
The Computational Power of Exponential-Space
P Systems with Active Membranes

Artiom Alhazov1,2, Alberto Leporati1, Giancarlo Mauri1, Antonio E. Porreca1,
and Claudio Zandron1

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
artiom.alhazov@unimib.it

{leporati,mauri,porreca,zandron}@disco.unimib.it
2 Institute of Mathematics and Computer Science

Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

Summary. We show that exponential-space P systems with active membranes charac-
terize the complexity class EXPSPACE. This result is proved by simulating Turing
machines working in exponential space via uniform families of P systems with restricted
elementary active membranes; the simulation is efficient, in the sense that the time and
space required are at most polynomial with respect to the resources employed by the
simulated Turing machine.

1 Introduction

P systems with active membranes have been introduced in [9] as a variant of
P systems where the membranes have an active role during computations: they
have an electrical charge that can inhibit or activate the rules that govern the
evolution of the system, and they can grow in number by using division rules.

In several papers these systems were used to attack computationally hard prob-
lems, by exploiting the possibility to create, in polynomial time, an exponential
number of membranes that evolve in parallel. Hence, for instance, it has been
proved that P systems with active membranes can solve PSPACE-complete prob-
lems [11, 2] in polynomial time. When division rules operate only on elementary
membranes (i.e. membranes not containing other membranes), such systems are
still able to efficiently solve NP-complete problems [12, 5]. More recently, in [7] it
was proved that all problems in PPP (a possibly larger class including the poly-
nomial hierarchy) can also be solved in polynomial time using P systems with
elementary membrane division. On the other hand, if division of membranes is not

36 A. Alhazov et al.

allowed then the efficiency apparently decreases [12]: no NP-complete problem can
be solved in polynomial time without using division rules unless P = NP holds.

A measure of space complexity for P systems has been introduced [6] in order
to analyze the time-space trade-off exploited when P systems are used to effi-
ciently solve computationally hard problems. The space required by a P system
is the maximal size it can reach during any computation, defined as the sum of
the number of membranes and the number of objects. A uniform family Π of
recognizer P systems is said to solve a problem in space f : N→ N if no P system
in Π associated to an input string of length n requires more than f(n) space.
Under this notion of space complexity, in [8] it has been proved that the class
of problems solvable in polynomial space by P systems with active membranes,
denoted by PMCSPACEAM, coincides with PSPACE. This result is proved by
mutual simulation of P systems and Turing machines.

The techniques used up to now to simulate a polynomial-space Turing machine
via a polynomial-space family of P systems [7] do not seem to apply when the space
bound is less strict, i.e., exponential or even super-exponential. Indeed, we would
need P systems with an exponential number of membranes with distinct labels, and
such systems cannot be built in a polynomial number of steps by a deterministic
Turing machine (as required by the notion of polynomial-time uniformity usually
employed in the literature [5]).

Here we show that, by using different techniques, exponential-space Turing
machines can be simulated by exponential-space P systems; hence, the classes of
problems solvable by P systems with active membranes and by Turing machines
in exponential space coincide; in symbols, EXPMCSPACEAM = EXPSPACE.

The rest of the paper is organized as follows. In section 2 we recall some defini-
tions concerning P systems with active membranes and their space complexity. In
section 3 we describe how P systems with restricted elementary membranes can be
used to simulate Turing machines; an analysis on the resources (time and space)
needed to perform this simulation is also given. Section 4 contains the statement
of our characterization of EXPSPACE, while section 5 provides the conclusions
as well as some directions for further research.

2 Definitions

We assume the reader to be familiar with the basic terminology and results con-
cerning P systems with active membranes (see [10], chapters 11–12 for a survey).
Here we just recall some definitions that are relevant for the results presented in
this paper.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a tuple
Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• Λ is a finite set of labels for the membranes;

Exponential-Space P Systems with Active Membranes 37

• µ is a membrane structure (i.e., a rooted unordered tree, usually represented
by nested brackets) consisting of d membranes enumerated by 1, . . . , d; fur-
thermore, each membrane is labeled by an element of Λ, not necessarily in a
one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge (or polarization), which can be either neutral (0), positive
(+) or negative (−) and is always neutral before the beginning of the computation.

The rules are of the following kinds:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form[
[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α
h
→

[
[]δh1
· · · []δhk

]β
h

[
[]εhk+1

· · · []εhn

]γ
h

They can be applied to a membrane labeled by h, having charge α, contain-
ing the positively charged membranes h1, . . . , hk, the negatively charged mem-
branes hk+1, . . . , hn, and possibly some neutral membranes. The membrane h
is divided into two copies having charge β and γ, respectively; the positive

38 A. Alhazov et al.

children are placed inside the former membrane, their charge changed to δ,
while the negative ones are placed inside the latter membrane, their charges
changed to ε. Any neutral membrane inside h is duplicated and placed inside
both copies.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane any number of evolution rules
can be applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). The same reasoning applies to each membrane that
can be involved to communication, dissolution, elementary or non-elementary
division rules. In other words, the only objects and membranes that do not
evolve are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion: first,
all evolution rules are applied to the elementary membranes, then all commu-
nication, dissolution and division rules; then the application proceeds towards
the root of the membrane structure. In other words, each membrane evolves
only after its internal configuration has been updated.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

The precise variant of P systems we use in this paper does not use dissolution
or non-elementary division rules.

Definition 2. A P system with restricted elementary active membranes is a
P system with active membranes where only object evolution, send-in, send-out,
and elementary division rules are used. This kind of P systems is denoted by
AM(−d,−n).

A halting computation of the P system Π is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable by Ci
via a single computation step, and no rules can be applied anymore in Ck. A non-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

Exponential-Space P Systems with Active Membranes 39

P systems can be used as recognizers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system
is said to be confluent. If this is not necessarily the case, then we have a non-
confluent P system, and the overall result is established as for nondeterministic
Turing machines: it is acceptance iff an accepting computation exists. All P systems
in this paper are confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recognizer P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ? by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
each input length [3].

Definition 3. A family of P systems Π = {Πx : x ∈ Σ?} is said to be
(polynomial-time) uniform if the mapping x 7→ Πx can be computed by two deter-
ministic polynomial-time Turing machines F (for “family”) and E (for “encod-
ing”) as follows:

• The machine F , taking as input the length n of x in unary notation, constructs
a P system Πn, which is common for all inputs of length n, with a distinguished
input membrane.

• The machine E, on input x, outputs a multiset wx (an encoding of the specific
input x).

• Finally, Πx is simply Πn with wx added to the multiset placed inside its input
membrane.3

Definition 4. If the mapping x 7→ Πx is computed by a single polynomial-time
Turing machine, the family Π is said to be semi-uniform. In this case, inputs of
the same size may be associated with P systems having possibly different membrane
structures and rules.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [3] for further details on the encoding of
P systems.

3 Notice that this definition of uniformity is (possibly) weaker than the other one com-
monly used in membrane computing [5], where the Turing machine F maps each input
x to a P system Πs(x), where s : Σ? → N is a measure of the size of the input; in our
case, s(x) is always |x|.

40 A. Alhazov et al.

Finally, we describe how space complexity for families of recognizer P systems
is measured, and the related complexity classes [6].

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is defined
as the sum of the number of membranes in the current membrane structure and the
total number of objects they contain. If C = (C0, . . . , Ck) is a halting computation
of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of space (in symbols
|C| = ∞): for example, if the number of objects strictly increases at each compu-
tation step.

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.

Notice that |Π| = ∞ might occur if either Π has a non-halting computation re-
quiring infinite space (as described above), or Π has an infinite set of halting
computations, such that for each bound b ∈ N there exists a computation requiring
space larger than b.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ?.

By MCSPACED(f(n)) we denote the class of languages which can be decided
by uniform families of confluent P systems of type D where each Πx ∈Π operates
within space bound f(|x|). The class of languages decidable in exponential space
by uniform families of P systems of type D is denoted by EXPMCSPACED, while
the corresponding class for semi-uniform families is EXPMCSPACE?D. The classes
defined in terms of non-confluent P systems are denoted by NEXPMCSPACED
and NEXPMCSPACE?D, respectively.

For the precise definitions and properties of Turing machines and, in particular,
the space complexity classes PSPACE and EXPSPACE, we refer the reader to [4].

3 Simulating a Turing machine

In this section we show that exponential-space deterministic Turing machines can
be simulated by P systems with restricted elementary active membranes with a
polynomial slowdown and a polynomial growth in space.

Exponential-Space P Systems with Active Membranes 41

Theorem 1. Let M be a single-tape deterministic Turing machine working in time
t(n) and space s(n), where s(n) ≤ n + 2p(n) for some polynomial p. Then there
exists a uniform family of confluent P systems with restricted elementary active
membranes Π = {Πx : x ∈ Σ?} operating in time O

(
t(n)s(n) log s(n)

)
and space

O
(
s(n) log s(n)

)
such that L(Π) = L(M).

We describe how the simulation is carried out by examining a specific example,
and generalizing from there. Let M be a Turing machine having tape alphabet
Γ = {a, b,t}, where t denotes a blank tape cell, and using space n+ 2n (i.e., we
choose p(n) = n). Also let Q be the set of non-final states of M , and

δ : Q× Γ → Q× Γ × {/, .}

its transition function. Assume that M processes the input x = ba of length 2:
then M uses a total of 2+22 = 6 tape cells. Suppose that, after a few computation
steps, M reaches the following configuration:

ab
a b

q

010 011
100 101

110 111

that is, the state of M is q, the tape contains the string baab followed by two
blank cells, and the tape head is located on the fifth cell. The picture also shows
(in binary) the non-standard numbering scheme for tape cells that we employ:

• The first n cells, that initially contain the input (highlighted by a thick border),
are denoted by 2p(n)−n, . . . , 2p(n)−1 (e.g., 010 and 011 in our example). These
numbers, when written in binary over p(n) + 1 bits, all have 0 as their most
significant bit.

• The remaining 2p(n) cells are denoted by 2p(n), . . . , 2 × 2p(n) − 1 (e.g., 100 to
111 in our example). These numbers, when written in binary over p(n)+1 bits,
all have 1 as their most significant bit.

3.1 Representing the configuration of the Turing machine

The configuration of M described above is encoded in the following configuration
C1 of the P system Πx simulating it (how this configuration of Πx is reached from
its initial configuration will be described later):

42 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

q 000+ + 0

0

101102 11

0

Inside the outermost membrane, labeled by s, we have n+ 2p(n) membranes (6 in
our example) representing the tape cells of M ; n of them are labeled t0, . . . , tn−1,
and the remaining ones (which are generated by membrane division, as described
below) by t. We refer to these membranes as tape-membranes. Each tape-membrane
contains two pieces of information: a set of p(n)+1 (3 in our example) subscripted
bits, the bit-objects, encoding the number of the tape cell of M it represents (the
subscript are used to preserve the order of the bits), and an object taken from the
alphabet of M , denoting the symbol written in that tape cell (the symbol-object).
For instance, the membrane [120110b]

0
t corresponds to tape cell 101, which contains

the symbol b.
The state of M is represented by a state-object (q in the example), which will

regulate the simulation of each computation step of M . At the beginning of the
simulation of each computation step of M , the state-object resides in membrane
s.

On the lower-left side of the picture we have p(n) + 1 membranes, called
position-membranes and labeled by p(n), . . . , 0, whose electrical charge encodes
in binary the current position of the tape head of M ; here a positive charge rep-
resents a 1 bit, while a neutral charge denotes 0. For instance, in the picture we
have []+2 []+1 []00 representing position 110.

The auxiliary membrane labeled by e, the error-membrane, will have its charge
set to positive whenever Πx nondeterministically chooses a “wrong” computation
path while simulating a computation step of M (see below).

Finally, on the lower-right side of the picture, we have membranes labeled by
symbols from the alphabet of M (the symbol-membranes). These will be used,
once again by setting their charge, to read the symbol currently under the tape
head of M .

We shall now describe how to simulate a computation step of M starting from
its current configuration, as encoded by Πx. Later on we will describe how the
configuration of Πx representing the initial configuration of M can be obtained.

3.2 Simulating a computation step of M

In order to simulate a computation step of M , we need to identify which symbol
is located under its tape head; note that the state q is already stored in the state-
object. Since most of the tape-membranes of Πx have the same label t (and those
labeled by t0, . . . , tn−1 behave the same way in this phase, i.e., have the same

Exponential-Space P Systems with Active Membranes 43

associated set of rules) there is no way to identify the correct tape-membrane
from the outside. Hence, we shall guess the tape-membrane corresponding to the
cell under the head, then check if selected the right one.

This “guessing” is performed by the state-object, which nondeterministically
enters one of the tape membranes using one of the following rules:

q []0h → [q1]0h for q ∈ Q and h ∈ {t0, . . . , tn−1, t}.

First, suppose q enters the wrong membrane, e.g., 011 instead of 110, producing
the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

101102 11

0

q1

The state-object q1 is immediately sent back out, changing the charge of the mem-
brane to positive using one of the rules

[q1]0h → []+h q2 for q ∈ Q and h ∈ {t0, . . . , tn−1, t}.

Note that there will always be at most one positive tape-membrane, i.e., the mem-
brane being checked at the current time.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

101102 11

0 q2

When a tape-membrane is positive, the symbol-object it contains (a in the ex-
ample) is sent out, while the bit-objects are replicated in a primed and a double-
primed versions. At the same time, the state-object waits by increasing its subscript
(such waiting steps will be implicit from now on). The corresponding rules are

[γ]+h → []+h γ for γ ∈ Γ and h ∈ {t0, . . . , tn−1, t}
[0i → 0′i0

′′
i]+h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[1i → 1′i1
′′
i]+h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[q2 → q3]0s for q ∈ Q.

In our example, we obtain the following configuration:

44 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

1′′01′′102 11

0 q3

0′2 1′01′1

Now, the symbol-object is sent to the corresponding symbol-membrane, setting
its charge to positive (thus allowing the state-object to identify the symbol under
the tape head). At the same time, the primed bit-objects inside the positive tape-
membrane will be sent (in nondeterministic order) to the corresponding position-
membranes and compared with their charge. In our example we have 0′21′11′0 and
[]+2 []+1 []00 (where the most significant and the least significant bits differ). If there
is a mismatch on a certain bit, the corresponding bit-object will produce an error-
object e, otherwise it will be deleted. The error-objects will set the charge of the
error-membrane to positive, so that the state-object may identify the error when
all comparisons have been made, and will be in turn deleted. This phase, whose
duration is p(n) + 4 steps, involves the following rules:

γ []0γ → [γ]+γ for γ ∈ Γ
[0′i]

+
h → []+h 0′i for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[1′i]
+
h → []+h 1′i for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

0′i []αi → [0′i]
α
i for 0 ≤ i ≤ p(n) and α ∈ {0,+}

1′i []αi → [1′i]
α
i for 0 ≤ i ≤ p(n) and α ∈ {0,+}

[0′i → λ]0i for 0 ≤ i ≤ p(n)

[1′i → λ]+i for 0 ≤ i ≤ p(n)

[0′i]
+
i → []+i e for 0 ≤ i ≤ p(n)

[1′i]
0
i → []0i e for 0 ≤ i ≤ p(n)

e []αe → [e]+e for α ∈ {0,+}
[e→ λ]+e

[qj → qj+1]0s for 3 ≤ j ≤ p(n) + 6 and q ∈ Q.

In our example, the computation may proceed as follows (for some concrete non-
deterministic choices in the order the bit-objects are sent out).

Exponential-Space P Systems with Active Membranes 45

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q4

0′2 1′0

1′1

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q5

0′2

1′0

1′1

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q60′2

1′0

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q7

e

1′0

46 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+ q8e

e

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+ q9e

While any remaining error-object is deleted, the state-object may now enter the
error-membrane in order to check if a bit mismatch has been found (thus, if the
system chose the wrong tape-membrane). It is sent out in a primed version if this
is the case, while simultaneously resetting the charge of e to neutral. We use the
following rules:

qp(n)+7 []αe → [qp(n)+8]αe for q ∈ Q and α ∈ {0,+}
[qp(n)+8]+e → []0e q

′
p(n)+9 for q ∈ Q.

In our example, these two steps produce the following configurations:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+
q10

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0
q′11

Having guessed the wrong tape-membrane, the system must now send the symbol-
object back to its original tape-membrane (the only positively charged one); it does

Exponential-Space P Systems with Active Membranes 47

so by setting the charge of the symbol-membrane to negative. In the subsequent
three steps, the configuration of Πx is reset to C1, except that the tape-membrane
we chose is set to negative. This requires the following rules:

q′p(n)+9 []+γ → [q′p(n)+10]−γ for q ∈ Q and γ ∈ Γ
[γ]−γ → []−γ γ′ for γ ∈ Γ
[q′p(n)+10 → q′p(n)+11]−γ for q ∈ Q and γ ∈ Γ
γ′ []+h → [γ]−h for γ ∈ Γ and h ∈ {t0, . . . , tn−1, t}
[q′p(n)+11]−γ → []0γ q

′
p(n)+12 for q ∈ Q and γ ∈ Γ

[0′′i → 0i]
−
h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t} (1)

[1′′i → 1i]
−
h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t} (2)

[q′p(n)+12 → q]0s for q ∈ Q.

In the example, we obtain the following sequence of configurations:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00−+ + 0

0

1′′01′′102 11

0
q′12

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a′

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00−+ + 0

0

1′′01′′102 11

0
q′13

48 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2
a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

1′′01′′102 11

0
q′14

t0 t1 t t t t

tba2 1 0 e
s

00
b

0

a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

02 11

0 q

02 1011

The system can now guess another tape-membrane, repeating the previous steps
while making wrong guesses and thus increasing the number of negatively charged
tape-membranes (which are ignored during the guessing step). After at most n+
2p(n)−1 wrong guesses (e.g., 5 guesses in our example), the system finally chooses
the correct tape-membrane.

For instance, suppose Πx made the three consecutive wrong guesses 011, 111
and 010, thus reaching the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b

−

a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

−

000+ + 0

0

02 11

0 q

02 1011

Now assume that the state-object finally enters the correct membrane 110. The
bit-checking phase proceeds as described above for p(n) + 7 steps (i.e., 9 steps in
our case), making Πx reach the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q9

− −

Exponential-Space P Systems with Active Membranes 49

In this configuration the error-membrane is neutral, as all bit-objects match the
corresponding position-membranes. The state-object enters membrane e

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q10

− −

but this time, since the error-membrane is neutral, it is sent out in a non-primed
version, using the rule

[qp(n)+8]+e → []0e qp(n)+9 for q ∈ Q

thus producing the configuration

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q11

− −

As before, the state-object is sent to the only positively charged symbol-membrane,
but this time it sets it to neutral:

qp(n)+9 []+γ → [qp(n)+10]0γ for q ∈ Q and γ ∈ Γ .

The symbol-object inside responds to this change of charge by deleting itself,

[γ → λ]0γ for γ ∈ Γ

while at the same time the state-object produces the primed version of the new
symbol-object corresponding to the symbol written by the Turing machine. As-
sume that the transition function of M specifies that δ(q,t) = (r, b, /); the corre-
sponding rules are

[qp(n)+10 → qp(n)+11 σ
′]0γ if δ(q, γ) = (r, σ, d) for some r ∈ Q, σ ∈ Γ , d ∈ {/, .}.

Hence, our example configuration evolves as follows:

50 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q12

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b′

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q13

− −

The new primed symbol-object is sent back to the only positive tape-membrane
as before (see page 47), while the state-object is sent out as a new state-object
qγ0 , having the tape symbol as a superscript and a new counter, starting from 0,
as a subscript (there will be no conflict with the previous rules due to the new
superscript):

[σ′]0γ → []0γ σ
′ for γ, σ ∈ Γ

[qp(n)+11 → qp(n)+12]0γ for q ∈ Q and γ ∈ Γ
[qp(n)+12]0γ → []0γ q

γ
0 for q ∈ Q and γ ∈ Γ .

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b′

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q14

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b

− 12 11 10
t

000+ + 0

0

02 11

0

02 1011

qt0

− −

While the doubly-primed bit-objects are reset to their initial state as described
earlier, the state-object begins to update the position-membranes, reflecting the

Exponential-Space P Systems with Active Membranes 51

movement of the tape head. Recall that incrementing a binary counter means
flipping its bits, from the least to the most significant one, until a 0 is flipped
into an 1 (i.e., the remaining bits are left unchanged). Similarly, decrementing it
means flipping its bits in that order until a 1 is flipped into a 0. The subscript of the
state-object, initially 0, records the next bit position to flip. The flipping operation
is carried out by entering and exiting the corresponding position-membrane and
updating its charge. When a 0 has been flipped into an 1 (for an increment), or a
1 into a 0 (for a decrement), the subscript of the state-object becomes p(n) + 1,
thus leaving the subsequent bits unchanged.

If δ(q, γ) = (r, σ, .) for some r ∈ Q, σ ∈ Γ (i.e., the tape head moves to the
right), then the position-updating procedure is performed via the following rules:

qγi []αi → [qγi]αi for γ ∈ Γ , q ∈ Q, α ∈ {0,+} and 0 ≤ i ≤ p(n)

[qγi]0i → []+i q
γ
p(n)+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

[qγi]+i → []0i q
γ
i+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

If δ(q, γ) = (r, σ, /) for some r ∈ Q, σ ∈ Γ (i.e., the tape head moves to the left),
then the rules are:

qγi []αi → [qγi]αi for γ ∈ Γ , q ∈ Q, α ∈ {0,+} and 0 ≤ i ≤ p(n)

[qγi]0i → []+i q
γ
i+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

[qγi]+i → []0i q
γ
p(n)+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

In our example we have to decrement the head position from 110 to 101 by flipping
only the two least significant bits (notice how the subscript 2 is skipped):

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + 0

0

02 11

0

02 1011

qt0

12 11 00
− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + +

0

02 11

0

02 1011

qt1

12 11 00
−−

52 A. Alhazov et al.

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + +

0

02 11

0

02 1011

qt1

12 11 00
− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt3

12 11 00
− −

When the subscript of qγ reaches p(n) + 1 (i.e., when the position updating has
been completed) the system begins preparing the encoding of next configuration
of M . This requires resetting all charges of tape-membranes to neutral: this is
accomplished by creating n objects t0, . . . , tn−1 (resetting the membranes having
the same name) and 2p(n) copies of object c0 (resetting the membranes having
label t). The latter objects are created by an initial object cp(n), which is rewritten
as two copies of cp(n)−1, each of them rewritten as two copies of cp(n)−2, and so
on. The state-object waits for this process to terminate, and then finally becomes
the new state of M , as described by the transition function.

[qγp(n)+1 → qγp(n)+2 t0 · · · tn−1 cp(n)]0s for q ∈ Q and γ ∈ Γ
[qγp(n)+k → qγp(n)+k+1]0s for q ∈ Q, γ ∈ Γ and 2 ≤ k ≤ p(n) + 2

tj []αtj → [tj]
0
tj for 0 ≤ j ≤ n− 1 and α ∈ {0,−}

[tj → λ]0tj for 0 ≤ j ≤ n− 1

[ci → ci−1ci−1]0s for 1 ≤ i ≤ p(n)

c0 []αt → [c0]0t for α ∈ {0,−}
[c0 → λ]0t

[qγ2p(n)+3 → r]0s for q, r ∈ Q and γ ∈ Γ , if δ(q, γ) = (r, σ, d)

for some σ ∈ Γ and d ∈ {/, .}.

In our example, the computation evolves as follows:

Exponential-Space P Systems with Active Membranes 53

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt4

12 11 00

t0 t1 c2

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt5

12 11 00
t0 t1

c1 c1

0 −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt6

12 11 00

c0 c0 c0 c0

0 −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

0 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt7

12 11 00
c0 c0 c0 c0

00

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

0 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

r

12 11 00
0

We have finally reached the configuration of Πx corresponding to the configuration
of M after it has performed its computation step, and we are ready to start
simulating a new step of M .

54 A. Alhazov et al.

3.3 Creating the initial configuration

In the previous section we described how to simulate a computation step of M
starting from an arbitrary configuration of the Turing machine. We still need to
describe how to encode the initial configuration of M (represented in the following
picture) in the P system Πx simulating it.

ab

qinit

010 011
100 101

110 111

We use the following as the initial configuration of the P system:

t0 t1 t

tba2 1 0 e
s

00

b0

0 02

a1

0 12 d1 d0
0

t

z2
0000 0 0

0

101102 11

0
+

This initial configuration consists of a membrane s containing:

• Membranes t0, . . . , tn−1, each containing p(n) + 1 bit-objects encoding the po-
sition numbers of the input cells (as described above).

• One single copy of membrane t, containing the bit-object 1p(n) (recall that
the most significant bit for the non-input tape cells is always 1) and the “bit
variables” d0, . . . , dp(n)−1.

• The position-membranes, labeled by 0, . . . , p(n) + 1, whose initial charge is 0
by definition. Those which have to be set to positive in order to set up the
initial head position (i.e., 2p(n) − n) contain a + object.

• The error-membrane e.
• The symbol-membranes, labeled by the elements of Γ .
• The object zp(n).

All these items only depend on the size of the input of the Turing machine M .
The input itself is encoded by a set of objects denoting the symbols, subscripted
by an index indicating their position in the string (counting from 0), and placed
into the input membrane s. In our example, the input ba of M is encoded in Πx

as b0a1.
During the initialization phase of Πx, several operations are carried out. First

of all, the input-objects are sent to the corresponding tape-membranes (indicated
in their subscripts). This is accomplished by using the following rules:

Exponential-Space P Systems with Active Membranes 55

γi []0ti → [γ]0ti for γ ∈ Γ and 0 ≤ i ≤ n− 1.

The position-membranes have their charges set to + by sending out the + objects,
which are then deleted using

[+]0i → []+i + for 0 ≤ i ≤ p(n)

[+→ λ]0s.

The tape-membranes corresponding to the working portion of the tape, of size
2p(n), are created by iterated elementary membrane division, starting from the
single initial tape-membrane t. The objects di are rewritten as 0i on one side, and
as 1i on the other, whenever the membrane is divided. This process creates all the
2p(n) cell numbers in binary. The corresponding rules are

[di]
0
t → [0i]

0
t [1i]

0
t for 0 ≤ i ≤ p(n)− 1.

This latter operation requires p(n) steps. The object zp(n) has its subscript decre-
mented to 1, and then finally becomes the state-object corresponding to the initial
state of M :

[zi → zi−1]0s for 2 ≤ i ≤ p(n)

[z1 → qinit]0s.

In our example, the initialization phase proceeds as follows.

t0 t1 t

tba2 1 0 e
s

00
b

0 02
a

0 12 d1 00
0

t

z1
0000 + 0

0

101102 11

0

+

t

12 d1 10
0

t

t0 t1 t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
0

t

qinit
0000 + 0

0

101102 11

0

t

12 01 10
0

t
t

12 11 00
0

t
t

12 11 10
0

t

After having initialized the P system Πx according to the initial configuration
of M on input x, the simulation is carried out step-by-step as described in the
previous section.

56 A. Alhazov et al.

3.4 Halting and output

The only missing part of our simulation concerns the operations to carry out when
the simulated machine halts by accepting or rejecting. Assuming the transition
function δ of M is undefined on its accepting state qyes and its rejecting state qno,
we can simply proceed as follows: if the machine enters qyes, then in Πx the state-
object qyes appears inside the outermost membrane s; we can then send that object
out to the environment as yes to make Πx accept. The behavior is analogous for
the rejecting state qno.

[qyes]
0
s → []0s yes [qno]0s → []0s no.

3.5 Completing the proof

The initialization phase of Πx, simulating M on an input x of length n, requires
O(p(n)) time in order to create 2p(n) copies of membrane t by a sequence of
elementary divisions.

Then, the t(n) steps performed by M are simulated. Each step involves guessing
the tape-membrane corresponding to the cell currently under the tape head; each
simulated step may require up to O(s(n)) guesses in the worst case. For each guess,
we need to check if the correct tape-membrane was selected, and this requires
time proportional to the number of bit positions, i.e., O

(
log s(n)

)
steps. If the

membrane is incorrect, then O(1) steps are required to set its charge to negative
and prepare the system for a further guess. If the membrane was the right one, the
state, head position and tape symbol have to be updated, and this requires further
O
(

log s(n)
)

steps. Hence, each simulated step of M requires O
(
s(n) log s(n)

)
steps

of Πx, for a total of O
(
t(n)s(n) log s(n)

)
steps.

As the output step only requires constant time, the whole simulation can be
carried out in O

(
t(n)s(n) log s(n)

)
time. Since s(n) is O(t(n)) for a Turing machine

(assuming it at least reads its whole input), the simulation time can be expressed
as a function of t(n) as O

(
t(n)2 log t(n)

)
. Hence, this is an “efficient” simulation:

if M works in polynomial time, then the family Π = {Πx : x ∈ Σ?} simulating it
also works in polynomial time; if M runs in exponential (resp., doubly-exponential)
time, then Π also runs in exponential (resp., doubly-exponential time).

Notice that the actual running time of the simulation depends on the sequence
of nondeterministic choices performed when the system has to guess the correct
tape-membrane. In the best case, when the correct guess is always the first one,
the time reduces to O

(
t(n) log s(n)

)
instead of O

(
t(n)s(n) log s(n)

)
as in the worst

case.
The space required by Πx is asymptotically due to the tape-membranes. These

are s(n) in number, and each of them contains O(log s(n)) bit-objects denoting
its position on the tape. Hence, the simulation requires O

(
s(n) log s(n)

)
space:

a polynomial-space Turing machine is simulated in polynomial space, and an
exponential-space one in exponential space.

Exponential-Space P Systems with Active Membranes 57

In order to complete the proof of Theorem 1, we only need to check that the
family Π is polynomial-time uniform. It is easy to verify that all the rules and the
initial configuration of Πx actually depend only on the length of x (except for the
input objects). There is a constant number of different kinds of rules parametric
with respect to n or p(n); the larger sets of rules are (1) and (2) on page 47,
consisting of O

(
n× p(n)

)
rules each.

4 Characterizing exponential space

In the previous section we described a simulation of deterministic Turing machines
working in exponential space by means of P systems. Combining this result with
the converse simulation illustrated in [8], we can show that the computational
power of Turing machines and of P systems with active membranes coincide when
these devices operate within an exponential space limit:

Corollary 1. The following inclusions hold:

EXPMCSPACEAM(−d,−n) ⊆ EXPMCSPACE
[?]
AM

⊆
⊆

EXPSPACE ⊇ NEXPMCSPACE?AM

where [?] denotes optional semi-uniformity (instead of uniformity). Hence, all
classes shown in the diagram coincide.

Proof. The chain of inclusions

EXPMCSPACEAM(−d,−n) ⊆ EXPMCSPACE
[?]
AM ⊆ NEXPMCSPACE?AM

holds by definition. That NEXPMCSPACE?AM ⊆ EXPSPACE is an imme-
diate corollary of Theorem 5 in [8]. Finally, the inclusion of EXPSPACE in
EXPMCSPACEAM(−d,−n) directly follows from Theorem 1. ut

Let us remark that the power of the complexity class EXPMCSPACEAM is
mostly due to the families of P systems themselves, as opposed to the Turing
machines providing the uniformity condition; indeed, these would only be able to
solve the strictly smaller [4] class P of decision problems.

5 Conclusions

We showed that the class of problems solvable by P systems with active membranes
in exponential space coincides with the class of problems solved by Turing machines
in exponential space, that is, EXPMCSPACEAM = EXPSPACE.

58 A. Alhazov et al.

Again, the techniques used to prove this result cannot be applied immediately
when the space bound is less strict, i.e., super-exponential. In fact, in this case
we would need systems using indexed bits, where the index ranges over a super-
polynomial set of values; as a consequence, such systems cannot be generated in a
uniform way in a polynomial number of steps, as requested by Definition 3. Thus,
it remains open for this case the question whether these kinds of P systems with
active membranes have the same computing power as Turing machines working
under the same space constraints.

Let us note that if membrane creation [1] is used instead of membrane division,
then the simulation may be straightforward and faster (the slowdown would be
by a constant factor only). The simulation would also be deterministic, instead
of requiring “wild” nondeterminism as in our result. Turing machine cells may
be represented by nested membranes, created when needed; this is a construction
that generalizes even to super-exponential space. However, with membrane division
only, the depth of membrane hierarchy cannot increase during the computation,
and it is originally polynomial under our current definition.

As a direction for future research, it might also be interesting to analyze the
behavior of families of P systems with active membranes working in logarithmic
space. However, there are two major issues to be considered in this case: first, we
should slightly change the notion of space complexity, in order to allow for a “read-
only” input multiset that is not counted when the space required by the P system
is measured (similarly to the input tape of a logspace Turing machine). Further-
more, the notion of uniformity used to define the families of P systems should be
weakened, since polynomial-time Turing machines constructing the families might
be able to solve the problems altogether by themselves. More general forms of
uniformity have already been investigated [3], and that work is going to be useful
when attacking this problem.

Acknowledgements

Artiom Alhazov gratefully acknowledges the project RetroNet by the Lombardy
Region of Italy under the ASTIL Program (regional decree 6119, 20100618). The
work of the other authors was partially supported by Università degli Studi di
Milano-Bicocca, Fondo di Ateneo per la Ricerca (FAR) 2011.

References

1. Artiom Alhazov, Rudolf Freund, and Agust́ın Riscos-Núñez. Membrane division,
restricted membrane creation and object complexity in P systems. International
Journal of Computer Mathematics, 83(7):529–547, 2006.

2. Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan. Solving a PSPACE-
complete problem by recognizing P systems with restricted active membranes. Fun-
damenta Informaticae, 58(2):67–77, 2003.

Exponential-Space P Systems with Active Membranes 59

3. Niall Murphy and Damien Woods. The computational power of membrane systems
under tight uniformity conditions. Natural Computing, 10(1):613–632, 2011.

4. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1993.
5. Mario J. Pérez-Jiménez, Álvaro Romero-Jiménez, and Fernando Sancho-Caparrini.

Complexity classes in models of cellular computing with membranes. Natural Com-
puting, 2(3):265–284, 2003.

6. Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. In-
troducing a space complexity measure for P systems. International Journal of Com-
puters, Communications & Control, 4(3):301–310, 2009.

7. Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. P sys-
tems simulating oracle computations. In Marian Gheorghe, Gheorghe Păun, Arto
Salomaa, Grzegorz Rozenberg, and Sergey Verlan, editors, Membrane Computing,
12th International Conference, CMC 2011, volume 7184 of Lecture Notes in Com-
puter Science, pages 346–358. Springer, 2011.

8. Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. P sys-
tems with active membranes working in polynomial space. International Journal of
Foundations of Computer Science, 22(1):65–73, 2011.

9. Gheorghe Păun. P systems with active membranes: Attacking NP-complete prob-
lems. Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

10. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Hand-
book of Membrane Computing. Oxford University Press, 2010.

11. Petr Sośık. The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing, 2(3):287–298, 2003.

12. Claudio Zandron, Claudio Ferretti, and Giancarlo Mauri. Solving NP-complete
problems using P systems with active membranes. In Ioannis Antoniou, Cris-
tian S. Calude, and Michael J. Dinneen, editors, Unconventional Models of Computa-
tion, UMC’2K, Proceedings of the Second International Conference, pages 289–301.
Springer, 2001.

