so that ni > 1
and

∑
3
ini = N , i = 1, 2, 3.

284 G. Zhang et al.

Step 2 Observation: a probabilistic observation process occurring in step (ii)
of QIEA is applied to establish a link between genotypes and phenotypes, i.e.,
between Q-bits and classical bits. To be specific, as for the Q-bit [α β]

T
, if a

random number r between 0 and 1 is less than |β|2, i.e., r <|β|2, the observed
classical bit equals 1, otherwise, it is 0. Thus, given a Q-bit individual, we can get
a corresponding binary solution. The observation process is shown in Fig. 3

Begin

If
2

[0,1)random

Then 0x

Else 1x

End

Fig. 3. Observation process in PSMA

Step 3 Evaluation: a specific criterion with respect to a problem is used to
evaluate all the binary solutions obtained in Step 2. This step is identical with
step (iii) of QIEA.

Step 4 Communication: Suppose that Pk represents the binary individuals
obtained in Step 2 inside cell Ck, Pk = {xk

1,x
k
2, · · · ,xk

N}, where k = 1, 2, 3;
xk
i=bki1b

k
i2 · · · bkim, where bkij is a gene of xk

i and m is the number of genes in an

individual; the fitness of the individual xk
i is f(xk

i). In this step, as for each gene bkij
in the binary individual xk

i , a random number rc following a uniform distribution in
the range [0, 1] is produced; if rc < pc, we randomly choose two binary individuals,
xk1
c1

and xk2
c2
, from the whole population (N individuals) except for the individual

xk
i , where k1 and k2 are the labels of cells, k1,k2=1,2,3; pc is a parameter denoting

a communication rate and will be discussed in the next section. If f(xk1
c1
) is better

than f(xk2
c2
), we use the gene bk1

c1j
to replace bkij , otherwise, we use the gene bk2

c2j

to replace bkij . Thus we can obtain another binary individual x̄k
i corresponding to

xk
i . In the process of replacement, the values of k1, k2 and k decide what structure

will be created and used to perform the communication for information exchange
between cells k and k1 or k2. As for the values of k1, k2 and k, there are three
cases: (1) k1 = k2 = k means that no communication will be performed, i.e., the
dashed lines in Fig. 2 do not work and the three cells are separate; (2) k1 = k2 ̸= k
or k1 = k ̸= k2 or k1 ̸= k2 = k means that communication is performed between
two cells, i.e., only one of the dashed lines in Fig. 2 works and the communication
rule (λ; b, in) is performed between the two cells having the channel that works; (3)
k1 ̸= k2 ̸= k means that the three dashed lines in Fig. 2 work and the three cells
communicate with each other. Thus the communication rule (λ; b, in) is performed
between each pair of cells.

A MIEA with a Population P System and its Application 285

Step 5 Q-gate update: transformation rules of the form a → y is utilized to
evolve the objects in each of the three cells. The rules considered here are applied
according to evolutionary mechanisms of QIEAs, instead of the semantics of P
systems. The Q-gate update procedure[

αt+1

βt+1

]
= G(θ)

[
αt

βt

]
=

[
cos θ − sin θ
sin θ cos θ

] [
αt

βt

]
(2)

is used to transform the current Q-bit [αt βt]
T

into the corresponding Q-bit[
αt+1 βt+1

]T
at generation t+1. The rotation angle θ in the Q-gate G(θ) in dif-

ferent cells has different definitions.
To be specific, in cell 1, the rotation angle is defined as θ = s(α, β) ·∆θ, where

∆θ is the value of θ determining the convergence speed of the algorithm and
s(α, β) is the sign of θ deciding the search direction. The approach for looking up
the rotation angle θ in [9] is shown in Tables 1, where f(.) is the fitness function;
α and β are the probabilities of the current Q-bit.

Table 1. Q-gate update approach in cell 1, where f(.) is the fitness function, ∆θ and
s(α, β) are the value and the sign of θ, x and b are the bits of the binary individuals x1

i

and x̄1
i , respectively [9]

x b f(x) ≥ f(b) ∆θ
s(α, β)

α = 0 β = 0

0 0 False 0 – –

0 0 True 0 – –

0 1 False 0.01π +1 -1

0 1 True 0 – –

1 0 False 0.01π +1 -1

1 0 True 0 – –

1 1 False 0 – –

1 1 True 0 – –

In cell 2, the Q-gate update procedure in (2) and the approach in Table
1 are firstly used. Then an additional process is applied to modify the Q-bit[
αt+1 βt+1

]T
. The modification method is as follows.

(i) If |αt+1|2 ≤ ϵ and |βt+1|2 ≥ 1− ϵ,
[
αt+1 βt+1

]T
=

[√
ϵ
√
1− ϵ

]T
;

(ii) If |αt+1|2 ≥ 1− ϵ and |βt+1|2 ≤ ϵ,
[
αt+1 βt+1

]T
=

[√
1− ϵ

√
ϵ
]T

.

According to the investigation in [10], the parameter ϵ is usually assigned as 0.01.
In cell 3, the approach for choosing the quantum rotation angle was defined by

using the ratio of the probabilities of Q-bits [38]. The rotation angle θ is defined
as

286 G. Zhang et al.

θ = θ0s(α, β)f(γα, γβ) (3)

where α and β represent the probabilities of a Q-bit; θ0 is an initial rotation angle
and is usually set to 0.05π; s(α, β) is a function determining the search direction
of the algorithm; f(γα, γβ) is a function of γα or γβ , where γα = |β|/α, γβ = 1/γα.
The values of s(α, β) and f(γα, γβ) can be obtained in Table 2.

Table 2. Q-gate update approach in cell 3, where f(.) is the fitness function, x and b
are the bits of the binary individuals x1

i and x̄1
i , respectively [38]

x b f(x) ≥ f(b)
s(α, β)

f(γα, γβ)
αβ ≥ 0 αβ < 0 αβ = 0

0 0 false -1 +1 ±1 exp(−γβ)

0 0 true -1 +1 ±1 exp(−γβ)

0 1 false +1 -1 ±1 exp(−γα)

0 1 true -1 +1 ±1 exp(−γβ)

1 0 false -1 +1 ±1 exp(−γβ)

1 0 true +1 -1 ±1 exp(−γα)

1 1 false +1 -1 ±1 exp(−γα)

1 1 true +1 -1 ±1 exp(−γα)

Step 6 Halting : the algorithm stops when a prescribed number of evolutionary
generations is attained.

Step 7 Output : the communication rule (b, exit) is responsible for sending the
best solutions out to the environment at the end of the computation. To be spe-
cific, each cell send the best solution inside it out to the environment at the end of
the computation; thus there are three solutions coming from three cells in the envi-
ronment; through a comparison, we collect the best one among the three solutions
as the final solution of the computation.

3 Experiments

In this section, a well-known NP-hard combinatorial optimization problem, knap-
sack problem, is used to test the PSMA performance. The knapsack problem can
be described as selecting from among various items those items that are most prof-
itable, given that the knapsack has limited capacity [7, 9]. The knapsack problem
is to select a subset from the given number of items so as to maximize the profit
f(x):

f(x) =

k∑
i=1

pixi (4)

A MIEA with a Population P System and its Application 287

subject to
k∑

i=1

wixi ≤ C (5)

where k is the number of items; pi is the profit of the i-th item; wi is the weight
of the i-th item; C is the capacity of the given knapsack; and xi is 0 or 1.

In the following experiments, strongly correlated sets of unsorted data are used

ωi = uniformly random[1, 50]

pi = wi + 25

and the average knapsack capacity C is applied.

C =
1

2

k∑
i=1

wi (6)

First of all, we use five knapsack problems with respective 600, 1200, 1600,
1800, 2400 and 3000 to discuss the choice of the parameter pc in PSMA. The
population size N=20. The the numbers, 20000, 30000, 40000, 60000 and 60000,
of function evaluations are used as the stopping conditions for knapsack problems
with 600, 1200, 1600, 1800, 2400 and 3000, respectively. Let pc vary from 0 to
1 with interval 0.05, i.e., there are 21 cases. In the experiment, we perform 30
independent runs for each of 21 values of pc of each knapsack problem. We record
the best, mean and worst solutions over 30 runs and the elapsed time per run.
Experimental results are shown in Fig. 4. It can be seen from these results that
the parameter pc could be assigned as the value ranged between 0.9 and 0.95 in
terms of the quality of solutions and the elapsed time. Thus we set pc to 0.9 in the
following experiments.

To test the effectiveness of PSMA, Fifteen knapsack problems that have the
items varied from 200 to 3000 items with interval 200 are used to conduct com-
parative experiments. Benchmark algorithms are considered to be composed of
four types of QIEAs and the membrane algorithm QEPS in [31]. The four QIEAs
include QIEA02 in [9], QIEA04 in [10], QIEA07 in [38] and QIEA08 [25]. 20 in-
dividuals are used in the six algorithms and 30 independent runs are performed
for each of the 15 cases of each algorithm. The stopping condition for the six
algorithms is set as follows: 20000 function evaluations for the first 4 knapsack
problems; 30000 function evaluations for the 3 knapsack problems with 1000, 1200
and 1400; 40000 function evaluations for the 4 knapsack problems with 1600, 1800,
2000 and 2200; 60000 function evaluations for the last 4 knapsack problems. The
best, mean and worst solutions over 30 independent runs and the elapsed time per
run are recorded and listed in Tables 3 and 4.

As shown in Tables 3 and 4, we can conclude that PSMA is superior to QIEA02,
QIEA04, QIEA07, QIEA08 and QEPS in terms of the the quality of best, mean
and worst solutions and the elapsed time. To show that PSMA really outperforms

288 G. Zhang et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.7

1.72

1.74

1.76

1.78

1.8
x 10

4

p
c

P
ro

fit

Best
Mean
Worst

(a) Items=600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.35

3.4

3.45

3.5

3.55

3.6
x 10

4

p
c

P
ro

fit

Best
Mean
Worst

(b) Items=1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.05

5.1

5.15

5.2

5.25

5.3

5.35
x 10

4

p
c

P
ro

fit

Best
Mean
Worst

(c) Items=1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.6

6.7

6.8

6.9

7

7.1
x 10

4

p
c

P
ro

fit

Best
Mean
Worst

(d) Items=2400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8.2

8.3

8.4

8.5

8.6

8.7

8.8
x 10

4

p
c

P
ro

fit

Best
Mean
Worst

(e) Items=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

p
c

E
la

ps
ed

 ti
m

e(
S

ec
.)

NoI=600

NoI=1200

NoI=1800

NoI=2400

NoI=3000

(f) Elapsed time per run (Sec.)

Fig. 4. Experimental results for pc

A MIEA with a Population P System and its Application 289

Table 3. Experimental results of the first 8 knapsack problems. Best, Mean, Worst and
Time represent the best, mean and worst solutions over 30 independent runs and the
elapsed time per run, respectively (to be continued)

items 200 400 600 800 1000 1200 1400 1600

QIEA02

Best 5885 11650 17403 22940 28673 34399 39560 45277

Mean 5786 11553 17173 22659 28333 33984 39149 44864

Worst 5359 11396 16851 22010 27954 33424 38488 44423

Time 24 48 72 96 182 221 259 413

QIEA04

Best 5749 11272 16561 21684 27024 32429 37329 42892

Mean 5674 11081 16327 21499 26812 32210 37134 42596

Worst 5627 10666 15680 20809 26524 31213 36028 42096

Time 29 57 89 115 225 272 320 547

QIEA07

Best 5935 11850 17749 23390 29204 35099 40490 46403

Mean 5893 11760 17627 23286 29080 34949 40267 46184

Worst 5859 11700 17527 23139 28929 34822 40114 46002

Time 26 52 78 104 197 249 402 420

QIEA08

Best 5456 10699 15734 20956 26073 31419 36384 41750

Mean 5367 10615 15659 20747 25901 31244 36081 41499

Worst 5325 10536 15591 20634 25775 31071 35942 41387

Time 29 58 92 126 249 309 376 599

QEPS

Best 5959 11873 17702 23403 29531 35441 40886 47242

Mean 5945 11837 17647 23257 29373 35292 40722 47018

Worst 5909 11778 17575 23109 29198 35061 40364 46672

Time 22 44 70 92 178 215 246 398

PSMA

Best 5984 11975 18000 23859 29822 35845 41412 47470

Mean 5963 11965 17945 23782 29750 35782 41301 47365

Worst 5959 11946 17902 23729 29687 35727 41214 47300

Time 32 64 97 129 240 288 337 512

the other five algorithms, we go further to employ statistical techniques to analyze
the behavior of the six algorithms over the 15 knapsack problems. Both parametric
and non-parametric methods are considered. The parametric statistical analysis,
also called single-problem analysis [6], is used to analyze whether there is a sig-
nificant difference over one optimization problem between two algorithms. The
non-parametric statistical test, also called multiple-problem analysis [6], is applied
to compare different algorithms whose results represent average values for each
problem. In Tables 5, a 95% confidence t-test is applied to check whether the mean
solutions of the two pairs of algorithms, PSMA vs. QIEA02, QIEA04, QIEA07,
QIEA08 and QEPS, are significantly different or not. Two non-parametric tests,
Wilcoxon’s and Friedman’s tests, are employed to check whether there are signifi-

290 G. Zhang et al.

Table 4. Experimental results of the last 7 knapsack problems. Best, Mean, Worst and
Time represent the best, mean and worst solutions over 30 independent runs and the
elapsed time per run, respectively (continued)

items 1800 2000 2200 2400 2600 2800 3000

QIEA02

Best 50784 56453 61645 66683 72546 77511 83294

Mean 50163 55879 61175 65984 71992 76734 82608

Worst 49506 55129 59820 64981 71497 75924 82020

Time 475 538 619 1056 1176 1310 1454

QIEA04

Best 47920 53276 58723 62952 68858 73355 79068

Mean 47513 53018 58278 62523 68448 72938 78548

Worst 46444 51889 56942 62250 66910 71360 76743

Time 569 636 708 1268 1356 1448 1560

QIEA07

Best 51882 57579 63199 68351 74531 79471 85343

Mean 51669 57414 62985 68093 74237 79215 85073

Worst 51459 57277 62768 67932 73998 78685 84753

Time 475 530 587 964 1049 1133 1222

QIEA08

Best 46507 52127 57221 61294 67228 71600 77142

Mean 46293 51816 57008 61063 66950 71308 76867

Worst 46155 51618 56811 60894 66817 71121 76709

Time 702 815 983 1706 1950 2230 2515

QEPS

Best 52772 58775 64513 70402 76621 81918 88207

Mean 52600 58543 64230 70015 76245 81486 87657

Worst 52395 58065 63680 69726 75296 80683 87044

Time 464 523 605 1051 1170 1289 1441

PSMA

Best 53201 59091 64955 70244 76569 81806 87899

Mean 53071 58968 64785 70134 76442 81664 87740

Worst 52982 58819 64669 70024 76311 81505 87565

Time 576 643 709 1156 1253 1352 1451

cant differences between the two pairs of algorithms, PSMA vs. QIEA02, QIEA04,
QIEA07, QIEA08 and QEPS. The level of significance considered is 0.05. The re-
sults of Wilcoxon’s and Friedman’s tests are shown in Table 6. In Tables 5 and
6, The symbols “+” and “–” represent significant difference and no significant
difference, respectively.

As shown in Tables 5 and 6, the t-test results demonstrate that there are signif-
icant differences between the two pairs of algorithms, PSMA vs. QIEA02, QIEA04,
QIEA07, QIEA08 and QEPS. The p-values of the Wilcoxon’s and Friedman’s tests
in Table 6 are far smaller than the level of significance 0.05, which indicates that
PSMA really outperforms QIEA02, QIEA04, QIEA07, QIEA08 and QEPS.

A MIEA with a Population P System and its Application 291

Table 5. The results of t-test for the algorithms in Tables 3 and 4. The symbols “+”
and “–” represent significant difference and no significant difference, respectively

PSMA vs. QIEA02 QIEA04 QIEA07 QIEA08 QEPS

200 items 3.41e-14 (+) 4.57e-49 (+) 3.12e-24 (+) 1.41e-65 (+) 7.83e-08 (+)

400 items 6.71e-40 (+) 2.81e-49 (+) 9.19e-38 (+) 1.93e-81 (+) 1.81e-33 (+)

600 items 7.30e-36 (+) 6.41e-53 (+) 7.29e-35 (+) 1.99e-92 (+) 1.72e-43 (+)

800 items 4.39e-38 (+) 1.66e-60 (+) 7.09e-47 (+) 6.87e-83 (+) 1.24e-44 (+)

1000 items 5.93e-44 (+) 3.49e-77 (+) 1.71e-48 (+) 4.70e-94 (+) 1.77e-28 (+)

1200 items 1.67e-43 (+) 8.17e-64 (+) 7.48e-50 (+) 5.28e-89 (+) 4.92e-38 (+)

1400 items 5.58e-49 (+) 6.68e-66 (+) 3.65e-51 (+) 1.06e-92 (+) 8.74e-33 (+)

1600 items 4.75e-54 (+) 6.57e-82 (+) 6.17e-53 (+) 2.12e-98 (+) 4.43e-21 (+)

1800 items 1.43e-48 (+) 1.32e-71 (+) 1.61e-59 (+) 3.02e-98 (+) 1.06e-32 (+)

2000 items 3.98e-50 (+) 5.76e-73 (+) 6.57e-63 (+) 1.23e-94 (+) 3.71e-19 (+)

2200 items 9.07e-51 (+) 2.02e-69 (+) 6.06e-59 (+) 4.94e-97 (+) 7.45e-22 (+)

2400 items 9.34e-50 (+) 8.21e-88 (+) 6.78e-63 (+) 7.97e-101 (+) 2.70e-03 (+)

2600 items 6.98e-62 (+) 3.20e-72 (+) 2.24e-62 (+) 4.07e-101 (+) 6.71e-04 (+)

2800 items 8.78e-59 (+) 3.91e-73 (+) 1.45e-58 (+) 7.47e-102 (+) 1.60e-03 (+)

3000 items 5.86e-64 (+) 9.18e-73 (+) 1.36e-64 (+) 1.08e-102 (+) 1.16e-01 (–)

Table 6. The p-values of Wilcoxon’s and Friedman’s tests for the algorithms in Tables
3 and 4. The symbol + represents significant difference

PSMA vs. QIEA02 QIEA04 QIEA07 QIEA08 QEPS

Wilcoxon 6.1035e-5(+) 6.1035e-5(+) 6.1035e-5(+) 6.1035e-5(+) 6.1035e-5(+)

Friedman 0.0142(+) 0.0142 (+) 0.0142 (+) 0.0142 (+) 0.0142 (+)

4 Distribution System Reconfiguration

Power network reconfiguration is an important process in the improvement of
operating conditions of a power system and in planning studies, service restoration
and distribution automation when remote-controlled switches are employed [1,
15]. The optimal distribution system reconfiguration problem is to minimize the
power loss of the system by changing the topology of distribution systems through
altering the open/closed status of sectionalizing switches. Because there are many
candidate-switching combinations in a distribution system, the distribution system
reconfiguration is a complex combinatorial problem with a large number of integer
and continuous variables and various constraints such as power flow equations,
upper and lower bounds of nodal voltages, upper and lower bounds of line currents,
feasible conditions in terms of network topology. As usual the problem can be
formulated as a minimization cost function f [1, 23], i.e.,

292 G. Zhang et al.

minf =

L∑
i=1

ri
P 2
i +Q2

i

V 2
i

(7)

Subject to
g(x) = 0 (8)

Vmin < Vn < Vmax (9)

Imin
i < Ii < Imax

i (10)

det(A) = 1 or− 1(for radial systems) (11)

det(A) = 0(for not radial systems) (12)

where
f is the objective function (kW);
L is the number of branches;
Pi is the active power at sending end of branch i;
Qi is the reactive power at sending end of branch i;
Vn is the voltage at node n;
Ii is the line current at branch i;
g(x) is the power flow equations;
Vmin and Vmax are the lower and upper voltage limits, respectively;
Imin
i and Imax

i are the lower and upper current limits, respectively;
A is the bus incidence matrix;
ri is the resistance of branch i.
The PSMA described above is used to solve the IEEE 33-bus and PG&E 69-bus

distribution system reconfiguration problems. The IEEE 33-bus and PG&E 69-bus
systems are shown in Fig. 5 and Fig. 6, respectively. Both of them are widely used
as examples to test the performance of various optimization approaches. As shown
in Fig. 5, the IEEE 33-bus system has 33 buses, 37 branches and 5 tie-lines. The
normally open switches are 33, 34, 35, 36 and 37. The initial real power losses
(before reconfiguration) are 202.68 kW. The PG&E 69-bus systems consists of 69
buses, 68 sectionalizing switches and 5 tie switches. The normally open switches
are 69, 70, 71, 72 and 73. The initial real power losses (before reconfiguration) are
226.4419 kW. The algorithm for solving the distribution system reconfiguration
problem by using PSMA is the same as the description in Section 2.3 except
that Step 3 Evaluation considers (7) as the candidate solution criterion. In the
experiment, PSMA uses 10 individuals as a population and 0.9 as the value of pc.
After 100 evolutionary generations, we obtain the optimal result reported in the
literature. The experimental result of the IEEE 33-bus system is listed in Table 7,
where results obtained by five optimization approaches, a heuristic approach [15],
SA+TS [13], MTS [16], PSO [1] and ACO [23], reported in the recent literature,
are also provided to be as a comparison. The experimental result from the PG&E
69-bus system is shown in Table 8, where ACS [8], HPSO [14], VSHDE [18] and
ACO [23] are considered as benchmark optimization approaches.

A MIEA with a Population P System and its Application 293

Fig. 5. IEEE 33-bus system

Fig. 6. PG&E 69-bus system

Table 7 shows that PSMA is competitive to the nine optimization approaches,
a heuristic approach, SA+TS, MTS, PSO and ACO, due to the optimal solution
obtained. The experimental results in Table 8 show that PSMA achieves lower real
power losses and higher minimum node voltage than ACS, HPSO, VSHDE and
IIGA. These results indicate that the better solution PSMA can obtain, the more
complex the power system is.

294 G. Zhang et al.

Table 7. Results provided by PSMA for the IEEE 33-bus test system. MNV represents
minimum node voltage

Methods Optimal configuration Real power loss (kW) MNV (pu)

Before reconfiguration 33, 34, 35, 36, 37 202.68 0.9378

Heuristic approach [15] 7, 9, 14, 32, 37 139.55 0.9378

SA + TS [13] 7, 9, 14, 32, 37 139.55 0.9378

MTS [16] 7, 9, 14, 32, 37 139.55 0.9378

PSO [1] 7, 9, 14, 32, 37 139.55 0.9378

ACO [23] 7, 9, 14, 32, 37 139.55 0.9378

PSMA 7, 9, 14, 32, 37 139.55 0.9378

Table 8. Results provided by PSMA for the PG&E 69-bus test system. MNV represents
minimum node voltage

Methods Optimal configuration Real power loss (kW) MNV (pu)

Before reconfiguration 69, 70, 71, 72, 73 226.4419 0.9089

ACS [8] 61, 69, 14, 70, 55 99.519 0.943

HPSO [14] 69, 12, 14, 47, 50 99.6704 0.9428

VSHDE [18] 11, 24, 28, 43, 56 99.6252 0.9427

IIGA [26] 69, 14, 70, 47, 50 99.618 0.9427

PSMA 47, 12, 50, 14, 69 99.4944 0.9441

5 Conclusions

This paper is a continuous work on how to appropriately combine membrane com-
puting models and evolutionary algorithms. This is the first attempt to use a pop-
ulation P system to design an approximate optimization algorithm. Extensively
comparative experiments conducted on knapsack problems show that PSMA has
a good performance with respect to the search capability and elapsed time. We
also use PSMA to solve the distribution system reconfiguration problem in the
area of power systems and experimental results are also attractive. Further work
will focus on more and complex distribution system reconfiguration problems.

Acknowledgements

GZ and YQ acknowledges the support by the National Natural Science Foundation
of China (61170016), the Program for New Century Excellent Talents in University
(NCET- 11-0715) and SWJTU supported project (SWJTU12CX008), the Project-
sponsored by SRF for ROCS, SEM, the Scientific and Technological Funds for
Young Scientists of Sichuan (09ZQ026-040), the Fund for Candidates of Provincial
Academic and Technical Leaders of Sichuan and the Fundamental Research Funds

A MIEA with a Population P System and its Application 295

for the Central Universities (SWJTU09ZT10). MAGN acknowledges the support
of the project TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain
and the support of the Project of Excellence with Investigador de Reconocida Vaĺıa
of the Junta de Andalućıa, grant P08-TIC-04200. MG acknowledges the support
of CNCSIS-UE-FISCSU project number PNII-IDEI 643/2008.

References

1. Abdelaziz, A., Mohammed, F., Mekhamer, S., Badr, M.: Distribution systems recon-
figuration using a modified particle swarm optimization algorithm. Electric Power
Systems Research 79(11), 1521–1530 (2009)

2. Bernardini, F., Gheorghe, M.: Population P systems. Journal of Universal Computer
Science 10(5), 509–539 (2004)

3. Cao, H., Romero-Campero, F.J., Heeb, S., Cámara, M., Krasnogor, N.: Evolving cell
models for systems and synthetic biology. Systems and Synthetic Biology 4(1), 55–84
(2010)

4. Cheng, J., Zhang, G., Zeng, X.: A novel membrane algorithm based on differen-
tial evolution for numerical optimization. International Journal of Unconventional
Computing 7(3), 159–183 (2011)

5. Escuela, G., Gutiérrez-Naranjo, M.A.: An application of genetic algorithms to mem-
brane computing. In: Mart́ınez del Amor, M.A., Păun, Gh., Pérez Hurtado, I., Riscos-
Núñez, A. (eds.) Eighth Brainstorming Week on Membrane Computing. pp. 101–108.
Fénix Editora, Sevilla, Spain (2010)

6. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the
CEC’2005 special session on real parameter optimization. Journal of Heuristics 15(6),
617–644 (2009)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

8. Ghorbani, M.A., Hosseinian, S.H., Vahidi B.: Application of ant colony system al-
gorithm to distribution networks reconfiguration for loss reduction. In: Proceedings
of the 11th International Conference on Optimization of Electrical and Electronic
Equipment, pp. 269–273 (2008).

9. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combi-
natorial optimization. IEEE Transactions on Evolutionary Computation 6, 580–593
(2002)

10. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithms with a new termi-
nation criterion, Hϵ gate, and two-phase scheme. IEEE Transactions on Evolutionary
Computation 8(2), 156–169 (2004)

11. Huang, L., Suh, I.H.: Controller design for a marine diesel engine using membrane
computing. International Journal of Innovative Computing, Information and Control
5(4), 899–912 (2009)

12. Huang, X.L., Zhang, G.X., Rong, H.N., Ipate, F.: Evolutionary design of a simple
membrane system. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Ver-
lan, S. (eds.) International Conference on Membrane Computing. Lecture Notes in
Computer Science, vol. 7184, pp. 203–214. Springer (2011)

296 G. Zhang et al.

13. Jeon, Y.J., Kim, J.C.: Application of simulated annealing and tabu search for loss
minimization in distribution systems. International Journal of Electrical Power &
Energy Systems 26(1), 9–18 (2004)

14. Li, Z.K., Chen, X.Y., Yu, K., Sun, Y., Liu, H.M.: A hybrid particle swarm optimiza-
tion approach for distribution network reconfiguration problem. In: Proceedings of
Power and Energy Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, pp. 1–7 (2008).

15. Mart́ın, J.A., Gil, A.J.: A new heuristic approach for distribution systems loss re-
duction. Electric Power Systems Research 78(11), 1953–1958 (2008)

16. Mekhamer, S., Abdelaziz, A., Mohammed, F., Badr, M.: A new intelligent opti-
mization technique for distribution systems reconfiguration. In: Proceedings of the
12th International Middle-East Power System Conference, 2008. MEPCON 2008. pp.
397–401. IEEE (2008)

17. Nishida, T.Y.: Membrane algorithm with brownian subalgorithm and genetic subal-
gorithm. International Journal of Foundations of Computer Science 18(6), 1353–1360
(2007)

18. Nournejad, F., Kazemzade, R., Yazdankhah, A.S.: A multiobjective evolutionary
algorithm for distribution system reconfiguration. In: Proceedings of the 16th Con-
ference on Electrical Power Distribution Networks, pp. 1–7 (2011).

19. Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial life applications of a
class of P systems: Abstract rewriting systems on multisets. In: Calude, C., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) Workshop on Multiset Processing. Lecture Notes
in Computer Science, vol. 2235, pp. 299–346. Springer, Berlin Heidelberg (2001)

20. Suzuki, Y., Tanaka, H.: Chemical evolution among artificial proto-cells. In: Bedau,
M.A., McCaskill, J.S., Rasmussen, S. (eds.) Artificial Life VII: Proceedings of the Sev-
enth International Conference on Artificial Life. pp. 54–63. MIT Press, Cambridge,
MA, USA (2000)

21. Suzuki, Y., Tanaka, H.: Computational living systems based on an abstract chemical
system. In: Proceedings of the 2000 Congress on Evolutionary Computation. pp.
1369–1376. IEEE (2000)

22. Suzuki, Y., Tanaka, H.: Modeling p53 signaling pathways by using multiset process-
ing. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Mem-
brane Computing, pp. 203–214. Natural Computing Series, Springer Berlin Heidel-
berg (2006)

23. Swarnkar, A., Gupta, N., Niazi, K.: Efficient reconfiguration of distribution systems
using ant colony optimization adapted by graph theory. In: Power and Energy Society
General Meeting, 2011 IEEE. pp. 1–8. IEEE (2011)

24. Tudose, C., Lefticaru, R., Ipate, F.: Using genetic algorithms and model checking for
P systems automatic design. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira,
C., Lung, R.I. (eds.) NICSO. Studies in Computational Intelligence, vol. 387, pp.
285–302. Springer (2011)

25. Vlachogiannis, J., Lee, K.: Quantum-inspired evolutionary algorithm for real and
reactive power dispatch. IEEE Transactions on Power Systems 23(4), 1627–1636
(2008)

26. Wang, C.X., Zhao, A.J., Dong, H., Li, Z.J.: An improved immune genetic algorithm
for distribution network reconfiguration. In: Proceedings of International Conference
on Information Management, Innovation Management and Industrial Engineering,
218–223 (2009).

A MIEA with a Population P System and its Application 297

27. Xiao, J.H., Zhang, X.Y., Xu, J.: A membrane evolutionary algorithm for DNA se-
quence design in DNA computing. Chinese Science Bulletin 57(6), 698–706 (2012)

28. Zhang, G.X.: Quantum-inspired evolutionary algorithms: a survey and empirical
study. Journal of Heuristics 17(3), 303–351 (2011)

29. Zhang, G.X., Cheng, J.X., Gheorghe, M.: A membrane-inspired approximate algo-
rithm for traveling salesman problems. Romanian Journal of Information Science and
Technology 14(1), 3–19 (2011)

30. Zhang, G.X., Li, Y.Q., Gheorghe, M.: A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing, Natural Computing DOI:
10.1007/s11047-012-9320-2 (2012)

31. Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm
based on P systems for knapsack problem. Fundamenta Informaticae 87(1), 93–116
(2008)

32. Zhang, G.X., Liu, C.X., Gheorghe, M.: Diversity and convergence analysis of mem-
brane algorithms. In: Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA), 2010 IEEE. pp. 596–603 (2010)

33. Zhang, G.X., Liu, C.X., Gheorghe, M., Ipate, F.: Solving satisfiability problems with
membrane algorithms. In: Fourth International Conference on Bio-Inspired Comput-
ing, 2009. BIC-TA ’09. pp. 29–36 (2009)

34. Zhang, G.X., Liu, C.X., Rong, H.N.: Analyzing radar emitter signals with membrane
algorithms. Mathematical and Computer Modelling 52(11-12), 1997–2010 (2010)

35. Zhang, G.X., Liu, C.X., Gheorghe, M., Ipate, F.: An approximate algorithm using P
systems with active membranes. Mathematics and Computers in Simulation (2012),
Available: http://staffwww.dcs.shef.ac.uk/people/M.Gheorghe/research/

paperlist.html

36. Zhang, G.X., Gheorghe, M., Cheng, J.X.: Dynamic behavior analysis of membrane
algorithms. MATCH Communications in Mathematical and in Computer Chemistry
(2012), Accepted paper.

37. Zhang, H., Zhang, G.X., Rong, H.N., Cheng, J.X.: Comparisons of quantum rotation
gates in quantum-inspired evolutionary algorithms. In: Sixth International Confer-
ence on Natural Computation (ICNC), 2010. pp. 2306–2310. IEEE (2010)

38. Zhang, R., Gao, H.: Improved quantum evolutionary algorithm for combinatorial
optimization problem. In: International Conference on Machine Learning and Cy-
bernetics, 2007. pp. 3501–3505. IEEE (2007)

Author Index

Adorna, Henry N., I.267
Agrigoroiei, Oana, I.216
Alhazov, Artiom, I.1, I.11, I.25, I.35, I.61, I.182, I.185
Aman, Bogdan, I.216
Antoniotti, Marco, I.1, I.11
Ardelean, Ioan, I.69

Beal, Jacob, I.180

Cabarle, Francis George C., I.267
Cavaliere, Matteo, I.204
Csuhaj-Varjú, Erzsébet, I.79, I.187
Ciobanu, Gabriel, I.216
Colomer, Maria Angels, II.27

Dı́az-Pernil, Daniel, I.69, I.91, I.243, II.167
Dragomir, Ciprian, I.153, I.291
Dumitrache, Ioan, I.210, II.207, I.215

Elster, Anne C., II.17

Freund, Rudolf, I.1, I.25, I.111, I.123

Garćıa-Quismondo, Manuel, I.137, I.245, II.27
Gheorghe, Marian, I.79, I.153, I.171, I.213, I.219, I.237, I.291, II.277
Graciani-Dı́az, Carmen, II.27
Gutiérrez-Naranjo, Miguel A., I.69, I.91, I.243, II.167, II.277

Hinze, Thomas, I.230

Ipate, Florentin, I.153, I.213, I.291
Ivanov, Sergiu, I.185, I.251

Jensen, Rune E., II.17
Jiang, Yang, II.75
Juayong, Richelle Ann B., I.267

300 Author Index

Karlin, Ian, II.17
Kelemen, Jozef, II.215
Krithivasan, Kamala, I.193

Lefticaru, Raluca, I.291
Leporati, Alberto, I.1, I.11, I.35, I.198
Li, Bing, II75

Maćıas-Ramos, Luis F., I.245, II.27
Manca, Vincenzo, I.228, I.237, II.1
Marchetti, Luca, II.1
Mart́ınez-del-Amor, Miguel A., I.245, I.267, II.17, II.27
Mauri, Giancarlo, I.1, I.35, I.198
Murphy, Nial, I.200, II.141

Niculescu, Ionuţ Mihai, I.291

Obtu lowicz, Adam, I.240, II.57

Pan, Linqiang, I.191, II.187
Pavel, Ana Brânduşa, I.137, I.210, II.207, II.215
Păun, Andrei, I.233
Păun, Gheorghe, I.171, I.193, I.207, I.210, I.222, II.61, II.187
Peña-Cantillana, Francisco, I.69, I.91
Peng, Hong, II.75, II.235
Pérez-Hurtado, Ignacio, I.111, I.245, II.27
Pérez-Jiménez, Mario J., I.137, I.171, I.202, I.291, II.17, II.27, II.61,

II.75, II.89, II.105, II.141
Porreca, Antonio E., I.35, I.198, II.141

Qin, Yanhui, II.277

Ramanujan, Ajeesh, I.193
Reina-Molina, Raúl, I.69, II.167
Riscos-Núñez, Agust́ın, I.111, I.202, II.27, II.89
Rius-Font, Miquel, I.202, II.89
Rogozhin, Yurii, I.61, I.123, I.185
Romero-Campero, Francisco José, I.237, II.89
Romero-Jiménez, Álvaro, I.202, II.27

Sarchizian, Iris, I.69
Shao, Jie, II.75
Song, Tao, I.191, II.187

Author Index 301

Sośık, Petr, II.105
Stannett, Mike, I.79

Ştefan, Cristian, II.249

Tudose, Cristina, I.291

Ţurcanu, Adrian, I.291

Valencia-Cabrera, Luis, I.245, I.291, II.27
Vasile, Cristian Ioan, I.210, II.207, II.215
Vaszil, György, I.195
Verlan, Sergey, I.111, I.123, II.229

Wang, Jun, II.75, II.235

Yang, Yufan, II.75

Zafiu, Adrian, II.249
Zandron, Claudio, I.35, I.198
Zhang, Gexiang, I.225, II.277

