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1 Introduction

Clock-free P systems were introduced in [7] as a natural extension to transitional
membrane systems. The idea sparks from the observation of the fundamental dif-
ference between how transitional P systems evolve and how processes take place
in biological cells: transitional P systems evolve in a series of crisp evolution steps,
under the control of a global clock, while their biological prototypes have nothing
similar to such a device.

In clock-free P systems, the attempt is made to bridge this difference by dis-
carding any global step synchronisation mechanism. Any rule application lasts
differently and there is no way of knowing when exactly the right-hand side of a
rule will be added to the system.

The clock-free model produces two intuitive impressions. Firstly, it seems to be
much closer to the real-world processes in the cell: the duration of clock-free rules
is not regulated by any external mechanism and is expressed as a real number.
Secondly, the absence of any built-in global step synchronisation seems to be very
specific and quite unwieldy to manage. In fact, one of the best-working approaches
to producing meaningful results with clock-free P systems is cutting down on
parallelism as much as possible: this is how the computational completeness of
these devices is shown in [7].

There are other ways to introduce time into P systems, an example could be
timed P systems (see [1]). In this model, however, the global clock is still present.

In this paper we provide a formal description of the semantics of clock-free P
systems, or rather the more general concept of clock-free networks of cells, and
show how these devices can be modelled in transitional P systems.
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This paper is heavily based on [3]. While we tried to introduce all the rel-
evant concepts in this paper as well, getting acquainted with [3] would still be
recommended.

2 Preliminaries

2.1 Multisets

Given a finite set A, by |A| we understand the number of elements in A.
Let V be a finite alphabet; then V ∗ is the set of all finite strings of a V , and

V + = V ∗ − {λ}, where λ is the empty string. By N we denote the set of all
non-negative integers, by Nk – the set of all vectors of non-negative integers.

Let V be a finite set, V = {a1, . . . , ak}, k ∈ N. A finite multiset M over
V is a mapping M : V → N. For each a ∈ V , M(a) indicates the number of
“occurrences” of a in M . The value M(a) is called the multiplicity of a in M . The
size of the multiset M is |M | =

∑
a∈V M(a), i.e., the total count of the entries of

the multiset. A multiset M over V can also be represented by any string x which
contains exactly M(ai) instances of ai, 1 ≤ i ≤ k. The support of M is the set
supp(M) = {a ∈ V | M(a) ≥ 1}, which is the set which contains all elements
of the multiset. For example, the multiset over {a, b, c} defined by the mapping
{a→ 3, b→ 1, c→ 0} can be written as a3b. The support of this multiset is {a, b}.

The class of all finite multisets over V is denoted by 〈V,N〉. One may also
consider mappings M of the form M : V → N∞, where N∞ = N ∪ {∞}, i.e., the
elements may have infinite multiplicity. A multiset M is infinite if

(
∃i ∈ N

)(
1 ≤

i ≤ k
)(
M(ai) = ∞

)
, i.e., at least one element is of infinite multiplicity. The

class of multisets M over V with M : V → N∞ is denoted by 〈V,N∞〉. For
W ⊆ V , W∞ is the multiset in which every element is of infinite multiplicity:(
∀a ∈W

)(
W∞(a) =∞

)
.

Let x, y ∈ 〈V,N∞〉 be two (possibly infinite) multisets over V . Then x is called
a submultiset of y, written as x ≤ y, if and only if

(
∀a ∈ V

)(
x(a) ≤ y(a)

)
. If(

∀a ∈ V
)(
x(a) < y(a)

)
then x is called a strict submultiset of y. The sum of x

and y, denoted by x + y is defined in the following way:
(
∀a ∈ V

)(
(x + y)(a) =

x(a) + y(a)
)
. The difference of x and y, denoted by x − y, is defined similarly:(

∀a ∈ V
)(

(x − y)(a) = x(a) − y(a)
)
. The semantics of the symbol ∞ obey the

usual rules:
(
∀n ∈ N

)(
n ≤ ∞∧∞+ n =∞− n =∞

)
. When talking about x− y,

we assume that y ∈ 〈V,N〉, i.e., the that subtracted multiset is finite.
If X = (x1, . . . , xm) and Y = (y1, . . . , ym) are vectors of multisets over V , then

the relation X ≤ Y is defined as follows
(
X ≤ Y

)
⇔
(
∀i ∈ N

)(
1 ≤ i ≤ m

)(
xi ≤

yi
)
, i.e., X ≤ Y if and only if each component of X is a submultiset of Y . Similarly,

we define X + Y and X − Y in a component-wise way.
For further details on these topics see [2] and [6].
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2.2 Clock-free P Systems

Clock-free P systems were originally introduced in [7]; an intuitive approach to
working with the clock-free semantics was explored in [4].

A clock-free membrane system is defined by a tuple

Π = (O,C, µ,w1, w2, · · · , wm, R1, R2, . . . , Rm, i0), where

O is a finite set of objects,

C is a finite set of catalysts, C ∈ O,
µ is a hierarchical structure of m membranes, bijectively labeled

by 1, . . . ,m; the interior of each membrane defines a region;

the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,
Ri is the set of rules of region i, 1 ≤ i ≤ m,
i0 is the output region.

The rules of a clock-free membrane system have the form u→ v, where u ∈ O+

and v ∈ (O × Tar)∗. In the case of non-cooperative rules, u ∈ O. The target
indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m} are written in the
following way: (a, t), a ∈ O, t ∈ Tar and the target here is typically omitted.
A rule associated with membrane i must only specify a label of the immediately
inner membrane in a target indication inj .

The rules are applied in a maximally parallel way: no further rule should be
applicable to the idle objects. In the case of non-cooperative systems, all objects
evolve by the associated rules in the corresponding regions (except objects a in
regions i such that Ri does not contain any rule a → u, but these objects do not
contribute to the result). Rules are non-deterministically chosen at each moment
in time when a change occurs in the configuration of the P system. The process of
choosing which rules should be applied does not take any time.

Intuitively, clock-free rule applications work in the following way. At the start
of application, the multiset in the left-hand side of the rule is subtracted from
the content of the corresponding region. When a rule application is complete, the
multiset in the right-hand side of the rule is added to the corresponding region.
The time between the start and the end of a rule application is a real value, may
be different for different applications of the same rule, and there is impossible to
know in advance.

For further definitions and details, see [7].

2.3 Networks of Cells

Networks of cells are a general framework for describing membrane systems with a
static membrane structure. Networks of cells are formally described in depth in [3].
Intuitively, with this approach, membrane systems are considered as collections of
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interacting cells containing multisets of objects [8]. In this section we will only
shortly expose the relevant considerations discussed in [3].

A network of cells of degree n ≥ 1 is a tuple

Π = (n, V, w, Inf,R), where
n is the number of cells,
V is a finite alphabet,
w = (w1, . . . , wn), wi ∈ 〈V,N〉, 1 ≤ i ≤ n, is the initial content of cell i,

Inf = (Inf1, . . . , Infn), Infi = {a ∈ V | wi(a) =∞}, 1 ≤ i ≤ n,
R is a finite set of interaction rules.

According to the definition, the component Infi of the vector Inf contains
the symbols which occur infinitely often in cell i. In most cases, only one cell, the
environment, will contain symbols of infinite multiplicity.

The interaction rules in R have the form

(X → Y, P,Q),

where X = (x1, . . . , xn) and Y = (y1, . . . , yn) are vectors of finite multisets over V ,
i.e., xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n. Furthermore, P = (p1, . . . , pn) and Q = (q1, . . . , qn),
with pi, qi ∈ 〈V,N〉, 1 ≤ i ≤ n. The vector P is sometimes called the permitting
condition of the rule, while Q is sometimes referred to as the forbidding condition
of the rule.

The following notation for the rule (X → Y, P,Q) is also used:(
(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n), (p1, 1) . . . (pn, n), (q1, 1) . . . (qn, n)

)
.

Whenever any of xi, yi, pi, or qi, 1 ≤ i ≤ n, is empty, it may be omitted.
Initially, every cell contains wi∪Inf∞i . An interaction rule rewrites the objects

xi from cells i, 1 ≤ i ≤ n, into objects yj in cells j, 1 ≤ j ≤ n, if
(
∀i ∈ N

)(
pi ≤

xi ∧ ¬(qi ≤ xi)
)
, i.e., if xi contains pi and does not contain qi, 1 ≤ i ≤ n.

Note that the definition of the network of cells does not specify any structural
relations between the cells. The reason is that in many P system models the struc-
tural organisation of membranes is mainly used to direct communication between
the cells (as can be seen in [5]). In networks of cells, however, rules are allowed to
modify any combinations of cells, thus removing the need for an explicit structure
of cells as a means of organising communication.

A configuration of the network of cells Π is an n-tuple of multisets over V :
C = (u′1, . . . , u

′
n), in which u′i ∈ 〈V,N∞〉, 1 ≤ i ≤ n. Configurations are often

described by their finite parts only: Cf = (u1, . . . , un), where (u′i = ui ∪ Inf∞i ) ∧
(ui ∩ Infi = ∅), 1 ≤ i ≤ n [3].

An interaction rule r = (X → Y, P,Q) is eligible in the configuration C =
(u1, . . . , un) if and only if the following condition is true:(

∀i ∈ N
)(

1 ≤ i ≤ n
)(

(pi ≤ ui) ∧
(
(qi = ∅) ∨ ¬(qi ≤ ui)

)
∧ (xi ≤ ui)

)
,
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i.e., the corresponding cells contain all of the promoting multisets, do not contain
the forbidding multisets and contain the corresponding multisets of the left-hand
side of the rule. The set of rules eligible in configuration C of the network of cells
Π is denoted by Eligible(Π,C).

Let C = (u1, . . . , un) be a configuration of Π and Cf be its finite part. Let
T ∈ 〈R,N〉, supp(T ) ⊆ Eligible(Π,C), be a finite multiset of eligible rules, |T | =
k. Recall that every eligible rule has the following form: r = (X → Y, P,Q) ∈
supp(T ). The algorithm which checks whether the multiset of rules T can be
applied to the configuration C is described in Algorithm 1. The algorithm checks
if the rules in T can all at once be applied to the configuration C. To perform the
check, an attempt is made to remove the left-hand sides of the rules in T from C.
If this is possible, the algorithm returns the multiset union of the left-hand sides
of the rules in T , otherwise it returns ∅. See [3] for further details.

Algorithm 1 The marking algorithm

1: T ′ ← T
2: Mark0(Π,C, T )← (λ, . . . , λ) {empty vector of size n}
3: i← 1
4: while T ′ 6= ∅ do
5: r = (X → Y, P,Q)← get T ′

6: T ′ ← T ′ − {r → 1}
7: if X ≤ Cf −Marki−1(Π,C, T ) then
8: Marki(Π,C, T )←Marki−1(Π,C, T ) +X
9: else

10: return ∅
11: end if
12: i← i+ 1
13: end while
14: return Markk(Π,C, T )

If, for the multiset of eligible rules T ∈ 〈R,N〉, supp(T ) ⊆ Eligible(Π,C),
the marking algorithm succeeds and Mark(Π,C, T ) 6= ∅, the multiset T is called
applicable to C. The set of all multisets applicable to the configuration C of Π is
denoted by Appl(Π,C). The result of applying T to C is defined as follows:

Apply(Π,C, T ) = Cf −
∑

(X→Y,P,Q)∈T

X +
∑

(X→Y,P,Q)∈T

Y,

or, equivalently,

Apply(Π,C, T ) = (Cf −Mark(Π,C, T )) +
∑

(X→Y,P,Q)∈T

Y.

In plain words, Apply(Π,C, T ) is the configuration obtained from C by removing
the left-hand sides of all rules in T and then adding the right-hand sides of all
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rules in T . Note that repeating entries of the same rule are treated independently
both in Mark and in Apply.

A derivation mode is a set of conditions applied to the set Appl(Π,C) [3]. The
maximally parallel derivation mode max is thus defined as follows:

Appl(Π,C,max) =
{
T ∈ Appl(Π,C) |

(
∃T ′ ∈ Appl(Π,C)

)(
T ′ ) T

)}
,

that is, App(Π,C,max) contains those multisets of applicable rules which cannot
be further maximised and remain applicable (which corresponds to the intuitive
perception of the maximally parallel derivation mode).

Now fix a derivation mode ϑ (i.e. ϑ = max). Consider two configurations
C1 and C2 of Π. We say that C1 ⇒(Π,ϑ) C2 if

(
∃T ∈ Appl(Π,C1, ϑ)

)(
C2 =

Apply(Π,C1, T )
)
, i.e., there exists an applicable multiset of rules T , valid under

the derivation mode ϑ, with the property that applying T to C1 yields C2 [3].
In this case, C2 is said to be the result of a transition step from C1. When the
network of cells and the derivation mode are clear from the context, the relation
may be written as ⇒. The reflexive and transitive closure of ⇒(Π,ϑ) is denoted by
⇒∗(Π,ϑ).

A configuration C of Π is said to be a halting configuration if C satisfies
a certain halting condition. One of the most widely used halting conditions is
Appl(Π,C, ϑ) = ∅. Under this condition, C is a final configuration if there are no
rules applicable to C under the derivation mode ϑ.

A computation of a network of cells Π under the derivation mode ϑ is the
sequence of configurations (Ci)

n
i=0, where C0 is the initial configuration, Cn is a

halting configuration and
(
∀i ∈ N

)(
0 ≤ i ≤ n − 1

)(
Ci ⇒(Π,ϑ) Ci+1

)
. In plain

words, a computation is a sequence of configurations which starts from the initial
configuration and, by applications of multisets of rules valid under the derivation
mode ϑ, reaches a halting configuration.

This section only contains a superficial overview of the corresponding material.
Consider referring to [3] for further details on the formal framework for networks
of cells.

3 Clock-free Networks of Cells

3.1 Preliminary Considerations

To understand and explore the concept of clock-freeness, we will start with an
analysis of how a clock-free P system evolves. Consider the following sample clock-
free P system:

Π0 = (V,C, [ ]
1
, w1, R1, 1), where

V = {a, b, c, x, u},
C = {x},
w1 = a3,
R1 = {a→ b, b→ c, a→ u, a→ x, xu→ x}.
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Fig. 1. The time diagram of a computation of Π0

The time-diagram of a possible computation of Π0 is shown in Figure 1. This
diagram shows the possible evolution of individual symbols in the only region 1
of Π0 as time progresses. In the initial state of the system, three different rules
start consuming the three instances of a. At any moment sufficiently close to the
initial state of the system, there are no symbols in region 1, because all of them
have been consumed in the start of the three rule applications.

In this variant of evolution, the application of the rule a → u finishes first,
producing an instance of u. Since there are no rules applicable to u, nothing hap-
pens at this time. The next rule application to finish is a → b. At this moment,
the contents of the only region of the system is bu. There is a rule b → c, so,
in accordance with the maximally parallel mode of evolution, this rule must be
applied. The application of b → c therefore starts immediately after b has been
produced and consumes the instance of b.

The next rule application to finalise is a → x. As it can be seen from the
diagram, at the moment when the first x is produced, the contents of region 1 will
be ux. This renders the catalytic xu → x applicable, and so it is applied. In this
variant of evolution, the applications of the rules b → c and xu → x finalise at
exactly the same time. The system therefore halts with cx in its only region.

We explicitly remark that our choice of the variant of evolution is totally ran-
dom. For example, the c may have not been produced at the same time with x. In
fact, it could have been added to the system before u would be.

3.2 Clock-freeness: A Separate Concept

In this section we will tear apart the concept of a clock-free P system and focus
on clock-freeness per se. The paper [7] introduces clock-free P system as a whole
concept, without formally paying attention to the distinctive feature.

It turns out that clock-freeness cannot directly be described by any combination
of the principal features of networks of cells considered in [3] (derivation mode,
halting condition, goal of computations, interpretation of results). Indeed, the
halting condition, the goal of computation, and the way to interpret results refer
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to the ending parts of the computation, while the derivation mode describes how
to choose applicable multisets of rules. Clock-freeness, on the other hand, focuses
on what happens after rules have been chosen, throughout the whole computation,
not just in the closing phases.

The very special component of clock-freeness is that reaction times for rules are
real numbers. This poses the question whether having real numbers in the model
offers extended possibilities as compared to other models, where time is expressed
as a natural number of steps. It turns out, however, that having arbitrary real
numbers as reaction times is not at all defining. Indeed, the exact duration of a re-
action is of no importance whatsoever. What deserves attention is only the relation
of this value to other durations, i.e., we are only interested in knowing whether a
multiset α was produced before, at the same time, of after multiset β. According
to [7], we will consider the next configuration to be the instant description of the
system when the output of a previously initiated reaction appears. Therefore, we
consider the computation of a clock-free system to be a sequence of configurations,
sampled at the moments when a rule application (or several rule applications) fi-
nalise. Observe that real numbers are relevant nowhere in this reasoning, since we
always have a finite number of configurations in a computation.

Consider, for example, the computation shown in Figure 1. The sequence of
configurations of this computation is the following:

(a3), (u), (bu), (ux), (cx).

The computation starts with a3 in the only region of the system. All three instances
of a are consumed. Then a single u is produced. Later on, b is also added to the
system. In this configuration, the rule b → c starts, so, when x is added to the
system, there are no instances of b already. Finally, after both b→ c and ux→ x
have finalised, the system stops in the halting configuration cx.

Observe again that we are not interested in reaction times themselves, but
rather in the ordering of the moments of time when certain symbols were pro-
duced. Therefore, although the time intervals between configurations are some
real numbers, we are free to discard this fact. Moreover, we can consider that a
clock-free system transitions into the next configuration at every tick of a global
clock, which brings us a huge step closer to the classic P system models. We
lose absolutely nothing in this move because, as we have shown above, the exact
duration of rules plays no role.

3.3 Formal Framework

Having done the preliminary consideration, we are now ready to introduce the
clock-free mode of evolution into networks of cells. To be able to do that, we will
extend the notion of a configuration.

Definition 1. We call a clock-free configuration in a network of cells Π =
(n, V, w, Inf,R) the following construct:
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C∗ = (C,H), where
C = (u′1, . . . , u

′
n), u′i ∈ 〈V,N∞〉, 1 ≤ i ≤ n,

H ∈ 〈R,N〉.

The initial clock-free configuration of a network of cells is C∗0 = (C0,∅), where
C0 describes the initial content of every cell in the network.

A configuration C∗ has two components. C describes the contents of the cells
of the system in exactly the same way as a normal configuration of a network
of cells does. R is a multiset of rules which are “still being applied”. The exact
semantics of this component will be revealed in the next paragraphs.

The way a transition step from a configuration C∗1 = (C1, H1) into C∗2 =
(C2, H2) under the derivation mode ϑ is performed is described in Algorithm 2.
Symbolically, what Algorithm 2 does is build C∗2 starting from C∗1 such that
C∗1 ⇒(Π,ϑ) C

∗
2 .

Algorithm 2 A clock-free transition step

1: A← get Appl(Π,C1, ϑ)
2: C2 ← C1 −

∑
(X→Y,P,Q)∈A

X

3: H ′ ← H1 +A
4: F ← get submultiset H ′{assure F 6= ∅}
5: C2 ← C′ +

∑
(X→Y,P,Q)∈F

Y

6: H2 ← H ′ − F

The transition from C∗1 starts by computing the set of multisets of applicable
rules and picking one of them: A (line 1). The applications of the rules in A
are started (line 2) and the rules themselves are added to the would-be second
component of the new configuration (line 3). As remarked in the definition, the
second component H1 of the clock-free configuration C∗1 = (C1, H1) is a multiset
of rules, whose applications have not yet been finalised. The algorithm continues
with picking an arbitrary nonempty submultiset of rules F to be finalised from H ′

(line 4). The right-hand sides of the rules in F are added to the system (line 5),
while the rules themselves are removed from H ′ (line 6).

Observe that if instead of choosing an arbitrary submultiset F ≤ H ′, Algo-
rithm 2 would take F = H ′, it would degenerate into the classic (non-clock-free)
algorithm of computing the next configuration from the current one.

Further note that the requirement F 6= ∅ does not limit the domain of con-
figurations this algorithm is applicable to, because H ′ could only be empty if the
algorithm started from a halting configuration.

Now that we have described a clock-free configuration and the way transitions
between configurations occur, we are ready to formally define the halting condition
for a clock-free computation.
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Definition 2. A clock-free configuration C∗ = (C,H) of a network of cells Π
evolving under the evolution mode ϑ is halting when all rules have finalised and
there are no more applicable rules:

H = ∅
∧
Appl(Π,C, ϑ) = ∅.

This halting condition corresponds to the clock-free semantics as described
in [7]. Obviously, just as with other variants of networks of cells, the predicate
defining the halting condition can be defined in a different way.

In what follows, we will refer to networks of cells with clock-free configurations,
operating according to Algorith 2, as to clock-free networks of cells.

3.4 Example of Clock-free Evolution (Algorithm 2)

We will now turn back to the example of a computation of the clock-free P system
Π0 shown in Figure 1. The computation starts with the initial configuration:

C∗0 =
((
a3
)
,∅
)
.

In this configuration the multiset of rules to apply is selected to be {(a → b) →
1, (a → u) → 1, (a → x) → 1}; the three instances of a are correspondingly
removed. The rule (a → u) is immediately picked to be finalised, so the next
configuration is

C∗1 =
((
u
)
,
{

(a→ b)→ 1, (a→ x)→ 1
})
.

Since there are no rules which consume only u, nothing is applicable in C∗2 , so
A = ∅ once again. This time F = {(a→ b)→ 1}, so the system transitions into

C∗2 =
((
bu
)
,
{

(a→ x)→ 1}
)
.

In this configuration the rule b→ c becomes applicable, so its application must be
started: the only b is removed and H ′ is correspondingly modified. The rule a→ x
is finalised (F = {(a→ x)→ 1}):

C∗3 =
((
ux
)
,
{

(b→ c)→ 1
})
.

There is the rule xu→ x, so it must be started in this configuration. The algorithm
then picks both rules which are “still being applied” (including the xu→ x, which
has just been started) and finalises them:

C∗4 =
((
cx
)
,∅
)
.

Since no rules are applicable and H4 = ∅, the system has arrived at a halting
configuration.
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3.5 Suitability of the Formalisation

In this section we will discuss whether the formalism introduced and described in
the previous section is compatible with the intuitive description of clock-freeness
provided in [7]. In this paper we define clock-freeness on the foundation of networks
of cells, while [7] starts from transitional P systems. To bridge the obvious gap,
we will consider networks of cells with rules working in clock-free mode. This will
bring a common ground to the (extended) definitions from [7] and the formal
definitions suggested in this paper.

Definition 3. A *-network of cells is a network of cells with rules operating in
clock-free mode, in the sense of [7].

According to the definition, rule applications in a *-network of cells last for
a different real-valued time interval each. In this section we will only consider
ϑ = max for both *-networks of cells and clock-free networks of cells, because clock-
free P systems evolve under maximal derivation mode. The halting condition for
*-networks of cells will be the condition that all rule applications have finalised and
no more rules are applicable, while networks of cells with clock-free configurations
will have the halting condition introduced in the previous sections. Since the goal
of the computation and the way to interpret the result do not directly pertain
to the subject of this section, we will consider these two parameters as having a
certain well-defined value, the same for both kinds of analysed networks of cells.

Obviously, clock-free P systems as defined in [7] are a particular case of *-
networks of cells.

Theorem 1 (Suitability of the formalism). Consider a network of cells Π =
(n, V, w, Inf,R) and a finite sequence of clock-free configurations of Π: C∗ =
(C∗i )mi=0, with C∗0 = (C0,∅) being an initial configuration and C∗m = (Cm,∅)
being a halting configuration. Let ∗Π = (n, V, w, Inf,R) be a *-network of cells.
C∗ is a clock-free computation if and only if the sequence of the first components
C = (Ci)

m
i=0 is a valid computation in ∗Π.

Proof. According to the corresponding definitions, C∗0 and C∗n are valid clock-free
initial and halting configurations in Π correspondingly if and only if C0 and Cn
are valid initial and halting configurations in ∗Π correspondingly. Obviously, the
statement of the theorem holds for C∗0 = C∗m, therefore we will focus on the cases
when m > 0.

Consider C∗0 and C∗1 and suppose that C∗0 ⇒(Π,max) C
∗
1 . Then, in ∗Π, we can

consider the transition from C0 to C1 constructed in the following way: start the
applications of the rules belonging the multiset A chosen in Algorithm 2, then
consider that the rules collected into F as constructed in Algorithm 2 finalise their
application at one and the same time. The moment these rules complete is the
moment when C1 will occur. Therefore, C0 ⇒(∗Π,max) C1.

Now suppose that C0 ⇒(∗Π,max) C1. This means that, in ∗Π, some rule appli-
cations started in C0, and some of these rules finished to result in configuration
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C1. We can therefore consider that in configuration C∗0 , Algorithm 2 chose to start
the same rules as the ones which started in in ∗Π and then immediately finalised
those which led to the occurrence of C1 in ∗Π. For C∗1 constructed in this way,
the following is true: C∗0 ⇒(Π,max) C

∗
1 .

We have therefore proved that(
C∗0 ⇒(Π,max) C

∗
1

)
⇔
(
C0 ⇒(∗Π,max) C1

)
.

Moreover, we have proved that H1 contains those and only those rules which could
have been started in ∗Π in configuration C0 and might have not been finalised in
transition to C1. By repeating the same reasoning for any pair C∗i and C∗i+1, it is
now possible to prove the statement of the theorem by induction.

4 Simulations of Clock-freeness

Now that we have formally defined clock-freeness, it is time to pose one of the
most important questions: how “far away” are clock-free networks of cells from
the traditional networks of cells? It turns out that it is very easy to simulate
clock-freeness with traditional, static networks of cells, as they are formalised in
[3].

Indeed, consider a clock-free network of cells Π = (n, V, w, Inf,R) and a rule
ri = (X → Y, P,Q) ∈ R′. According to clock-free semantics, an application of ri is
started in a configuration C∗i of Π by removing its left-hand side from the system,
and is finalised in a configuration C∗j by adding its right-hand side to the system.
Consider now an ordinary network of cells Π ′ = (n, V ′, w, Inf,R′), with R′ and
V ′ constructed in the following way:

V ′ = V ∪
{
ξi
∣∣ ri = (X → Y, P,Q) ∈ R

}
,

R′ =
{(
X → (ξi, k

∗), P,Q
)
,
(
(ξi, k

∗)→ (ξi, k
∗), λ̄, λ̄

)
,(

(ξi, k
∗)→ Y, λ̄, λ̄

) ∣∣ ri = (X → Y, P,Q) ∈ R},
1 ≤ k∗ ≤ |R|,

where λ̄ is the vector of size n of empty multisets. The alphabet of Π ′ includes all
symbols from the alphabet of Π, but also a ξi per each rule with index i.

For each rule in R, three rules are added to R′. When the rule ri is applicable,
instead of X being directly transformed into Y , X is initially rewritten into ξi,
which is placed into the cell with index k∗. The choice of the index k∗ is totally
arbitrary, it may even be different for different rules. The symbol ξi can either
reproduce itself or add Y to the system; either of these will unconditionally happen;
the choice between the two options is nondeterministic.

We claim that Π ′ accurately simulates the evolution of Π. Indeed, a rule (X →
(ξiq, k

∗), P,Q) ∈ R′ is applicable in Π ′ if and only if the corresponding rule ri =
(X → Y, P,Q) ∈ R is applicable. Rewriting X into ξi thus corresponds to removing
the left-hand side of the rule from the system and adding it to H ′ (the operations
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performed in Algorithm 2). If, in a certain configuration, ξi is rewritten into itself,
then, at this step, the rule ri was not picked by Algorithm 2 to be finalised. The
case when ξi is rewritten into Y corresponds to the scenario when Algorithm 2
picked rule ri to finalise.

Observe now that if, in a certain configuration of Π ′, only the rules which
rewrite ξi, 1 ≤ i ≤ |R|, were chosen to be applied, then the system will arrive at
exactly the same configuration at the next step. It is possible to detect such situ-
ations and cut off such computations. This however, does not make the following
result significantly different on the overall.

Theorem 2 (Simulation of clock-freeness). Consider a clock-free network
of cells Π = (n, V, w, Inf,R) and a sequence of clock-free configurations C∗ =
(C∗i )mi=0, with C∗0 being an initial configuration and C∗m being a halting config-
uration. If C∗ is a computation then it is possible to construct a computation
K = (Ki)

l
i=0 of an ordinary network of cells Π ′ so that there is a mapping

f : K → C∗ with the properties:

1. f(Ki) = C∗j = (Cj , Hj)⇔ Ci ≤ Ki (f(Ki) = C∗i if and only if Ki contains at
least all the symbols in Ki),

2.
(
Ki ⇒∗(Π′,max) Kj

)
⇔
(
f(Ki) ⇒∗(Π,max) f(Kj)

)
(f maps the binary relation

⇒∗(Π′,max) into ⇒∗(Π,max) and vice versa),

3.
(
∀i
)(
∃j
)(
f(Kj) = C∗i

)
(f is surjective),

where 1 ≤ i ≤ m, 1 ≤ j ≤ l.

Proof. According to the constructions in the previous paragraphs, to a clock-free
network of cells Π, one can associate an ordinary network of cells Π ′ which simu-
lates Π. The mapping f can thus be defined as follows: from the region i∗ of Ki

remove all instances of ξi, 1 ≤ i ≤ |R|; this will be the first component of f(Ki).
The second component of f(Ki) is obtained by starting with an empty multiset
and adding an instance of rule ri per each instance of symbol ξi, 1 ≤ i ≤ |R|. The
required properties of f follow from the constructions shown in this section.

5 Conclusion

In this paper we have torn apart the concept of clock-free P systems as defined
in [7] and have separated clock-freeness as a stand-alone ingredient. We have for-
mally defined this ingredient within the framework of networks of cells [3] and
shown that this definition is consistent with the original concept. We have also
shown that clock-freeness can be simulated with usual networks of cells in a quite
straightforward way.

The fact that clock-freeness can be simulated so easily goes against the intuitive
impression produced by clock-free P systems and poses the important question of
how valuable this ingredient is. Indeed, it seems that almost any problem in clock-
free systems can be equivalently formulated for the corresponding clocked systems.
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We believe that clock-freeness is fairly important, though, because it is (intuitively)
much closer to how processes take place in biological cells. The fact that clock-
freeness is easy to simulate is thus beneficial and shows how it is possible to move
closer to real life without sacrificing too much.

We remark, of course, that the chemical reactions taking place in the cell have
been studied well enough to approximately predict their durations or, at least, com-
pare them to other cellular processes in terms of speed. Clock-freeness, however,
allows us to abstract away these details. Metaphorically put, an implementation
of an operation in a clock-free network of cells (or clock-free P system) can survive
changes in the physical implementation, because it does not depend on the dura-
tions of underlying chemical relations. This reasoning is of course hypothetical at
the moment, but it may become practical quite soon.

In this paper we have used the term “clock-freeness” to denote the mode of
evolution of a network of cells in which rule applications may last for an arbitrary
long or short amount of time. The word “free” in the term “clock-free”, therefore,
refers to a different concept than the same word in the term “time-free” [1]. How-
ever, the majority of clock-free P systems considered in [7] and, for example, [4],
are in fact independent of the what the durations of rules are. It thus is possible
to consider that the terms “clock-freeness” and “time-freeness” do have something
in common. Observe that Theorem 2 allows translating the problem of indepen-
dence of the durations of rules in clock-free networks of cells into the problem of
confluence in regular networks of cells.
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