
Asynchronous and Maximally Parallel
Deterministic Controlled Non-Cooperative
P Systems Characterize NFIN ∪ coNFIN

Artiom Alhazov1,2 and Rudolf Freund3

1 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy
artiom.alhazov@unimib.it

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. Membrane systems (with symbol objects) are distributed controlled multiset
processing systems. Non-cooperative P systems with either promoters or inhibitors (of
weight not restricted to one) are known to be computationally complete. In this paper
we show that the power of the deterministic subclass of such systems is computationally
complete in the sequential mode, but only subregular in the asynchronous mode and in
the maximally parallel mode.

1 Introduction

The most famous membrane computing model where determinism is a criterion of
universality versus decidability is the model of catalytic P systems, see [2] and [4].

It is also known that non-cooperative rewriting P systems with either promoters
or inhibitors are computationally complete, [1]. Moreover, the proof satisfies some
additional properties:

• Either promoters of weight 2 or inhibitors of weight 2 are enough.
• The system is non-deterministic, but it restores the previous configuration if

the guess is wrong, which leads to correct simulations with probability 1.

The purpose of this paper is to formally prove that computational completeness
cannot be achieved by deterministic systems when working in the asynchronous
or in the maximally parallel mode.

26 A. Alhazov, R. Freund

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if N\S
is finite. The family of all finite (co-finite) sets of non-negative integers is denoted
by NFIN (coNFIN , respectively). The family of all recursively enumerable sets
of non-negative integers is denoted by NRE. In the following, we will use ⊆ both
for the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves both
determinism and the model, in the following we restrict ourselves to consider mem-
brane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from O
contained in the region, the set of all configurations over O is denoted by C (O).
A rule r : u → v is applicable if the current configuration contains the multiset
specified by u. Furthermore, applicability may be controlled by context conditions,
specified by pairs of sets of multisets.

Definition 1. A rule with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is appli-
cable to a configuration C if r is applicable, and there exists some j ∈ {1, · · · ,m}
for which

• there exists some p ∈ Pj such that p ⊆ C and
• q ̸⊆ C for all q ∈ Qj.

In words, context conditions are satisfied if there exists a pair of sets of multisets
(called promoter set and inhibitor set, respectively), such that at least one multiset
in the promoter set is a submultiset of the current configuration, and no multiset
in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules is a
construct

Π = (O,Σ,w,R′, R,>)

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of rules
with context conditions and > is a priority relation on the rules in R; if rule r′ has
priority over rule r, denoted by r′ > r, then r cannot be applied if r′ is applicable.

A Characterization of NFIN ∪ coNFIN 27

Throughout the paper, we will use the word control to mean that at least one
of these features is allowed (context conditions or promoters or inhibitors only and
eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), multiple applicable rules may be chosen non-deterministically to be ap-
plied in parallel to the underlying configuration to disjoint submultisets, possibly
leaving some objects idle, under the condition that no further rule is applicable to
them. In the asynchronous mode (asyn), any positive number of applicable rules
may be chosen non-deterministically to be applied in parallel to the underlying
configuration to disjoint submultisets. The computation step between two con-
figurations C and C ′ is denoted by C ⇒ C ′, thus yielding the binary relation
⇒: C (O)×C (O). A computation halts when there are no rules applicable to the
current configuration (halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x|
if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is
its results – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOPα

1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the rules
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the maximum
number of promoters/inhibitors in the Pi and Qi, respectively; l and l′ indicate
the maximum of weights of promoters and inhibitors, respectively. If any of these
numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types of rules we are
going to distinguish between cooperative (β = coo) and non-cooperative (i.e., the
left-hand side of each rule is a single object; β = ncoo) ones.

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities or
the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm)) we have
m = 1, we say that (r, (P1, Q1)) is a rule with a simple context condition, and
we omit the inner parentheses in the notation. Moreover, context conditions only
using promoters are denoted by r|p1,··· ,pn , meaning (r, {p1, · · · , pn} , ∅), or, equiva-
lently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions only using inhibitors are denoted
by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or r|¬{q1,··· ,qn}. Likewise, a rule with
both promoters and inhibitors can be specified as a rule with a simple context con-
dition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for (r, {p1, · · · , pn} , {q1, · · · , qn}). Finally,
promoters and inhibitors of weight one are called atomic.

28 A. Alhazov, R. Freund

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working (ob-
viously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition; then
we claim that (the effect of) this rule is equivalent to (the effect of) the collection
of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to
appear in the configuration, but do not care about the other promoters p3 to pm;
in general, when promoter pj is chosen to make the rule r applicable, we do not
allow p1 to pj−1 to appear in the configuration, but do not care about the other
promoters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj from
enabling the rule r to be applied, this makes no harm as in this case one of the
promoters pk, 1 ≤ k < j, must have the possibility for enabling r to be applied.
By construction, the domains of the new context conditions now are disjoint, so
this transformation does not create (new) non-determinism. In a similar way, this
transformation may be performed on context conditions which are not simple.
Therefore, without restricting generality, the set of promoters may be assumed to
be a singleton. In this case, we may omit the braces of the multiset notation for
the promoter multiset and write (r, p,Q).

Example 1. Consider an arbitrary finite set H of numbers. Choose K = max (H)+
1; then we construct the following deterministic accepting P system with promoters
and inhibitors:

Π = (O, {a} , s0f0 · · · fK , R′, R) ,
O = {a} ∪ {si, fi | 0 ≤ i ≤ K} ,
R′ = {si → si+1 | 0 ≤ i ≤ K − 1} ∪ {fi → fi | 0 ≤ i ≤ K} ,
R = {si → si+1|ai+1 , | 0 ≤ i ≤ K − 1}
∪

{
fi → fi|si,¬ai+1 , | 0 ≤ i < K, i /∈ H

}
∪ {fK → fK |sK} .

The system step by step, by the application of the rule si → si+1|ai+1 , 0 ≤ i < K,
checks if (at least) i + 1 copies of the symbol a are present. If the computation
stops after i steps, i.e., if the input has consisted of exactly i copies of a, then
this input is accepted if and only if i ∈ H, as exactly in this case the system does
not start an infinite loop with using fi → fi|si,¬ai+1 . If the input has contained
more than max (H) copies of a, then the system arrives in the state sK and will
loop forever with fK → fK |sK . Therefore, exactly H is accepted. To accept the
complement of H instead, we simply change i /∈ H to i ∈ H and as well omit the
rule fK → fK |sK . It is easy to see that for the maximally parallel mode, we can

A Characterization of NFIN ∪ coNFIN 29

replace each rule fi → fi|si,¬ai+1 by the corresponding rule fi → fi|si ; in this case,
this rule may be applied with still some a being present while the system passes
through the state si, but it will not get into an infinite loop in that case.

In sum, we have shown that

NdetaOP asyn
1

(
ncoo, (pro1,∗, inh1,∗)1

)
⊇ FIN ∪ coNFIN

and
NdetaOPmaxpar

1 (ncoo, pro1,∗) ⊇ FIN ∪ coNFIN.

Example 2. For P systems working in the maximally parallel way we can even
construct a system with inhibitors only:

Π = (O, {a} , tsK , R) ,
O = {a, t} ∪ {si | 0 ≤ i ≤ K} ,
R′ = {si → tsi−1, si → si | 1 ≤ i ≤ K} ∪ {t→ λ, s0 → s0} ,
R = {si → tsi−1|¬ai | 1 ≤ i ≤ K}
∪ {t→ λ} ∪ {si → si|¬t | 0 ≤ i ≤ K, i /∈ H} .

This construction does not carry over to the case of the asynchronous mode, as
the rule t → λ is applied in parallel to the rules si → tsi−1|¬ai until the input ai

is reached. In this case, the system canot change the state si anymore, and then it
starts to loop if and only if i /∈ H. To accept the complement of H instead, change
i ∈ H to i /∈ H, i.e., in sum, we have proved that

NdetaOPmaxpar
1 (ncoo, inh1,∗) ⊇ FIN ∪ coNFIN.

As we shall show later, all the inclusions stated in Example 1 and Example 2
are equalities.

Remark 3. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, we omit R′ in the de-
scription of the P system. Moreover, for systems having only rules with a simple
context condition, we omit d in the description of the families of sets of numbers
and simply write

NδOPα
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOPα

1 (β, prok,l).

2.1 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

30 A. Alhazov, R. Freund

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [5]. We here
consider register machines used as accepting or as generating devices. In accepting
register machines, a vector of non-negative integers is accepted if and only if the
register machine halts having it as input. Usually, without loss of generality, we
may assume that the instruction lh : HALT always appears exactly once in P ,
with label lh. In the generative case, we start with empty registers and take the
results of all possible halting computations.

3 Results

In this section we mainly investigate deterministic accepting P systems with con-
text conditions and priorities on the rules (deterministic P systems for short) using
only non-cooperative rules and working in the sequential, the asynchronous, and
the maximally parallel mode.

Remark 4. We first notice that maximal parallelism in systems with non-
cooperative rules means the total parallelism for all symbols to which at least
one rule is applicable, and determinism guarantees that “at least one” is “exactly
one” for all reachable configurations and objects. Determinism in the sequential
mode requires that at most one symbol has an associated applicable rule for all
reachable configurations. Surprisingly enough, in the case of the asynchronous
mode we face an even worse situation than in the case of maximal parallelism – if
more than one copy of a specific symbol is present in the configuration, then no
rule can be applicable to such a symbol in order not to violate the condition of
determinism.

We now define the bounding operation over multisets, with a parameter k ∈ N
as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

A Characterization of NFIN ∪ coNFIN 31

The mapping bk “crops” the multisets by removing copies of every object a
present in more than k copies until exactly k remain. For two multisets u, u′,
bk (u) = bk (u

′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k and

|u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into (k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying, for each a ∈
O∗, whether no copy, one copy, or ... k−1 copies, or “k copies or more” are present.
We denote the range of bk by {0, · · · , k}O.

Lemma 1. Context conditions are equivalent to predicates defined on boundings.

Proof. We start by representing context conditions by predicates on boundings.
Consider a rule with a simple context condition (r, p,Q), and let the current con-
figuration be C. Then, it suffices to take k ≥ max (|p| ,max{|q| | q ∈ Q}), and
let C ′ = bk (C). The applicability condition for (r, p,Q) may be expressed as

p ⊆ C ′ ∧
(∧

q∈Q q ̸⊆ C ′
)
. Indeed, x ⊆ C ←→ x ⊆ C ′ for every multiset x with

|x| ≤ k, because for every a ∈ O, |x|a ≤ |C|a ←→ |x|a ≤ min (|C|a , k) holds if
|x|a ≤ k. Finally, we notice that context conditions which are not simple can be
represented by a disjunction of the corresponding predicates.

Conversely, we show that any predicate E ⊆ {0, · · · , k}O for the bounding
mapping bk for rule r can be represented by some context conditions. For each
multiset c ∈ E, we construct a simple context condition to the effect of “contains
c, but, for each a contained in c for less than k times, not more than |c|a symbols
a”: {(

r, c,
{
a|c|a+1 | |c|a < k

})
| c ∈ E

}
.

Joining multiple simple context conditions over the same rule into one rule with
context conditions concludes the proof. �

The following theorem is valid even when the rules are not restricted to non-
cooperative ones, and when determinism is not required, in either derivation mode
(also see [3]).

Theorem 1. Priorities are subsumed by conditional contexts.

Proof. A rule is prohibited from being applicable due to a priority relation if and
only if at least one of the rules with higher priority might be applied. Let r be a
rule of a P system (O,Σ,w,R′, R,>), and let r1 > r, · · · , rn > r. Hence, the rule r
is not blocked by the rules r1, · · · , rn if and only if the left-hand sides of the rules
r1, · · · , rn, lhs (r1) , · · · , lhs (rn) are not present in the current configuration or the
context conditions given in these rules are not fulfilled. According to Lemma 1,
these context conditions can be formulated as predicates on the bounding bk where
k is the maximum of weights of all left-hand sides, promoters, and inhibitors in the
rules with higher priority r1, · · · , rn. Together with the context conditions from r
itself, we finally get context conditions for a new rule r′ simulating r, but also in-
corporating the conditions of the priority relation. Performing this transformation
for all rules r concludes the proof. �

32 A. Alhazov, R. Freund

Remark 5. From [3] we already know that in the case of rules without context con-
ditions, the context conditions in the new rules are only sets of atomic inhibitors,
which also follows from the construction given above. A careful investigation of
the construction given in the proof of Theorem 1 reveals the fact that the maximal
weights for the promoters and inhibitors to be used in the new system are bounded
by the number k in the bounding bk.

3.1 Sequential Systems

Although throughout the rest of the paper we are not dealing with sequential
systems anymore, the proof of the following theorem gives us some intuition why,
for deterministic non-cooperative systems, there are severe differences between the
sequential mode and the asynchronous or the maximally parallel mode.

Theorem 2. NdetaOP sequ
1 (ncoo, pro1,1, inh1,1) = NRE.

Proof. Consider an arbitrary deterministic register machine M = (m,B, l0, lh, P).
We simulate M by a deterministic P system Π = (O, {a1} , l0, R) where

O = {aj | 1 ≤ j ≤ m} ∪ {l, l1, l2 | l ∈ B} ,
R = {l→ aj l

′ | (l : ADD(j), l′) ∈ P}
∪ {l→ l1|aj , aj → a′j |l1,¬a′

j
, l1 → l2|a′

j
, a′j → λ|l2 , l1 → l′|¬a′

j
,

l→ l′′|¬aj | (l : SUB(j), l′, l′′) ∈ P}.

We claim that Π is deterministic and non-cooperative, and it accepts the same set
as M . �

As can be seen in the construction of the deterministic P system in the proof
above, the rule aj → a′j |l1,¬a′

j
used in the sequential mode can be applied ex-

actly once, priming exactly one symbol aj to be deleted afterwards. Intuitively, in
the asynchronous or the maximally parallel mode, it is impossible to choose only
one symbol out of an unbounded number of copies to be deleted. The bounding
operation defined above will allow us to put this intuition into a formal proof.

3.2 Asynchronous and Maximally Parallel Systems

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as the
maximum of size of all multisets in all context conditions. Then, the bounding does
not influence applicability of rules, and bk (u) is halting if and only if u is halting.
We proceed by showing that bounding induces equivalence classes preserved by
any computation.

Lemma 2. Assume u ⇒ x and v ⇒ y. Then bk (u) = bk (v) implies bk (x) =
bk (y).

A Characterization of NFIN ∪ coNFIN 33

Proof. Equality bk (u) = bk (v) means that for every symbol a ∈ O, if |u|a ̸= |va|
then |u|a ≥ k and |v|a ≥ k, and we have a few cases to be considered. If no
rule is applicable to a, then the inequality of symbols a will be indistinguishable
after bounding also in the next step (both with at least k copies of a). Otherwise,
exactly one rule r is applicable to a (by determinism, and bounding does not affect
applicability), then the difference of the multiplicities of the symbol a may only
lead to differences of the multiplicities of symbols b for all b ∈ rhs (r). However,
either all copies of a are erased by the rule a → λ or else at least one copy of a
symbol b will be generated from each copy of a by this rule alone, so |x|b ≥ |u|a ≥ k
and |y|b ≥ |v|a ≥ k, so all differences of multiplicities of an object b in u and v will
be indistinguishable after bounding in this case, too. �

Corollary 1. If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Proof. Let w be the fixed part of the initial configuration. Then we consider com-
putations from uw and from vw. Clearly, bk (uw) = bk (vw). Equality of boundings
is preserved by one computation step, and hence, by any number of computation
steps.

Assume the contrary of the claim: one of the computations halts after s steps,
while the other one does not, i.e., let uw ⇒s u′ and vw ⇒s v′. By the previous
paragraph, bk (u

′) = bk (v
′). Since bounding does not affect applicability of rules,

either both u′ and v′ are halting, or none of them. The contradiction proves the
claim. �

We should like to notice that the arguments in the proofs of Lemma 2 and
Corollary 1 are given for the maximal parallel mode; following the observation
stated at the end of Remark 4, these two results can also be argued for the asyn-
chronous mode.

Theorem 3. For deterministic P systems working in the asynchronous or in the
maximally parallel mode, we have the following characterization:

NFIN ∪ coNFIN = NdetaOP asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOPmaxpar
1 (ncoo, pro1,∗)

= NdetaOPmaxpar
1 (ncoo, inh1,∗)

= NdetaOP asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NdetaOPmaxpar

1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
.

Proof. Each equivalence class induced by bounding is completely accepted or com-
pletely rejected. If no infinite equivalence class is accepted, then the accepted set
is finite (containing numbers not exceeding (k − 1) · |O|). If at least one infinite
equivalence class is accepted, then the rejected set is finite (containing numbers
not exceeding (k − 1) · |O|). This proves the “at most NFIN ∪ coNFIN” part.

In Examples 1 and 2 we have already shown that

NdetaOPα
1 (ncoo, pro1,∗, inh1,∗) ⊇ FIN ∪ coNFIN

34 A. Alhazov, R. Freund

for α ∈ {asyn,maxpar} as well as

NdetaOPmaxpar
1 (ncoo, γ1,∗) ⊇ FIN ∪ coNFIN

for γ ∈ {pro, inh}. This observation concludes the proof. �
There are several questions remaining open: First of all, we do not know

whether inhibitors in the rules are sufficient to yield FIN ∪ coNFIN with the
asynchronous mode, too. Moreover, it would be interesting to see if the parameter
K used in the proof of the preceding theorem induces an infinite hierarchy on the
families NdetaOPα

1 (ncoo, γ1,K), α ∈ {asyn,maxpar}, γ ∈ {pro, inh}.

4 Conclusion

We have shown that, like in case of catalytic P systems, for non-cooperative P
systems with promoters and/or inhibitors (with or without priorities), determinism
is a criterion drawing a borderline between universality and decidability. In fact, for
non-cooperative P systems working in the maximally parallel or the asynchronous
mode, we have computational completeness in the unrestricted case, and only all
finite number sets and their complements in the deterministic case.

Acknowledgements. The first author gratefully acknowledges the project
RetroNet by the Lombardy Region of Italy under the ASTIL Program (regional
decree 6119, 20100618).

References

1. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. Membrane Computing, 5th In-
ternational Workshop WMC 2004, Milano, Revised Selected and Invited Papers (G.
Mauri et al., eds.), LNCS 3365, Springer, 2005, 178–189.

2. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems with-
out Priorities: Two Catalysts are Sufficient, Theoretical Computer Science 330, 2,
2005, 251–266.

3. R. Freund, M. Kogler, M. Oswald, A General Framework for Regulated Rewriting
Based on the Applicability of Rules. In: J. Kelemen, A. Kelemenová, Computation,
Cooperation, and Life, Springer, LNCS 6610, 2011, 35–53.

4. O.H. Ibarra, H.-C. Yen: Deterministic Catalytic Systems are Not Universal, Theoret-
ical Computer Science 363, 2006, 149–161.

5. M.L. Minsky: Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

6. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
7. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Computing,

Oxford University Press, 2010.
8. G. Rozenberg, A. Salomaa: Handbook of Formal Languages, 3 vol., Springer, 1997.
9. P systems webpage. http://ppage.psystems.eu

