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Summary. In this paper we study a notion of self-stabilization, inspired from biology
and engineering. Multiple variants of formalization of this notion are considered, and we
discuss how such properties affect the computational power of multiset rewriting systems.

1 Introduction

Membrane systems, also called P systems, are a framework for (bioinspired) com-
putational models, see [4], [5] and [7]. In this paper we consider a one-region
rewriting model with symbol objects. In this case, membrane computing can be
considered as (maximally parallel or sequential) multiset processing. In general,
a computation is a sequence of transitions between configurations. Configurations
are multisets, and the transitions are induced by rules, defined by reactants, prod-
ucts and control (additional applicability conditions, if any), viewed as formal
computational systems (generating/accepting numeric/vector sets, or computing
functions).

We will call a property dynamic if it depends on the behavior of a system and
cannot be easily derived from its description (as opposed to syntactic properties).
Given any finite computation, we assume that the property is easily verifiable. The
two usual sources of undecidability are a) that we do not always know whether
we are dealing with finite or infinite computations, and b) that some properties
are defined on infinite number of computations (due to non-determinism, to the
initial input or to some other parameter). In the case of this paper, another source
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of potential undecidability is the finite set to be reached as given in the definitions
below.

Since in this paper we will deal with reachability issues, we would also like to
mention the connection with temporal logic [2].

Self-stabilization is a known concept in conventional distributed computing,
[8], as well as in systems biology, but as far as we know, it has not yet been
considered in the framework of membrane computing. It has been recalled by
Jacob Beal during the Twelfth Conference in Membrane Computing, CMC12, and
an attempt to formalize it in the membrane computing framework has been done
in [1]. The underlying idea is the tolerance of natural and engineering systems to
perturbations. The formulation from [8] says:

A system is self-stabilizing if and only if:

1. Starting from any state, it is guaranteed that the system will eventually reach
a correct state (convergence).

2. Given that the system is in a correct state, it is guaranteed to stay in a correct
state, provided that no fault happens (closure).

In case of inherently non-deterministic systems, “with probability 1” should
be added. Based on this concept, we propose to consider a few formal properties,
following the discussion below.

In this paper we consider fully cooperative multiset rewriting, possibly with
promoters/inhibitors/priorities, operating either in the maximally parallel or the
sequential mode. We consider a single working region only, for two reasons. First,
the properties of interest are unaffected by flattening the static membrane struc-
ture. Second, we would currently like to avoid the discussion about reachability
related to “arbitrary configurations” with dynamic membrane structure.

2 Definitions

We assume the reader to be familiar with the basics of formal language theory,
e.g., we refer to [6].

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The family of all finite
(recursive, recursively enumerable) sets of positive integers is denoted by NFIN
(NREC, NRE, respectively).

2.1 Membrane systems

A one-region (rewriting) membrane system is a tuple

Π = (O,w,R) ,
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where O is a finite alphabet, w ∈ O∗ is a string representing the initial multiset,
and R is a set of rules of the form r : u → v, u ∈ O+, v ∈ O∗.

A configuration of the system is represented by a multiset of objects from O
contained in the region, and a rule r : u → v is applicable if the current configura-
tion contains the multiset specified by u. Furthermore, applicability may be con-
trolled by promoters (r : u → v|a), inhibitors (r : u → v|¬b), or priorities(r

′ > r).
Throughout the paper, we will use the word control to mean that at least one
of these three features is allowed. In such cases, in addition to the availability of
u for a rule r to be applicable, the promoter a must be present in the current
configuration, the inhibitor b has to be absent in the current configuration, and no
rule r′ with higher priority than r is allowed to be applicable, respectively.

A computation step in the sequential mode consists of the non-deterministic
application of one applicable rule, replacing its left side with its right side. In the
maximally parallel mode, multiple applicable rules have to be applied multiple
times, to disjoint submultisets, in a non-deterministic way, possibly leaving some
objects idle, under the condition that no further rule is applicable to them. The
computation step is denoted by the binary relation ⇒. A computation halts when
no rule is applicable to the current configuration (halting configuration).

For a generating system, the result of a halting computation is the total number
of objects in the system when it halts. The set of numbers generated by a P
system is the set of results of its computations. An accepting system is described
as (O,Σ,w,R), where Σ is an input alphabet: instead of w, the computation starts
with wx, x ∈ Σ∗, and its result is |x| if it halts. The set of numbers accepted by
a P system is the set of results of its computations for all x ∈ Σ∗.

2.2 Self-stabilization and related properties

We now resume the discussion started at the end of the Introduction.
Clearly, “a correct state” should be rephrased as “a configuration in the set

of correct configurations”. Moreover, we would like to eliminate the set of correct
states, let us denote it by S, as a parameter. We say that our property holds if
there exists some finite set S of configurations satisfying the conditions 1 and 2
above. Since membrane systems are inherently non-deterministic, we additionally
propose two weaker degrees of such a property: possible (there exists a computation
satisfying the conditions), almost sure (the conditions are satisfied with probability
1 with respect to non-determinism). Finally, if condition 2 is not required, we call
the corresponding property (finite) set-convergence instead of self-stabilization.
We now give the formal definitions from [1].

Definition 1. A P system Π is possibly converging to a finite set S of configura-
tions iff for every configuration C of Π there exists a configuration C ′ ∈ S such
that C ⇒∗ C ′.

Definition 2. A P system Π is (almost surely) converging to a finite set S of
configurations iff for every configuration C of Π the computations starting in C
reach some configuration in S (with probability 1, respectively).
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Definition 3. A P system Π is possibly closed with respect to a finite set S iff
for every non-halting configuration C ∈ S there exists a configuration C ′ ∈ S such
that C ⇒ C ′.

Definition 4. A P system Π is closed with respect to a finite set S iff for every
non-halting configuration C ∈ S C ⇒ C ′ implies C ′ ∈ S.

We say that a system is (possibly, almost surely) set-converging if
it is (possibly, almost surely, respectively) converging to some finite set of
configurations.
We say that a system is possibly self-stabilizing if it is possibly con-
verging to some finite set S of configurations and if it is possibly closed
with respect to S.
We say that a system is (almost surely) self-stabilizing if it is (almost
surely, respectively) converging to some finite set S of configurations and
if it is closed with respect to S.

The examination of computational aspects of these properties motivates us to
add “weakly” to the properties proposed in [1] – (possibly, almost surely) converg-
ing, (possibly) closed, (possibly, almost surely) set-converging, (possibly, almost
surely) self-stabilizing – if the corresponding conditions over configurations C only
spans the reachable non-halting ones.

Another comment we can make on “almost sure” it that such a property may
depend on how exactly the transition probability is defined. The easiest way is to
assign equal probabilities to all transitions from a given configuration. Alterna-
tively, to a transition via a multiset of rules rn1

1 · · · rnm
m we may assign the weight

of a multinomial coefficient
(
n1+···+nm

n1,··· ,nm

)
= (n1+···+nm)!

n1!···nm! , which will make the corner
cases less probable than the average ones. There can be other ways to define tran-
sition probabilities, but we would like to discuss the properties of interest without
fixing a specific way. We assume the transition probabilities in an independent
subsystem are the same as if it were the entire system.

An important assumption we impose on the probability distribution is that the
probability of each transition is uniquely determined by the associated multiset of
rules and by the set of all applicable multisets of rules, yet it does not depend on
the objects that cannot react, or by the previous history of the computation.

2.3 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.
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• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [3]. Register
machines can be used as accepting or as generating as well as as decision devices.
In accepting register machines, a vector of non-negative integers is accepted if
and only if the register machine halts having it as input. Usually, without loss of
generality, we may assume that the instruction lh : HALT always appears exactly
once in P , with label lh. In the generative case, we start with empty registers
and take as results of all possible halting computations. Being used as decision
devices, register machines may halt in an accepting state with label lyes or in a
rejecting state lno, respectively In the following, we shall call a specific model of
P systems computationally complete if and only if for any register machine M we
can effectively construct an equivalent P system Π of that type simulating each
step of M in a bounded number of steps and yielding the same results.

3 Results

3.1 Accepting systems

For the following theorem we consider any computationally complete model of P
systems as defined above, e.g., a model with maximally parallel multiset rewriting
or with controlled sequential multiset rewriting.

Theorem 1. If a model of P systems yields a computationally complete class, then
weakly self-stabilizing subclass accepts exactly NREC.

Proof. For any recursive number set there is a register machine M with one ac-
cepting state qyes and one rejecting state qno, deciding it. We modify the register
machine in order to obtain a register machine M ′ which, once the decision is made,
i.e., qyes or qno has been reached, erases the workspace and then enters q′yes or q′no
respectively, thereby halting in q′yes if and only if the input is accepted or per-
forming an infinite loop with q′no : (SUB (1) , q′no, q

′
no) if and only if the input x

is rejected. This register machine M ′ now can be simulated with a P system Π,
which by construction starts with a configuration representing the input x and will
either end with halting in a configuration representing the state q′yes or else looping
in a configuration representing the state q′no, i.e., Π is weakly self-stabilizing.
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Conversely, consider a self-stabilizing P system Π, i.e., for each input x, Π
performs a computation that ends up in a configuration from a finite set S and
then cannot reach any other configuration outside S. Now consider the derivation
graph for all possible computations of Π on the input x, i.e., the nodes of this
directed graph represent the configurations and the edges indicate the derivation
steps from one configuration to the next one during one of these computations.
As the number of configurations directly derivable from any configuration in Π is
finite, this derivation graph is a connected directed graph with finite degree (from
each node, only a finite number of edges is leaving); moreover, this graph cannot
have a simple path (a path visiting each node at most once) which is infinite,
as every computation in Π has to reach a configuration (node) from S and then
cannot leave the set of configurations S any more. Due to König’s lemma4, the total
number of nodes (configurations) in the derivation graph must be finite. Hence,
even without knowing the set S, the brute force algorithm computing all possible
transitions from the initial configuration, but halting as soon as the system halts
or a configuration already passed previously is reached, yields a decision procedure
for the set accepted by Π. �

Strengthening this result by removing “weakly” is problematic, even if more
powerful P systems are used. Indeed, self-stabilization also from unreachable con-
figurations would need to handle not only the configurations without any state
or with multiple states (which could be handled with the joint power of maximal
parallelism and priorities), but also configurations representing a situation with
only one state which is not the initial state of the underlying register machine. We
have to leave this question open.

Theorem 2. If a model of P systems yields a computationally complete class, then
the weakly almost surely self-stabilizing P systems of this class accept exactly NRE.

Proof. We start with the construction from Theorem 1. We want to show that
relaxing the property “weakly self-stabilizing” to “almost surely” leads from re-
cursiveness to computational completeness. It suffices to handle the case when the
system rejects the input by never halting. We modify the underlying register ma-
chine as follows: add a non-deterministic transition from every state p ∈ Q to a
new state e5, from e erase the contents of all registers and then jump back to e.
This will not affect the accepting power, but it will provide a self-stabilizing path
from any reachable non-halting configuration.

4 König’s lemma: Let G be a connected graph with finite degree. If G contains an infinite
number of nodes, then it contains an infinite simple path.

5 The transition from p to e can be done by p : (ADD(j), e, e), since the registers
then are emptied anyway. Furthermore, the basic model of register machines does
not allow non-determinism other than p : (ADD(j), q, r). The branching at ADD in-
structions might be done by assuming the original computation to be deterministic
and replacing p : (ADD(j), q, q) by p : (ADD(j), q, e). The branching at a SUB in-
struction p : (SUB(j), q, r) may be done by the sequence of rules p : (ADD(j), e, p′),
p′ : (SUB(j), p′′, p′′), p′′ : (SUB(j), q, r).
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The probability that the computation does not self-stabilize for more than k
steps decreases exponentially with respect to k. Indeed, the simulation of a regis-
ter machine by P system has bounded parallelism, each instruction is simulated
in a bounded number of steps, and at least one path leads to self-stabilization.
Moreover, there only exists a finite number of different sets of applicable multi-
sets containing a branching from the simulation into the self-stabilization path, so
the minimum probability for this self-stabilization path is strictly positive. These
observations conclude the proof. �

Theorem 3. If a model of P systems yields a computationally complete class,
then the class of all almost surely self-stabilizing maximally parallel/sequential P
systems with priorities accepts exactly NRE.

Proof. Given a set L from NRE, we first construct a P system Π simulating a
register machineM accepting L and then extendΠ to a P systemΠ ′ even fulfilling
the condition of being almost surely self-stabilizing.

Let M = (m,B, l0, lh, P ) a deterministic register machine accepting L. We now
construct the P system Π = (O, l0, R,>) with priorities accepting L:

O = B ∪ {ai | 1 ≤ i ≤ m} ,
R = {l1 → aj l2 | l1 : (ADD (j) , l2) ∈ P}

∪ {aj l1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
> = {aj l1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P} .

The contents of a register i, 1 ≤ i ≤ m, is represented by the number of symbols
ai in Π. The state l of the register machine is represented by the corresponding
symbol l in Π, too. When M halts in lh with all registers being empty, Π also
halts with the configuration {lh}. Obviously, Π accepts L, both in the sequential
as well as in the maximally parallel mode.

To strengthen the result to even non-weak almost sure self-stabilization, we
have to take into account the non-reachable configurations, too. The almost surely
self-stabilizing P system Π ′ = (O′, l0, R

′, >′) with priorities accepting L is con-
structed as follows:

O′ = B ∪ {ai | 1 ≤ i ≤ m} ∪ {e} ,
R′ = {l1 → aj l2 | l1 : (ADD (j) , l2) ∈ P}

∪ {aj l1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {ai → e | 1 ≤ i ≤ m} ∪ {ex → e | x ∈ O′} ∪ {e → e}
∪ {l → e | l ∈ B \ {lh}} ∪ {ll′ → e | l, l′ ∈ B} ,

>′ = {aj l1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {ex → e > r, ll′ → e > r | l, l′ ∈ B, x ∈ O′, r ∈ R}
∪ {l → e > ai → e | l ∈ B \ {lh} , 1 ≤ i ≤ m}
∪ {r > e → e | r ∈ R′ \ {e → e}} .

In addition to the idea of the construction given in the proof of Theorem 2
using the exit e by applying a rule l → e, l ∈ B \ {lh}, it suffices to self-stabilize
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from the configurations with no state and from the configurations with multiple
states of the register machine. Multiple states can be reduced by the rules ll′ → e,
l, l′ ∈ B. If no state symbol is present, then we may exit with one of the rules
ai → e, 1 ≤ i ≤ m. All remaining cases can be captured by the rules ex → e,
x ∈ O′. By construction, the self-stabilizing set S equals {{lh} , {e}}. The whole
construction again is valid for the sequential as well as the maximally parallel
mode. �

An open question is whether priorities in Theorem 3 can be replaced by pro-
moters or inhibitors.

3.2 Generating systems

Theorem 4. Any finite set M of numbers can be generated by some self-stabilizing
membrane system without control.

Proof. Consider a P system Π = ({s, a}, s, R), where

R = {s → an | n ∈ M} ∪ {amax(M)+1 → λ, ss → s}.

It is not difficult to see that Π generates M and (taking S = {an | n ≤ max(M)}∪
{s}) it is self-stabilizing. �

Since self-stabilization implies set-convergence and closure, and relaxing either
property (to possibly, almost surely and/or weakly) does not compromise the con-
struction of the P system descibed in the proof of Theorem 4, the lower bound
on the generative power of associated systems restricted to any property we have
defined, is at least NFIN .

Lemma 1. A possibly finite set-converging system only generates finite sets.

Proof. It follows from Definition 1 that for a system possibly converging to a set
S, S contains all halting configurations. Since S is finite, so is the set of all the
halting configurations. Hence, at most NFIN can be generated. �

Theorem 5. Any of the following classes of P systems dpOPm(c) generate ex-
actly NFIN :

• d is possibly/almost surely/ -
• p is self-stabilizing/finite set-converging
• m is maximally parallel/sequential
• c is uncontrolled/with promoters/with inhibitors/with priorities.

Proof. The claims of the theorem directly follow from Theorems 4 and 5.

We now proceed to weak properties of generative systems.

Theorem 6. Weakly almost surely self-stabilizing P systems generate exactly
NFIN .
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Proof. The lower bound is shown by Theorem 4. Now take a weakly self-stabilizing
P system Π, and its associated set S from the definition of the property. Consider
an arbitrary halting computation of Π. Let C be the configuration of Π one step
before the halting. Interpreting finite set-convergence for C implies that the halting
configuration belongs to S. Since the halting computation has been arbitrarily
chosen, the set of all halting configurations is a subset of S, and hence it is finite.
Therefore, the set generated by Π is finite, too. �

Theorem 7. If a model of P system yields a computationally complete class, then
weakly possibly self-stabilizing subclass generates NRE.

Proof. Consider the construction from Theorem 2, but for a generative P system.
The simulation of the underlying register machine is carried out until some point.
Unless the P system has already halted, it always has a choice to self-stabilize and
loop. �

4 Conclusions

We have presented some results concerning the concept of self-stabilization, re-
cently proposed for membrane computing. Its essence is in reachability and closure
of a finite set.

Some of the obtained results can be summarized in the following table:

Property computationally complete (sequ/maxpar)+pri Thm

self stabilizing acc. ?/gen. NFIN -/5

almost surely s.s. acc. ?/gen. NFIN acc. NRE/gen. NFIN 3/5

possibly s.s. acc. ?/gen. NFIN acc. NRE/gen. NFIN 3/5

weakly s.s. acc. NREC/gen. NFIN 1/6

weakly almost surely s.s. acc. NRE/gen. NFIN 2/6

weakly possibly s.s. acc. NRE/gen. NRE 2/7

One of the questions we proposed is whether priorities may be replaced by pro-
moters or inhibitors in Theorem 2. Another open question is the power of accepting
with unrestricted self-stabilization, even if maximal parallelism is combined with
priorities (a comment after Theorem 1 and the first question mark in the table
above). The other open questions are also marked with question marks in the ta-
ble above. Any system in the corresponding classes must (besides doing the actual
computation) converge (definitely, in probability or possibly) to some finite set
from anywhere, without using the joint power of maximal parallelism and control.

We mention two topics that we do not deal with here. One is considering the
finite set as a parameter, possibly leading to a discussion in model checking. The
other one concerns reachability questions in dynamic membrane structures.
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