
A Formal Framework for P Systems with
Dynamic Structure

Rudolf Freund1, Ignacio Pérez-Hurtado2,
Agust́ın Riscos-Núñez2, Sergey Verlan3

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
Email: rudi@emcc.at

2 Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,
University of Sevilla,
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
Email: {perezh,ariscosn}@us.es

3 LACL, Département Informatique, Université Paris Est,
61, av. Général de Gaulle, 94010 Créteil, France
Email: verlan@univ-paris12.fr

Summary. This article introduces a formalism/framework able to describe different
variants of P systems having a dynamic structure. This framework can be useful for
the definition of new variants of P systems with dynamic structure, for the comparison
of existing definitions as well as for their extension. We give a precise definition of the
formalism and show how existing variants of P systems with dynamic structure can be
translated to it.

1 Introduction

This article is an attempt to fulfill the goal of defining a formal framework that
captures the essential properties of P systems with dynamic structure. This frame-
work can be seen as a kind of meta-language that permits to describe a P system
and its evolution. Our main goal is to provide a simple tool for the analysis of dif-
ferent models of P systems with dynamic structure. There are numerous possible
applications of the results of such an analysis, as, for example, the comparison and
the extension of existing models and the creation of new models of P systems with
a dynamic structure.

The article extends the approach used in [3] for P systems with static structure.
We recall that the framework for the static P systems is mainly composed of five
ingredients: the definition of the configuration of the system, the definition of
rules, the definition of the applicability and of the application of a rule/multiset of

112 R. Freund et al.

rules, transition mode and halting condition. The configuration is a list of multisets
corresponding to the contents of membranes of a P system and the rules generalize
most kind of rules used in the P systems area. Based on this general form of
rules, the applicability and the application of a (group of) rule(s) are defined
using an algorithm. This permits to compute the set of all applicable multisets of
rules for a concrete configuration C (Applicable(Π,C)). Then this set is restricted
according to the transition mode δ (Applicable(Π,C, δ)). For the transition, one
of the multisets from this last set is non-deterministically chosen and applied,
yielding a new configuration. The result of the computation is collected when the
system halts according to the halting condition, which corresponds to a predicate
that depends on the configuration and the set of rules.

In the case of P systems with dynamic structure the first three ingredients are
to be changed in order to accommodate with the fact that the structure of the
system can change. Informally, a configuration is a list of triples (i, h, w), where i
is the unique identifier of a cell/membrane, h is its label and w is its contents. A
configuration also contains the description of the structure of the system, which is
given by a binary relation ρ on cell identifiers.

We assume that the set of rules is fixed (does not change in time). Rule ac-
tions are expressed in terms of “virtual” cells (membranes). These virtual cells are
identified by labels. The process of the application of rules first makes a correspon-
dence between the current configuration and the virtual cells described in a rule,
i.e. it tries to “match” the constraints of virtual cells (labels, relation, contents,
etc.) against the current configuration. When a subset of cells from the current
configuration (say I) matches the constraints of a rule, we say that a rule can be
instantiated by the instance I. The instantiation of r by I is the couple (r, I),
denoted by r⟨I⟩, and it can then be treated as a rule that could be applied like in
the static case. The rules also contain additional ingredients that permit to modify
the structure (the relation ρ).

Instances of rules can further be used to compute the applicable set of multisets
of rules and we provide an algorithm for this purpose. The transition modes and
halting conditions can easily be applied to this set exactly as in the static case.

The article is organized as follows. Section 2 gives the definition of the frame-
work and presents the related algorithms. Section 3 presents a taxonomy that
permits to define shortcuts for the commonly used cases. Then in section 4 we
give examples of the translation of different types of P systems with dynamical
structure. Finally, we discuss the perspectives of the presented approach.

2 Definitions

We assume that the reader is familiar with standard definitions in formal language
theory (for example, we refer to [8] for all details) and with standard notions of P
systems, as described in the books [5] and [6] or at the web page [7].

A Formal Framework for P Systems with Dynamic Structure 113

2.1 Graph transformations

There exist several ways to define a graph transformation. We will define a the
graph transducer using the formalism from [2]. This formalism defines the graph
transformation as a graph-controlled graph rewriting grammar with appearance
checking using the following operations:

• I(X): creation of a new node labeled by X;
• D(X): deletion of a node labeled by X;
• C(X,Y): change the label of the node labeled by X to Y;
• I(l1, λ, l2; l

′
1, a, l

′
2): insert an edge labeled by a between two nodes labeled by l1

and l2; after the insertion nodes are relabeled to l′1 and l′2 respectively;
• D(l1, a, l2; l

′
1, λ, l

′
2): delete the edge labeled by a between two nodes labeled by

l1 and l2; after the deletion nodes are relabeled to l′1 and l′2 respectively;
• C(l1, a, l2; l

′
1, a

′, l′2): rename to a′ the label of the edge labeled by a between
two nodes labeled by l1 and l2, After this operation nodes are relabeled to l′1
and l′2 respectively.

It was proved in [2] that the above formalism is computationally complete.
In what follows we will use some particular graph transducers whose definition

we give below:

• DELETE(x): C(x, x′), D(x′, a, y;x′, λ, y) (looping over a and y), D(x′)
• INSERT (x): I(x)
• INSERT − EDGE(x, y): I(x, λ, y;x, a, y)
• DELETE − EDGE(x, y): D(x, a, y;x, λ, y)

2.2 Definition of the framework

We start by defining a configuration of a P system. Since we deal with P systems
with dynamic structure, it should be taken into account that the number of cells
(membranes) is not fixed (it is unbounded) and it will be represented by a list.

Definition 1 A basic configuration C (of size n) is a list (i1, w1) . . . (in, wn),
where each wj is a multiset (over O) and each ij ∈ N, ij ̸= ik, for k ̸= j,
1 ≤ j, k ≤ n.

If not stated otherwise, we suppose that all multisets of a basic configuration
are finite. If needed the definitions that follow can be adapted to infinite multisets
by adding corresponding constraints to the rule definition like it was done in [3].

The set of basic configurations of any size n > 0 is denoted by C. We remark
that we will consider only basic configurations of finite size and we denote the size
of C by size(C).

Each element (ij , wj), 1 ≤ j ≤ n, of a configuration C is called a cell. We say
that ij is the id of the cell j and that wj is the contents of the cell j. We define
the function id(x) which for a cell x returns its id. We require the function id to

114 R. Freund et al.

be bijective, i.e., there should be a one-to-one correspondence between cells and
their id’s.

If not stated otherwise, we will consider that id is the identity function
(id(x) = x), so we will not distinguish between an id and its position in the
list of configurations.

Definition 2 A configuration C is the couple (L, ρ), where L ∈ Lab × C is the
list (i1, l1, w1) . . . (in, ln, wn) with (ij , wj) corresponding to an element of a basic
configuration and lj ∈ Lab being the label of the cell, 1 ≤ j ≤ n (Lab is a set of
labels). The second component ρ ⊆ N× N is the relation graph between cells.

Hence in a configuration any cell has an id (equal to the position) which is
unique and a label which is not necessarily unique. We define the function lab(x) :
N → L that returns the label of the cell having the id equal to x. We denote by Cm
and Cρ the first and the second components of the configuration C. We also denote
by C̄m ∈ C the projection of Cm erasing the labels (yielding a basic configuration).

The relation ρ is defined on id’s of cells being part of the configuration. In
P systems this corresponds to the parent relation, while in tissue P systems this
corresponds to the communication graph of the system.

The set of all possible configurations is denoted by C.
Now we will give the definition of a rule. A rule r is defined by the following

components. We remark that all of them are given in terms of virtual cell positions.
We will also call them relative positions because they are introduced in the first
component of the rule.

A. Checking
1. Labels(r) ∈ Lab∗ (Labels(r) = (l1, . . . , lk)) is a list of cell labels. This list

identifies k (relative) positions labeled from 1 to k that we further call virtual
cells. Let Nk = {1, . . . , k} and K be a subset of C where for any cell x it holds
1 ≤ id(x) ≤ k.

2. ρ(r) ⊆ Nk×Nk is the constraint imposed by the (parent) relation on the virtual
cells.

3. Perm(r) ⊆ K defines the permitting condition.
4. For(r) ⊆ K defines the forbidding condition.

B. Modification of existing configuration/structure
5. Rewrite(r) ∈ (K×K) is a general rewriting rule permitting to rewrite a finite

basic configuration to another one (e.g., (j, u)(i, v) → (m,w)). By Bound(r)
we denote the first component (the left-hand-side) of this rewriting rule.

6. Label–Rename(r) ∈ (Nk × Lab)∗ renames the labels specified by the list.
7. Delete(r) ∈ N∗

k gives the indexes of virtual cells to be deleted.
8. Delete–and–Move(r) ∈ (Nk × Nk)

∗ is a list of couples of indices (e.g., (j, k))
indicates that the virtual cell j should be deleted and its contents should be
moved to the virtual cell k).

C. Creation of new structures

A Formal Framework for P Systems with Dynamic Structure 115

9. Generate(r) ∈ (N′ × Lab × O◦)∗ is a list of triples consisting of a (primed)
index, a label, and a multiset (e.g. (j′, h, u)). This component introduces new
cells to be created by the application of the rule.

10. Generate–and–Copy(r) ∈ (N′×Lab×N×R̄) -is a list of quadruplets consisting
of a (primed) index, a label, an index, and a rewriting rule (e.g. (j′, h, i, u →
v)). This component specifies new cells to be created by duplicating existing
cells.
We denote the smallest multiset containing any left-hand side of rewriting rules
from Generate–and–Copy by DPerm(r).

D. Structure transformation
11. Change–Relation is a graph transducer that updates the relation ρ. This

transducer should be recursive and it can only add and remove edges (no
node creation/removal is allowed).

Now we define what means the applicability of a rule. Before giving the algo-
rithm, we define some additional notions related to relative positions.

An instance of size n is a vector of integers I = (i1, . . . , in), ij ∈ N, 1 ≤ j ≤ n.
By size(I) we denote the size of an instance I, and by I|k, 1 ≤ k ≤ n, the k-th
value of the vector I, i.e., ik.

For a basic configuration C ∈ C, C = (j1, w1) . . . (jk, wk), and for an instance
I we define the instantiation of C by I, denoted C⟨I⟩, as follows:

C⟨I⟩ = (I|j1 , w1) , . . . , (I|jk , wk) .

In the above formula we assume that the cells of configuration C do not nec-
essarily have their id in the range [1 . . . size(C)]. We also remark that size(C) ≤
size(I).

It is clear that if C is defined in terms of relative positions then C⟨I⟩ permits
to replace these relative positions by the corresponding values from I (a relative
position k is replaced by I|k which is ik).

For a rule r as defined above and for an instance I such that |Labels(r)| ≤
size(I) we obtain the instantiation of r by I, denoted by r⟨I⟩, by replacing all
relative positions k by I|k in Perm(r), For(r), Rewrite(r), Label–Rename(r),
Delete(r), Delete–and–Move(r) and Change–Relation(r).

Now we define what means the applicability of a group of rules. First we define
the set of valid instances for a rule r ∈ R in a configuration C. This set, denoted
by IC(r), is obtained by the following algorithm.

1. Getting instances in conformity with Labels(r):

ĪC(r) = {(i1, . . . , ik) | (l1, . . . , lk) = Labels(r) and lab(ij) = lj ,

1 ≤ ij ≤ size(C), 1 ≤ j ≤ k}.

2. Checking the relation ρ:

IC(r) = {(i1, . . . , ik) ∈ ĪC(r) | (j,m) ∈ ρ(r) ⇒ (ij , im) ∈ Cρ}.

116 R. Freund et al.

For a multiset of rules R ∈ R◦ and a configuration C ∈ C we define the set
of multisets Applicable(R, C) ⊆ (R × N∗)◦ giving the set of multisets of instanti-
ated rules that can be computed based on R and the configuration C. This set is
computed as follows.

Let R = {r1, . . . , rn} (the rules are not necessarily different) and let IC(ri) =
(vi,1, . . . , viki), 1 ≤ i ≤ n. Consider an arbitrary vector of rule instances v =
(v1,j1 , . . . , vn,jn), 1 ≤ ji ≤ ki, 1 ≤ i ≤ n. The multiset {(r1, v1,j1), . . . , (rn, vn,jn)}
is added to Applicable(R, C) if

• For all p ∈ Perm(ri) ∪DPerm(ri), p⟨v⟩ ⊆ C̄m, 1 ≤ i ≤ n.
• For all q ∈ For(ri), q⟨v⟩ ̸⊆ C̄m, 1 ≤ i ≤ n.
•

∪n
i=1 Bound(ri)⟨v⟩ ⊆ C̄m.

• The consecutive application of graph transducers Change–Relation(ri) and
Change–Relation(rj) yields the same result regardless of the order of the ap-
plication, 1 ≤ i, j ≤ n.

It is clear that there is a bound on the size of the multiset of rules R for which
Applicable(R, C) is not empty. We denote by Applicable(C) ⊆ (R×N∗)◦ the union
of corresponding multisets:

Applicable(C) =
∪

Applicable(R,C) ̸=∅

Applicable(R, C).

For a P system Π having a set of rules R we define Applicable(Π, C) =
Applicable(R, C). Following [3] it is possible to define now the transition modes as
a restriction of this set. However, it should be noted that since the corresponding
multisets contain instantiated rules, additional restrictions based on instances can
be placed.

Now we are ready to define the application of a multiset of rules R.
Let C = (L, ρ) be the current configuration and let RI ∈ Applicable(R, C),

RI = {(r1, v1), . . . , (rn, vn)} be a multiset of instantiated rules. We now define the
operation Apply(RI, C) ∈ C which is the result of the application of RI to C.

Before giving the algorithm we remark that a rule is composed from three parts:
the rewriting of objects and the label change (R), the membrane deletion (D) and
the membrane creation (G). The order of the application of these parts is extremely
important, e.g. doing the rewriting before the membrane creation permits to copy
the result of the rewriting to the new membranes. In this article we consider
that the application order is RGD, i.e. rewriting, creation and then deletion. This
order corresponds to the actual state of art in the area of P systems with active
membranes. Other orders are also possible and this can be an interesting topic for
a further research.

The algorithm for the computation of Apply(RI, C) is the sequence consisting
of the following steps.

1. (rewriting application): L1 = {(i1, l1, w′
1) . . . (in, ln, w

′
n)} where:

A Formal Framework for P Systems with Dynamic Structure 117

w′
j = wj +

∪
(rk, vk) ∈ RI

(s, u → v) ∈ Rewrite(rk)
vk|s = j

(−u+ v).

2. (label change): L2 = {(i1, l′1, w′
1) . . . (in, l

′
n, w

′
n)} where:

l′j =

 es, there is (rk, vk) ∈ RI such that (s, es) ∈ Label–Rename(rk)
and vk|s = j,

lj , otherwise.

3. (membrane creation): (m1 . . .mt+s are new ids). We define the lists of newly
created cells Lc and L′

c:

Lc(rk) =(m1, h1, u1) . . . (mt, ht, ut), (rk, vk) ∈ RI and

Generate(rk) = {(1′, h1, u1) . . . (t
′, ht, ut)}.

Lc =
n∏

k=1

Lc(rk).

L′
c(rk) = (mt+1, ht+1, w

′
n1

− u1 + v1) . . . (mt+s, ht+s, w
′
ns

− us + vs), where
(rk, vk) ∈ RI and

Generate–and–Copy(r) ={((t+ 1)′, ht+1, nt+1, ut+1 → vt+1) . . .

((t+ s)′, ht+s, nt+s, ut+s → vt+s)},
(ij , l

′
j , w

′
j) ∈ L2, 1 ≤ j ≤ n

L′
c =

n∏
k=1

L′
c(rk).

By definition, we put vk|q′ = mq, 1 ≤ q ≤ t+ s.
We also consider a graph transducer CREATE–NODES that creates nodes
m1, . . . ,mt+s.
We put L3 = L2 ·Lc ·L′

c (this is the Cm part of the result of the application of
R).

4. (membrane deletion):
Consider a vector P = (p1, . . . , pn) defined as follows:

pj =

∗, if there exists (rk, vk) ∈ RI such that s ∈ Delete(rk)

and vk|s = j,

vk|m, if there exists (rk, vk) ∈ RI such that

(s,m) ∈ Delete–and–Move(rk) and vk|s = j,

j, otherwise.

118 R. Freund et al.

The first two cases correspond to those ids j for which the corresponding cells
should be deleted. We remark that for any pk such that pk ̸= ik, there is a
value z ∈ N ∪ {∗} such that there is a sequence x1, . . . , xm with x1 = pk,
xm = z, and xj = pxj−1 , 2 ≤ j ≤ m. We denote this by z = last(x). The
above affirmation follows from that fact that the Delete–and–Move relation
(considered as a parent relation) induces a forest on the ids of the cells that
should be deleted. The roots of the obtained trees are given by the function
last and they will collect the objects from all the cells in the tree (if they are
different from ∗).
Next we describe how the contents is moved:
L4 = {(i1, l′1, w′′

1) . . . (in, l
′
n, w

′′
n)} where (ik, l

′
k, w

′
k) ∈ L3, 1 ≤ k ≤ n, and

w′′
j = w′

j +
∪

last(k)=j

w′
k.

The deletion of cells induces changes to the relation ρ. We collect these modi-
fications as a graph transducer DELETE–NODES that will be run after the
Change–Relation transducer. This transducer deletes all vertices j such that
pj ̸= j as well as all edges that are incoming to these deleted nodes.
We also remove the corresponding cells from L4:
L5 = (i1, l

′
1, w

′′
1) . . . (in1 , l

′
n1
, w′′

n1
) where (ij , l

′
j , w

′′
j) ∈ L4 and pj = ij .

5. (relation change) The new relation C′
ρ is computed by running the graph trans-

ducers CREATE–NODES, Change–Relation(r⟨vk⟩) and
DELETE–NODES for all (rk, vk) ∈ R on Cρ.

3 Taxonomy

In order to simplify the notation we consider several variants of rule notation:

Simple rewriting rule (R-rule)

An R-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r))

Simple rewriting rule with label rename (LR-rule)

An LR-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r), Label–Rename(r))

Simple creation rule (C-rule)

A C-rule is defined by the following components:
r = (Labels(r), ρ(r), Generate(r), Generate–and–Copy(r),

Change–Relation(r))

A Formal Framework for P Systems with Dynamic Structure 119

Simple creation rule with label rename (CL-rule)

A CL-rule is defined by the following components:
r = (Labels(r), ρ(r), Label–Rename(r), Generate(r),

Generate–and–Copy(r), Change–Relation(r))

Simple dissolution rule (D-rule)

A D-rule is defined by the following components:
r = (Labels(r), ρ(r), Delete(r), Delete–and–Move(r),

Change–Relation(r))

In the case of the parent relation (tree case), we can simplify the rules and omit
ρ(r) by supposing that Labels(r) is of size 2. In this case we implicitly assume that
(1, 2) ∈ ρ(r). The type of corresponding rules with parent relation will additionally
contain the letter P (e.g., PC-rule).

In a more general way we can combine several components: L – label rename,
R – rewriting, C – membrane creation, D – membrane deletion (and get RD rules
for example).

Rules r having a non-empty Delete–and–Move(r) component can be simpli-
fied by reducing their Change–Relation(r) component in the case of the parent
relation.

In the above case we will assume that Change–Relation(r) contains the trans-
ducer MOV E − CONNECTIONS described below. This transducer adds the
following edges to ρ: {(ax, by) | (x, y) ∈ Cρ and ax, by ̸= ∗}, where (ax, by) is de-
fined as follows (im is the id of membrane m):

(ax, by) =

{
(last(x), y), (x, y) ∈ ρ and px ̸= ix,
(y, last(x)), (y, x) ∈ ρ and px ̸= ix.

The above transformations correspond to the deletion of cells and to the move-
ment of their contents according to Delete–and–Move relation.

4 Some examples

4.1 Active membranes

Let us start with the example of traditional active membrane rules (e.g., see Section
11.2 from handbook).

Polarization can be treated in two ways – as a special object inside a mem-
brane or like a special label; we here consider the latter case, i.e., the couple
(label,polarization) will be a new type of label.

Thus, a rule r : [a → v]eh will be treated as r : [a → v]⟨e,h⟩ and it can be
translated as the following PR-rule:

120 R. Freund et al.

r : Labels(r) = (⟨e, h⟩),
Rewrite(r) = {(1, a → v)}.

In the future we indicate e instead of ⟨e, h⟩.
A rule a[]e1 → [b]e2 can be translated as the following group of PLR-rules

(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (2, a) → (1, b),

Label–Rename(r) = {(1, e2)}.
A rule [a]e1 → []e2b can be translated as the following group of PLR-rules

(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (1, a) → (2, b),

Label–Rename(r) = {(1, e2)}.
A rule [a]e → b can be translated as the following group of PD-rules (∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = {(1, a) → (1, b)},
Delete–and–Move(r) = {(1, 2)}.

A rule [a]e1 → [b]e2 [c]e3 can be translated as the following group of PCLR-rules
(∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = (1, a) → (1, b),

Label–Rename(r) = {(1, e2)},
Generate–and–Copy(r) = {(1′, e3, 1, b → c)},

Change–Relation(r) = INSERT − EDGE(1′, 2).

4.2 Rules without polarizations

(According to Section 11.4 from the handbook). Since in our case the label is a
couple ⟨e, h⟩, there is no distinction with respect to the previous case.

4.3 Creation rules

Consider creation rules like on p. 326 in handbook.
A rule [a → [u]h1]h2 can be translated as following PCR-rule:

r : Labels(r) = (h2),

Rewrite(r) = (1, a) → (1, λ),

Generate(r) = {(1′, h1, u)},
Change–Relation(r) = INSERT − EDGE(1′, 1).

A Formal Framework for P Systems with Dynamic Structure 121

4.4 Strong division

A rule [[]h1
. . . []hk

[]hk+1
. . . []hn

]h → [[]h1
. . . []hk

]h[[]hk+1
. . . []hn

]h can be defined as
the following C-rule:

r : Labels(r) = (h1, . . . , hn, h),

ρ(r) = {(i, n+ 1) | 1 ≤ i ≤ n},
Rewrite(r) = ∅

Generate(r) = {(1′, h, λ)},
Generate–and–Copy(r) = ∅,

Change–Relation(r) = DELETE − EDGE(k, n+ 1), i+ 1 ≤ k ≤ n, and

INSERT − EDGE(k, 1′).

4.5 Division based on polarizations

Consider a rule of type []h → [+]h[−]h2[0]h3 that regroups all membranes with
the same polarization in three new membranes. This can be simulated with the
following C-rule:

r : Labels(r) = (h),

ρ(r) = ∅,
Rewrite(r) = ∅,

Generate(r) = {(1′, h1, λ), (2
′, h2, λ)},

Generate–and–Copy(r) = ∅,

Change–Relation(r) =

DELETE–EDGE(k, 1), and INSERT–EDGE(k, 1′),

for all k such that lab(k) = −
DELETE–EDGE(k, 1), and INSERT–EDGE(k, 2′),

for all k such that lab(k) = 0

5 Conclusions

In this paper we presented a framework for P systems with dynamic structure.
The obtained meta-language has a precise semantics centered around 2 notions:
(1) the evolution of the objects and membrane labels and (2) the evolution of the
membrane structure (creation and deletion of nodes and edges). As a consequence
it permits to easily describe different features of existing P systems with dynam-
ical structure, which permits to provide an interesting tool for the comparison of
different variants of P systems. Moreover, the translation to the framework allows

122 R. Freund et al.

for a better understanding of the corresponding P system and provides ways to
extend its definition by new features. We remark that in the case of the systems
with a static structure a similar approach using the framework from [3] permitted
to define new variants of P systems and to better express some existing ones [1, 4].

The introduced model works with an arbitrary (binary) relation between mem-
branes, so it could be interesting to consider relations different from the parent
relation widely used in P systems. As an interesting candidate we suggest the
brother/sister relation on a tree. It could also be interesting to consider a general-
ization of the framework to an arbitrary n-ary relation. In this case the relation ρ
induces a hypergraph, so the components changing the structure of ρ have to be
adapted to work on hypergraphs.

Another direction for the development of the framework is to consider that
for a multiset of rules the order of the application of Change–Relation produces
different results. This implies that the order of rules is important, by consequence
the set Applicable(Π,C, δ) will contain vectors (or lists) of rules. This interesting
idea was not yet considered in the framework of P systems and we think that it
can lead to interesting results.

References

1. A. Alhazov, M. Oswald, R. Freund, S. Verlan, Partial Halting and Minimal Parallelism
Based on Arbitrary Rule Partitions, Fundamenta Informaticae 91(1), 2009, 17–34.

2. R. Freund, B. Haberstroh, Attributed Elementary Programmed Graph Grammars,
Proceedings 17th Intern. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, Lecture Notes in Computer Science 570, Springer, 1991, 75–84.

3. R. Freund, S. Verlan, A Formal Framework for Static (Tissue) P Systems, Membrane
Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 25-
28, 2007 Revised Selected and Invited Papers, Lecture Notes in Computer Science
4860 , 271–284, Springer, 2007.

4. R. Freund, S. Verlan, (Tissue) P systems working in the k-restricted minimally or
maximally parallel transition mode, Natural Computing 10(2), 2011, 821–833.

5. Gh. Păun, Membrane Computing. An Introduction. Springer–Verlag, 2002.
6. G. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook Of Membrane Computing.

Oxford University Press, 2009.
7. The Membrane Computing Web Page: http://ppage.psystems.eu
8. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages. Springer–Verlag,

Berlin, 1997.

